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The bulk atomic equations of motion are revisited in order to show explicitly, for high symmetry directions, the transformation of this three-
dimensional problem into decoupled one-dimensional problems. The force constants of the corresponding one-dimensional equations are
related to a larger number of force constants of the bulk problem. We illustrate how the three-dimensional force constants (and consequently
the whole dynamical matrix) can be estimated from a few either experimental or theoretical points for semiconductors in the zincblende and
diamond structures.
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Las ecuaciones del movimiento en materiales masivos son retomadas para mostrar explı́citamente, para direcciones de alta simetrı́a, las
transformaciones de este problema tridimensional en problemas unidimensionales desacoplados. Las constantes de fuerza de las corres-
pondientes ecuaciones unidimensionales son relacionadas a un número mayor de constantes de fuerzas en el material masivo. Se ilustra
como las constantes de fuerza tridimensionales (y consecuentemente la matriz dinámica) pueden ser estimadas a partir de unos pocos puntos
experimentales o teóricos, para semiconductores de las estructuras blenda de zinc y diamante.

Descriptores:Constantes de fuerza; blenda de zinc; diamante.

PACS: 63.10.+a; 63.20.Dj

1. Introduction

Many properties of solids depend on the dynamics of the
crystal lattice. Though the current interest of most re-
searchers is mainly focused on phonons in heterostructures,
some problems still demand an appreciable knowledge of the
bulk atomic oscillations. Examples are phonon imaging [1,2]
and the reduction of thermal conductivity in superlattices in
comparison to bulk materials [3–5].

It is worth recalling that, along high symmetry direc-
tions such as either the[001] or the [111] direction, and for
semiconductors with both the zincblende and diamond struc-
tures, the three-dimensional (3D) equations of motion are de-
coupled into one longitudinal and two transverse oscillations
which are described by linear chain models (see [6] and refer-
ences therein). This exact result for the bulk is useful for the
study of heterostructures. In fact, for heterostructures grown
along high symmetry directions, it is usually assumed that the
force constants in each constituent layer are equal to the bulk
force constants. These bulk values are estimated either from
experimental dispersion relations or from theoretical calcu-

lations, and linear chain models are employed in studying
the phonon modes of this more complex system. Early works
considered only interaction with a few neighbors [7–9]. More
elaborate linear models were later developed, such as the pla-
nar bond-charge model [10]. Other authors simply take the
bulk force constants from first principles calculations [11,12].

For less symmetric directions, there is no simple treat-
ment at hand. From the theoretical viewpoint, even though
atomic equations of motion have been known for a long
time [13], the huge number of atoms in bulk materials makes
their numerical solution an unaffordable task. Thus, the
above-mentioned examples demand simpler phonon models.
Among these we find, for example, phenomenological mod-
els like the rigid-ion model [13,14], the shell model [15,16],
and the bond-charge model [17, 18]. However, the numeri-
cal implementation of these is not straightforward; therefore,
analytical results are always of interest.

In this paper the phonon equations of motion for bulk
semiconductors are revisited. Instead of finding the irre-
ducible representation for a given direction, as for example
in Ref. 6, we consider a given number of atoms and assume
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harmonic interaction between a limited number of neighbors.
The dynamical matrix is then constructed, taking into account
the symmetry of the underlying lattice. Interesting properties
of the equations are found in this way. In particular, we check
explicitly how the 3D problem reduces to decoupled linear
chain equations for high symmetry directions, with the aim
of obtaining the relation between the 3D and one-dimensional
(1D) force constants. To the best of our knowledge, this re-
lation has not been explored so far. Our study helps to un-
derstand better the richness of the linear chain models. We
also show how to fit the 3D bulk force constants (and conse-
quently the whole dynamical matrix) from a few points, ei-
ther experimental or theoretical. We focus our study on both
the zincblende and diamond structures, which are examples
of a diatomic basis in a crystal lattice. We also find it useful
to consider the monatomic face-centered-cubic (fcc) lattice,
for it is an illustrative example where analytical calculations
are easier than in the rest of the treated problems dealt with.

This paper is organized as follows: in the next section
we enumerate the properties of the equations of motion that
are needed in this paper. In Sec. III, we consider the face-
centered-cubic (fcc) lattice with a monatomic basis. In Sec.
IV, we study both the diamond and zincblende structures. At
the end, our main conclusions are summarized.

2. Atomic equations of motion

In the harmonic approximation the crystal hamiltonian
reads [13]

H=
∑

lκα

p2
α (lκ)
2Mκ

+
1
2

∑

lκα,l′κ′β

Φαβ (lκ, l′κ′)uα (lκ) uβ (l′κ′) , (1)

where l, l′=1, 2, . . . , N label the elementary cells,
κ, κ′=1, 2, . . . , r label the atoms in the basis,α, β = x, y, z
represent the coordinate axis, Mκ is the mass of theκ-
atom, pα (lκ) is the linear momentum of thelκ-atom in
theα direction, uα (lκ) represents the displacement from the
equilibrium position of thelκ-atom in theα direction, and
Φαβ (lκ, l′κ′) are the force constants. The force constants
are symmetric in the indicesl, κ, α

Φαβ (lκ, l′κ′) = Φβα (l′κ′, lκ) . (2)

The hamiltonian is invariant under an infinitesimal trans-
lation of the whole crystal; this yields the following relation
between the force constants

∑

lκ

Φαβ (lκ, l′κ′) =
∑

l′κ′
Φβα (l′κ′, lκ) = 0. (3)

From the crystal invariance under translations in a lattice
vector, we find that

Φαβ (lκ, l′κ′) = Φαβ ((l − l′)κ, 0κ′) , (4)

i.e., the force constants are functions of the relative position
of lth andl′th cells. The equations of motion in the reciprocal
space are of the form

ω2eα (κ) =
∑

κ′β

Dαβ (κκ′, q) eβ (κ′) , (5)

whereeα (κ) is the polarization vector andD is the dynami-
cal matrix given by

Dαβ (κκ′, q) =
1√

MκMκ′

∑

l′
Φαβ (lκ, l′κ′)

× exp (−iq · [x (l)− x (l′)]) , (6)

wherex (l) is the vector position of the elementary cell. The
dynamical matrix is hermitian

Dαβ (κκ′, q) = D∗
βα (κ′κ, q) , (7)

and has the property

Dαβ (κκ′,−q) = D∗
αβ (κκ′, q) . (8)

The invariance of the force constants under a symmetry
operation S (S is represented by a unitary matrix) is written
in matrix form as

SΦS† = Φ. (9)

From this relation, the dependence between the matrix el-
ements of the force constant matrix can be established. The
dagger (†) means the hermitian conjugate.

3. Monatomic crystal

We first consider a fcc lattice with a monatomic basis. This
simple case helps to understand the properties of the force
constants in more complicated situations. For our purpose it
is sufficient to consider the[100] direction. The structure has
a fourth-order symmetry axis in this direction [19]. TheC4

symmetry operation can be represented by the matrix

C4 =




1 0 0
0 0 −1
0 1 0


 . (10)

Employing (9), the force constant matrix is written as

Φ =




Φ11 0 0
0 Φ22 Φ23

0 −Φ23 Φ22


 . (11)

Considering also the symmetry properties (2) and (4), the
matrix is reduced to the diagonal form

Φ =




Φ11 0 0
0 Φ22 0
0 0 Φ22


 . (12)
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TABLE I. Position and distance from the origin of the first 14th neighbors for the monatomic fcc lattice.

neighbor n |n|
1 (±a/2, 0,±a/2) ; (±a/2,±a/2, 0) ; (0,±a/2,±a/2)

√
2

2
a

2 (±a, 0, 0) ; (0,±a, 0) ; (0, 0,±a) a

3 (±a,±a/2,±a/2) ; (±a/2,±a,±a/2) ; (±a/2,±a/2,±a)
√

6
2

a

4 (±a,±a, 0) ; (0,±a,±a) ; (±a, 0,±a)
√

2a

5 (±a,±a,±a)
√

3a

6 (±3a/2,±a/2,±a/2) ; (±a/2,±3a/2,±a/2) ; (±a/2,±a/2,±3a/2)
√

11
2

a

7 (±3a/2,±a,±a/2) ; (±a,±3a/2,±a/2) ; (±a/2,±a,±3a/2) ;
√

14
2

a

(±3a/2,±a/2,±a) ; (±a/2,±3a/2,±a) ; (±a,±a/2,±3a/2)

8 (±2a, 0, 0) ; (0,±2a, 0) ; (0, 0,±2a) 2a

9 (±2a,±a/2,±a/2) ; (±a/2,±2a,±a/2) ; (±a/2,±a/2,±2a) ; 3
√

2
2

a

(±3a/2, 0,±3a/2) ; (±3a/2,±3a/2, 0) ; (0,±3a/2,±3a/2)

10 (±2a,±a, 0) ; (0,±2a,±a) ; (±2a, 0,±a) ;
√

5a

(±a,±2a, 0) ; (0,±a,±2a) ; (±a, 0,±2a)

11 (±2a,±a,±a) ; (±a,±2a,±a) ; (±a,±a,±2a)
√

6a

12 (±2a,±3a/2,±a/2) ; (±2a,±a/2,±3a/2) ; (±3a/2,±2a,±a/2) ;
√

26
2

a

(±a/2,±2a,±3a/2) ; (±a/2,±3a/2,±2a) ; (±3a/2,±a/2,±2a)

13 (±2a,±2a, 0) ; (0,±2a,±2a) ; (±2a, 0,±2a) 2
√

2a

14 (±2a,±2a,±2a) 2
√

3a

TABLE II. Relation between the number of force constants (num-
ber of neighbors) in the linear chain and in the 3D problem.

linear chain Bulk (3D)

1 1

2 2

3 6

4 8

5 15

Thus, the motion is decoupled into a longitudinal (L) and
two degenerate transverse (T) oscillations. The dynamical
matrix (6) has also this property. For the sake of simplicity
we limit our study to the longitudinal phonons. The disper-
sion relation (5) is quite simple in this case:

ω2 = D11 (q) . (13)

In the rest of this section we omit the coordinate axis la-
bel. Employing (2), (3), and (4) the following expression for
the dynamical matrixD is obtained:

D (q) = − 2
M

∑
n

Φ (n) sin2
(q · n

2

)
, (14)

wheren = x (l)−x (l′). Thus equation (13) yields the known
dispersion relation for the monatomic linear chain [20]

ω2 =
4
M

f∑
m>0

Km sin2
(mqa

2

)
, (15)

whereKm are the force constants of the linear chain. We
computed the dynamical matrix (14) considering the first
14th neighbors. In Table I, the position of these atoms and
their distance from the origin are presented. Replacing the
values ofn from the table in the expression (14), substituting
the resulting expression in (13), and comparing with (15), we
obtain the following relation between the 3D force constants
and the linear chain force constants. Note that for the linear
chain the lattice constanta0/2 should be employed.

K1 = − (4Φ1 + 8Φ3 + 8Φ6 + 16Φ7 + 8Φ9 + 8Φ12)

K2 = − (Φ2 + 4Φ3 + 4Φ4 + 4Φ5 + 4Φ10 + 8Φ11)

K3=− (4Φ6+8Φ7+4Φ∗9+8Φ12)

K4=−(Φ8 + 4Φ9 + 4Φ10 + 4Φ11 + 8Φ12

+ 4Φ13 + 4Φ14)

... (16)

Table II shows that few neighbors in the linear chain cor-
respond to a larger number of neighbors in the 3D case. Of
course, in the bulk there is a larger number of neighbors at
some distance from an arbitrary atom. This simple case illus-
trates why the linear chain with interaction with a few neigh-
bors fits well with the experimental results in a variety of sit-
uations.
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TABLE III. Position and distance from the origin of the first three nearest neighbors for both the diamond and zincblende structures.

Neighbor x (l) |r |
1 l0 = (0, 0, 0) ; l1 = (a0/2,−a0/2, 0) ;

√
3

4
a0

l2 = (0,−a0/2,−a0/2) ; l3 = (a0/2, 0,−a0/2)

2 L0 = (a0/2, a0/2, 0) ; L1 = (−a0/2, a0/2, 0) ;
√

2
2

a0

L2 = (−a0/2,−a0/2, 0) ; L3 = (a0/2,−a0/2, 0) ;

L4 = (0, a0/2, a0/2) ; L5 = (0,−a0/2, a0/2) ;

L6 = (0,−a0/2,−a0/2) ; L7 = (0, a0/2,−a0/2) ;

L8 = (a0/2, 0, a0/2) ; L9 = (−a0/2, 0, a0/2) ;

L10 = (−a0/2, 0,−a0/2) ; L11 = (a0/2, 0,−a0/2)

3 L′0 = (0, a0/2,−a0/2) ; L′1 = (a0/2, 0, a0/2) ; L′2 = (a0/2, a0/2, 0) ;
√

11
4

a0

L′3 = (0,−a0/2, a0/2) ; L′4 = (−a0/2, 0,−a0/2) ; L′5 = (−a0/2,−a0/2, 0) ;

L′6 = (a0,−a0/2,−a0/2) ; L′7 = (a0/2,−a0,−a0/2) ; L′8 = (a0/2,−a0/2,−a0) ;

L′9 = (a0, 0, 0) ; L′10 = (0,−a0, 0) ; L′11 = (0, 0,−a0)

4. Diatomic crystal: zincblende and diamond
structures

We consider here the elementary cell of a fcc structure with
lattice constanta0 and a two-atom basis. The basis atom lo-
cated at the lattice point is labeledκ, and the other one is
shiftedx (κ′) = (−a0/4, a0/4, a0/4), and labeledκ′. If the
two atoms are different, we have the zincblende structure,
whereas if the two basis atoms are equal we have the dia-
mond structure. We study the equations of motion with third-
nearest neighbors interaction, and then we consider some par-
ticular directions. We should note that the first and third
neighbors areκ′ atoms, located atr = x (l) + x (κ′). Sec-
ond neighbors areκ atoms, located atr = x (l). Only the
coordinatesx (l) are needed to computeD (κκ′, q) after (6).
The position of all the atoms (x (l)) and their distance from
the origin are found in Table III.

We first computeD (κκ′, q). The first nearest neighbors
are 4 atoms, which are invariant under the operations of the
groupC3υ [19]. For example, we have the following repre-
sentation for the combined operation of third order rotation
and inversion acting on the atom located atl0 + x (κ′) (see
Table III).

C3=




0 0 −1
−1 0 0
0 1 0


 , συ=




0 −1 0
−1 0 0
0 0 1


 . (17)

The force matrixΦ is invariant under this transforma-
tion (9), i.e.

συC3ΦCt
3σ

t
υ = Φ. (18)

In this way we find the independent elements. For the
other three first neighbors, we use the symmetry operations
which transform the matrixΦl0 at the pointl0 into matrices
Φli at the pointsli, i = 1, 2, 3, i.e. Cz

4 for Φl1, σxy
v Cz

4 for
Φl2 andσxy

v Cz
4 for Φl3. The results are summarized in the

following. Note that only two independent force constants
are needed.

Φ(1)
l0 =




α11 α12 α12

α12 α11 −α12

α12 −α12 α11


 , (19)

Φ(1)
l1 =




α11 α12 −α12

α12 α11 α12

−α12 α12 α11


 , (20)

Φ(1)
l2 =




α11 −α12 −α12

−α12 α11 −α12

−α12 −α12 α11


 , (21)

Φ(1)
l3 =




α11 −α12 α12

α12 α11 α12

−α12 α12 α11


 . (22)

Using these expressions in (6), we obtain the dynamical
matrix for the first neighbors

D(1) (κκ′, q) =
1√

MκMκ′

[
Φ(1)

l0
+ Φ(1)

l1
exp

(
i
a0 (qx − qy)

2

)

+ Φ(1)
l2

exp
(
−i

a0 (qy + qz)
2

)

+ Φ(1)
l3

exp
(

i
a0 (qx − qz)

2

)]
. (23)

The force constant matrices are invariant under transla-
tion x (κ′). Then the difference between the first and third
neighbors is just a labeling convention, as can be seen in the
following:

Φ(3)
L′9

= ΦL′10 = Φ(3)
L′11

= Φ(3)
l0

,

Φ(3)
L′2

= Φ(3)
L′5

= Φ(3)
L′8

= Φ(3)
l1

,

Φ(3)
L′0

= Φ(3)
L′3

= Φ(3)
L′6

= Φ(3)
l2

,

Φ(3)
L′1

= Φ(3)
L′4

= Φ(3)
L′7

= Φ(3)
l3

. (24)
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And we have for the corresponding dynamical matrix (6),

D(3) (κκ′, q)=
1√

MκMκ′

[
2Φ(3)

l1
cos (qx+qy)

a0

2

+2Φ(3)
l2

cos (qy − qz)
a0

2
+2Φ(3)

l3
cos (qx+qz)

a0

2

+ exp (iqxa0)
(
Φ(3)

l0
+Φ(3)

l2
exp

(
−i (qy+qz)

a0

2

))

+exp (−iqya0)
(
Φ(3)

l0
+Φ(3)

l3
exp

(
i (qx−qz)

a0

2

))

+exp (−iqza0)
(
Φ(3)

l0
+Φ(3)

l1
exp

(
i (qx−qy)

a0

2

)) ]
. (25)

To calculateD (κκ, q), we only need in our case the sec-
ond neighbors. These atoms are invariant under operations of
the groupC2υ [19]. Following the same method as before,
we arrive at the representation

Φ(2)
L0

=




β11 β12 0
β12 β11 0
0 0 β33


 , (26)

Φ(2)
L1

=




β11 −β12 0
−β12 β11 0

0 0 β33


 , (27)

Φ(2)
L2

= Φ(2)
L0 , (28)

Φ(2)
L3

= Φ(2)
L1

, (29)

Φ(2)
L4

=




β33 0 0
0 β11 β12

0 β12 β11


 , (30)

Φ(2)
L5

=




β33 0 0
0 β11 −β12

0 −β12 β11


 , (31)

Φ(2)
L6

= Φ(2)
L4

, (32)

Φ(2)
L7

= Φ(2)
L5

, (33)

Φ(2)
L8

=




β11 0 −β12

0 β33 0
−β12 0 β11


 , (34)

Φ(2)
L9

=




β11 0 β12

0 β33 0
β12 0 β11


 , (35)

Φ(2)
L10

= Φ(2)
L8

, (36)

Φ(2)
L11

= Φ(2)
L9

, (37)

where we use the symmetry operations which transform the
matrixΦL0 at the pointL0 into the matricesΦLi at the points
Li, i = 1, 2, · · · , 11, i.e. Cz

4 for ΦL1 , Cz
2 for ΦL2 , C−z

4

for ΦL3 , C−y
4 for ΦL4 , Cx

4 C−y
4 for ΦL5 , Cx

2 C−y
4 for ΦL6 ,

C−x
4 C−y

4 for ΦL7 , Cx
4 for ΦL8 , C−y

4 Cx
4 for ΦL9 , Cy

2 Cx
4 for

ΦL10 , andCy
4 Cx

4 for ΦL11 .

Property (3) helps to obtain the diagonal elements of the
force constant matrix

Φ(lκ, lκ) = −4 (α11 + 3γ11 + 2β11 + β33) Î , (38)

whereÎ is the identity matrix of order 3.
We obtainD (κκ, q) from (6):

D (κκ, q) =
1

Mκ
(Φ (lκ, lκ) + 4A) , (39)

A =




Axx −β12SxSy β12SxSz

−β12SxSy Ayy −β12SySz

β12SxSz −β12SySz Azz


 ,

Axx = β11Cx (Cy + Cz) + β33CyCz,

Ayy = β11Cy (Cx + Cz) + β33CxCz,

Azz = β11Cz (Cx + Cy) + β33CxCy,

whereCx = cos (qxa0/2), Sx = sin (qxa0/2), etc. . .
Given thatκ andκ′ have the same symmetry, we could

write for D (κ′κ′, q)

D (κ′κ′, q) =
1

Mκ
(Φ (lκ′, lκ′) + 4A) , (40)

A =




Axx −δ12SxSy δ12SxSz

−δ12SxSy Ayy −δ12SySz

δ12SxSz −δ12SySz Azz


 .

In order to estimate the 3D force constants, we proceed
as follows. We consider the decoupled L and T modes in
the [100] direction, and the decoupled T modes in the[110]
direction. The equations of motion in these directions are
equivalent to linear chains, as in the preceding section. We fit
the linear chain dispersion relation to the experimental values
reported for Ge in Ref. 21. As we only need a few constants,
we calculate the analytical expressions for frequencies both
at the edge and at the center of the BZ for the linear chain
model (for the acoustical branch, we calculate the expression
of the sound velocity). From the expressions obtained, we
compute the values of the linear chain force constants. For
these decoupled oscillations, planes of atoms are oscillating
with the same frequency. For this reason, it is usual to speak
about planar vibrations. We will use this terminology be-
low. With the help of the planar force constants, we compute
the 3D force constants. We will see that, for Ge, all the 3D
force constants up to the third-neighbor approximation are es-
timated straightforwardly. We first study theL andT modes
in the [100] direction, and then the decoupledT modes in
the[110] direction.

Employing (23), (25), (39), and (40), it is possible to
write the equation of motion in the[001] direction. In this
direction, the structure hasC2υ symmetry [19]. It is straight-
forward enough to compute the irreducible representation for
the atomic oscillations along this direction:

Du
∆ = ∆1 ⊕∆

′
2 ⊕ 2∆5, (41)
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where we use the notation from [19]. We find the longitudi-
nal oscillations are decoupled from the transverse ones. For
the longitudinal case, the equations of motion are

ω2e1 (κ)=− 4
Mκ

(
α11+2γ11+γ11+4β11 sin2 qa0

4

)
e1 (κ)

+
1√

MκMκ′
((2α11 + 4γ11) (1 + exp (iqa0/2))

+ 2γ11 (exp (−iqa0/2) + exp (iqa0))) e1 (κ′) , (42)

ω2e1 (κ′)=− 4
Mκ′

(
α11+2γ11+γ11+4δ11 sin2 qa0

4

)
e1 (κ′)

+
1√

MκMκ′
((2α11 + 4γ11) (1 + exp (iqa0/2))

+ 2γ11 (exp (−iqa0/2) + exp (iqa0))) e1 (κ) , (43)

These expressions are equivalent to a diatomic linear
chain with second-neighbor interactions (See [20] and Ap-
pendix 5.). The substitutions presented in Table IV are
needed.

TABLE IV. Relation between the 3D bulk and the linear chain with
second neighbor interaction for the[001] direction: longitudinal
oscillations. For the diamond structure,β11 = δ11 (γa = γc), and
Mκ = Mκ′ .

Bulk (3D) linear chain

a0 → 2a

− (2α11 + 4γ11) → γca

−2γ11 → γca1

−4β11 → γa

−4δ11 → γc

FIGURE 1. Calculated bulk Ge frequencies (in cm−1) as a function
of the normalized wave vector for the[100] and [110] directions
are represented with solid lines. Experimental values from [21] for
[100] longitudinal modes (circles),[100] transverse modes (up tri-
angles), and[110] transverse modes (down triangles) are given for
comparison. See text for details.

In Table VII, the planar force constants fitted to [21] are
presented. The results from the first principles calculations
of Ref. 11 are shown in parentheses. The dispersion rela-
tion in this direction is represented in Fig. 1 with a solid line.
The experimental values of Ref. 21 are also included in this
figure. A good agreement is found. Employing the relations
presented in Table IV, it is possible to estimate the values of
the 3D force constantsα11, β11 andγ11, which are reported
in Table VII.

In the[100] direction we have the following characteristic
equations for the transverse oscillations:

ω2 (e2 (κ))− e3(κ)) = − 4
Mκ

(α11 + 3γ11 + 2(β11 + β33)

× sin2 qa0/4
)
(e2 (κ)− e3(κ))

+
1√

MκMκ′
((2α11 + 4γ11 + 4γ12 − 2α12)

+ (2γ11 − 2γ12) exp(−iqa0/2)

+ (2α11 + 4γ11 + 2α12 − 4γ12) exp(iqa0/2)

+ (2γ12 + 2γ11) exp(iqa0)) (e2(κ′)− e3(κ′)) , (44)

ω2 (e2(κ′)− e3(κ′)) = − 4
Mκ′

(α11 + 3γ11 + 2(δ11 + δ33)

× sin2 qa0/4
)
(e2(κ′)− e3(κ′))

+
1√

MκMκ′
((2α11 + 4γ11 + 4γ12 − 2α12)

+ (2γ11 − 2γ12) exp(−iqa0/2) (45)

+ (2α11 + 4γ11 + 2α12 − 4γ12) exp(iqa0/2) + (2γ12

+ 2γ11) exp(iqa0))(e2(κ)− e3(κ)).

This problem is again equivalent to a diatomic linear
chain, and the replacements shown in Table VI are needed.
However, in this case, the force between neighboring atoms
depends on whether they are in the same cell or in differ-
ent cells, as shown in Appendix A. This situation is also dis-
cussed in Ref. 20.

TABLE V. Relation between the 3D bulk and the linear chain for
the [001] direction: transverse modes. For the diamond structure,
β11 + β33 = δ11 + δ33 (γa = γc), andMκ = Mκ′ .

Bulk (3D) linear chain

e2 (κ)− e3 (κ) → e (κ)

e2 (κ′)− e3 (κ′) → e (κ′)

a0 → 2a

−(2α11 + 4γ11 + 4γ12 − 2α12) → γca

−(2α11 + 4γ11 + 2α12 − 4γ12) → γca1

−(2γ11 − 2γ12) → γca2

−(2γ11 + 2γ12) → γca3

−(2β11 + 2β33) → γa

−(2δ11 + 2δ33) → γc
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Given theC2v symmetry for the direction[110], it is
straightforward to compute the irreducible representation for
the atomic oscillations along this direction:

Du
Σ = 2Σ1 ⊕ Σ2 ⊕ 2Σ3 ⊕ Σ4, (46)

where one of the transverse oscillations is decoupled from the
other, with the following equations of motion:

ω2(e1(κ)− e2(κ)) = − 4
Mκ

[α11 + 3γ11

+ 2(β11 + β33) sin2 qa0/2)

+ (β11 − β12) sin2 qa0/4](e1(κ)− e2(κ))

− 1√
MκMκ′

[2α11 − 2α12 + 2γ11 − 2γ12

+(α11+α12+3γ11+3γ12)(exp(iqa0/2)+ exp(−iqa0/2))

+ (2γ11 − 2γ12)(exp(iqa0)

+ exp(−iqa0))](e1(κ′)− e2(κ′)), (47)

ω2(e1(κ′)− e2(κ′)) = − 4
Mκ′

[α11 + 3γ11

+ 2(δ11 + δ33) sin2 qa0/2)

+ (δ11 − δ12) sin2 qa0/4](e1(κ′)− e2(κ′))

− 1√
MκMκ′

[2α11 − 2α12 + 2γ11 − 2γ12

+(α11+α12+3γ11+3γ12)(exp(iqa0/2)+ exp(−iqa0/2))

+ (2γ11 − 2γ12)(exp(iqa0) + exp(−iqa0))]

× (e1(κ)− e2(κ)). (48)

TABLE VI. Relation between the 3D bulk and
the linear chain with fourth neighbor interaction
for the [110] direction: transverse modes. For
the diamond structure, β11 − β12 = δ11 − δ12(γa = γc),
β11 + β33 = δ11 + δ33(γa1 = γc1), andMκ = Mκ′ .

Bulk (3D) linear chain

e1 (κ)− e2 (κ) → e (κ)

e1 (κ′)− e2 (κ′) → e (κ′)

a0 → 2a

−(2α11 + 4γ11 − 2α12) → γca

−(α11 + 2γ11 + α12 + 2γ12) → γca1 = γca2

−(2γ11 − 2γ12) → γca3 = γca4

−(β11 − β12) → γa

−(δ11 − δ12) → γc

−(2β11 + 2β33) → γa1

−(2δ11 + 2δ33) → γc1

These equations are equivalent to those obtained for the
linear chain with fourth-neighbor interaction, shown in Ap-
pendix A. The substitutions shown in Table VI are needed.

Employing the relations presented in both Tables V
and VI, it is possible to fit the remaining bulk force constants.
The numerical values are presented in Table VII. The cal-
culated dispersion relation (solid line) and the experimental
points of Ref. 21 are shown in Fig. 1. The agreement with
the experimental values for almost all the BZ could be used
as an additional check of the calculations. Note that some
1D force constants are fixed by previous fitted3D force con-
stants, reducing the freedom to fit some experimental points
with the linear chains. For this reason, a good agreement with
the experimental results for someT modes in the[001]

TABLE VII. Planar and 3D force constants for Germanium (in 105 din cm−1). In parentheses, the value reported in Ref. 11 for the planar
force constants.

Bulk (3D) linear chain

α11 -0.4928 L [100] γca -0.9867 (-0.941)

β11 = δ11 -0.0305 γa = γc -0.1221 (-0.130)

γ11 -0.0002 γca1 -0.0005 (0.000)

α12 0.3682 T [100] γca -1.72546

β33 = δ33 0.0582 γa = γc 0.05537

γ12 -0.0005 γca1 -0.24806

β12 = δ12 -0.0195 γca2 0.00066

γca3 -0.00162

T [110] γca -1.7232

γa = γc -0.0109

γca1 = γca2 -0.1263

γca3 = γca4 0.00066

γa1 = γc1 0.05537
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FIGURE 2. A representation of a diatomic linear chain with 4
neighbor interaction.

direction of the BZ is not observed. In order to improve this
calculation, more neighbors should be considered; but this is
beyond the scope of the present work.

5. Conclusions

We have explicitly shown the transformation of the 3D bulk
oscillation equations of motion into 1D problems for high
symmetry directions for diamond and zincblende lattices.

Instead of following the more traditional way of finding
the irreducible representation for a given direction, we con-
sider a given number of atoms and limit ourselves to the har-
monic interaction between a limited number of neighbors.
The dynamical matrix is then constructed taking into account
the symmetry of the underlying lattice. In this way, we found
that the force constants in these decoupled 1D equations are
related to a larger number of force constants in the whole 3D

problem. We report for the first time the explicit relationships
between 3D and 1D parameters.

3D force constants can then be estimated from a few ei-
ther experimental or theoretical points, which in general are
most frequently available for high symmetry directions. At
this stage, the frequency at a general point of the Brillouin
Zone can be found.

We illustrate the calculation for Ge which crystallizes in
the diamond structure, and excellent agreement is found with
the experimental data.
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Appendix A: Linear chains

The most general linear chain we consider for the fcc struc-
ture has an interaction with up to 4 neighbors. The force
constants are sketched in Fig. 2. Simpler linear chains are
obtained as a particular case, when the right force constants
tend to zero. To fit the experimental values, only the fre-
quencies at the center and edge of the Brillouin zone, and the
sound velocity of the acoustic phonons are needed. These
expressions are written as

ω(Γ) =

√
Λ
µ

,

ωop(X) =

√√√√mc (2γa + Λ) + ma (2γc + Λ) +
√

2mamcΥ2 + (mc (2γa + Λ)−ma (2γc + Λ))2

mamc
,

ωac(X) =

√√√√mc (2γa + Λ) + ma (2γc + Λ)−
√

2mamcΥ2 + (mc (2γa + Λ)−ma (2γc + Λ))2

mamc
,

vs =

√
a2
0q

2

MΛ

[
Λ (γa + γc + 4γa1 + 4γc1)− 2 (γca1 − γca2 + 2γca3 − 2γca4)

2
]
, (49)

whereµ = (ma + mc)/mamc is the reduced mass,M = ma + mc is the total mass,Λ = γca + γca1 + γca2 + γca3 + γca4,
andΥ = γca − γca1 − γca2 + γca3 + γca4.
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