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The bulk atomic equations of motion are revisited in order to show explicitly, for high symmetry directions, the transformation of this thre
dimensional problem into decoupled one-dimensional problems. The force constants of the corresponding one-dimensional equation
related to a larger number of force constants of the bulk problem. We illustrate how the three-dimensional force constants (and consequ
the whole dynamical matrix) can be estimated from a few either experimental or theoretical points for semiconductors in the zincblende
diamond structures.
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Las ecuaciones del movimiento en materiales masivos son retomadas para mosicaamepite, para direcciones de alta sifegttas
transformaciones de este problema tridimensional en problemas unidimensionales desacoplados. Las constantes de fuerza de las
pondientes ecuaciones unidimensionales son relacionadas @mercamayor de constantes de fuerzas en el material masivo. Se ilustra
como las constantes de fuerza tridimensionales (y consecuentemente la matnicdjrpueden ser estimadas a partir de unos pocos puntos
experimentales o &eicos, para semiconductores de las estructuras blenda de zinc y diamante.

Descriptores:Constantes de fuerza; blenda de zinc; diamante.

PACS: 63.10.+a; 63.20.Dj

1. Introduction lations, and linear chain models are employed in studying
the phonon modes of this more complex system. Early works
Many properties of solids depend on the dynamics of theconsidered only interaction with a few neighbors [7-9]. More
crystal lattice. Though the current interest of most re-€laborate linear models were later developed, such as the pla-
searchers is mainly focused on phonons in heterostructurear bond-charge model [10]. Other authors simply take the
some problems still demand an appreciable knowledge of thibulk force constants from first principles calculations [11,12].
bulk atomic oscillations. Examples are phononimaging [1,2]  For less symmetric directions, there is no simple treat-
and the reduction of thermal conductivity in superlattices inment at hand. From the theoretical viewpoint, even though
comparison to bulk materials [3-5]. atomic equations of motion have been known for a long
It is worth reca”ing that, a|ong h|gh Symmetry direc- time [13], the huge number of atoms in bulk materials makes
tions such as either th@01] or the[111] direction, and for ~their numerical solution an unaffordable task. Thus, the
semiconductors with both the zincblende and diamond struc@bove-mentioned examples demand simpler phonon models.
tures, the three-dimensional (3D) equations of motion are deAmong these we find, for example, phenomenological mod-
coupled into one longitudinal and two transverse oscillation$!s like the rigid-ion model [13, 14], the shell model [15, 16],
which are described by linear chain models (see [6] and refe@nd the bond-charge model [17, 18]. However, the numeri-
ences therein). This exact result for the bulk is useful for thecal implementation of these is not straightforward; therefore,
study of heterostructures. In fact, for heterostructures grow@nalytical results are always of interest.
along high symmetry directions, itis usually assumed thatthe In this paper the phonon equations of motion for bulk
force constants in each constituent layer are equal to the bubkemiconductors are revisited. Instead of finding the irre-
force constants. These bulk values are estimated either frodfucible representation for a given direction, as for example
experimental dispersion relations or from theoretical calcuin Ref. 6, we consider a given number of atoms and assume
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harmonic interaction between a limited number of neighborsi.e., the force constants are functions of the relative position
The dynamical matrix is then constructed, taking into accounof /th andl’th cells. The equations of motion in the reciprocal
the symmetry of the underlying lattice. Interesting propertiesspace are of the form

of the equations are found in this way. In particular, we check

explicitly how the 3D problem reduces to decoupled linear w?eq (k) = Z Dog (kK Q) eg (k') (5)
chain equations for high symmetry directions, with the aim KB

of obtaining the relation between the 3D and one-dimensional ) o ] ]
(1D) force constants. To the best of our knowledge, this re"Whereea () is the polarization vector anf is the dynami-
lation has not been explored so far. Our study helps to unS@l matrix given by

derstand better the richness of the linear chain models. We 1

also show how to fit the 3D bulk force constants (and conse- Dog (kK',q) = AL Z Dop (Ik,I'K)
guently the whole dynamical matrix) from a few points, ei- REERT

ther experimental or theoretical. We focus our study on both x exp (—iq - [x (1) = x (I')]), (6)

the zincblende and diamond structures, which are examples

of a diatomic basis in a crystal lattice. We also find it usefulywherex (1) is the vector position of the elementary cell. The

to consider the monatomic face-centered-cubic (fcc) latticegynamical matrix is hermitian

for it is an illustrative example where analytical calculations

are easier than in the rest of the treated problems dealt with. Daog (k',q) = Dj,, (k' Q), @)
This paper is organized as follows: in the next section

we enumerate the properties of the equations of motion thand has the property

are needed in this paper. In Sec. Ill, we consider the face-

centered-cubic (fcc) lattice with a monatomic basis. In Sec. Dag (kK',—Q) = D5 (kK. Q) . (8)
IV, we study both the diamond and zincblende structures. At
the end, our main conclusions are summarized. The invariance of the force constants under a symmetry

operation S (S is represented by a unitary matrix) is written
2. Atomic equations of motion in matrix form as
' 9 SeST = . (9)
In éhe harmonic approximation the crystal hamiltonian From this relation, the dependence between the matrix el-
reads [13] ements of the force constant matrix can be established. The
o P2 (IK) dagger {) means the hermitian conjugate.
_Z oM.,

lka

1 3. Monatomic crystal
+- Z Dop (Ik, 'K Y ua (IK)ug (I'’), (1)

2zm,zwﬁ We first consider a fcc lattice with a monatomic basis. This
simple case helps to understand the properties of the force
constants in more complicated situations. For our purpose it
is sufficient to consider thg 00] direction. The structure has
a fourth-order symmetry axis in this direction [19]. Tog
symmetry operation can be represented by the matrix

where [,I'=1,2,...,N label the elementary cells,
k,k'=1,2,...,r label the atoms in the basis, 8 = z,y, 2
represent the coordinate axis,Ms the mass of thes-
atom, p, (Ix) is the linear momentum of thés-atom in
the« direction, y, (Ix) represents the displacement from the

equilibrium position of thex-atom in thea direction, and 10 0
.5 (Ik,l'x") are the force constants. The force constants =100 -1]. (10)
are symmetric in the indicdsx, o 01 0

Cap (16, I'K') = Ppa (I's, 1) . ) Employing (9), the force constant matrix is written as

The hamiltonian is invariant under an infinitesimal trans- o 0 0
lation of the whole crystal; this yields the following relation P — 0 Doy Do (12)
between the force constants 0 —Dy; Dy )
A ) _
ZZ Lap Ik, U'K') = ZZ Lo (U, 15) = 0. (3) Considering also the symmetry properties (2) and (4), the

matrix is reduced to the diagonal form
From the crystal invariance under translations in a lattice

vector, we find that o 0 0
a=[ 0 @ o0 |. (12)
Dop (Ik, U'K') = op (1 = U)K, 0K") 4) 0 0 @y
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TABLE |. Position and distance from the origin of the first 14th neighbors for the monatomic fcc lattice.

neighbor n In|
1 (£a/2,0,+a/2) ; (xa/2,+a/2,0) ; (0, £a/2, +a/2) g
2 (£a,0,0) ; (0,+£a,0); (0,0, £a) a
3 (+a,+a/2, +a/2) ; (£a/2, +a, +a/2) ; (£a/2, +a/2, +a) Voq
4 (£a,+aq,0); (0, £a,£a) ; (£a,0, £a) V2a
5 (+a, £a, +a) V3a
6 (£3a/2,+a/2,+a/2); (£a/2,£3a/2,+a/2) ; (£a/2,+a/2,+3a/2) ga
7 (£3a/2, £a,+a/2) ; (£a,+3a/2,+a/2) ; (£a/2, +a,£3a/2) ; Qa
(£3a/2,+a/2,+a) ; (£a/2,+3a/2,+a) ; (£a,+a/2,£3a/2)
8 (£2a,0,0) ; (0,£2a,0) ; (0,0, +2a) 2a
(£2a, £a/2, £a/2) ; (£a/2, £2a, £a/2) ; (£a/2, £a/2, £2a) ; 23
(+£3a/2,0,+3a/2) ; (+£3a/2, +3a/2,0) ; (0,£3a/2, £3a/2)
10 (£2a,+a,0) ; (0,+2a, +a) ; (+2a,0,+a) ; V5a
(£a,£2qa,0) ; (0, £a, £2a) ; (£a,0,+2a)

11 (£2a, ta,+a) ; (£a,+2a,+a) ; (£a, ta, +2a) V6a
12 (£2a,4+3a/2,£a/2) ; (£2a,+a/2,+3a/2) ; (£3a/2, £2a,+a/2) ; @a
(a/2,+2a,+3a/2) ; (£a/2,+3a/2,+2a) ; (£3a/2, £a/2,+2a)

13 (£2a,42a,0) ; (0,+2a,+2a) ; (+2a,0, £2a) 2v/2a
14 (£2a, +2a, +2a) 2v/3a

where K,,, are the force constants of the linear chain. We
TABLE Il. Relation between the number of force constants (num-computed the dynamical matrix (14) considering the first
ber of neighbors) in the linear chain and in the 3D problem. 14th neighbors. In Table |, the position of these atoms and
their distance from the origin are presented. Replacing the

finear chain Bulk (3D) values ofn from the table in the expression (14), substituting
1 1 the resulting expression in (13), and comparing with (15), we
2 2 obtain the following relation between the 3D force constants
3 6 and the linear chain force constants. Note that for the linear
4 8 chain the lattice constant /2 should be employed.
5 15

K, = — (40 + 8®5 + 8D + 16®7 + 8Dg + 8D15)
Ko = — (B + 4®5 + 4Dy + 4B5 + D10 + 8D11)

Thus, the motion is decoupled into a longitudinal (L) and
two degenerate transverse (T) oscillations. The dynamical
matrix (6) has also this property. For the sake of simplicity — K3=— (4®+8P;+495+8P15)
we limit our study to the longitudinal phonons. The disper-
sion relation (5) is quite simple in this case:

w? = D11 (). (13) + 4P 13 + 4D q4)
In the rest of this section we omit the coordinate axis la-

bel. Employing (2), (3), and (4) the following expression for
the dynamical matrixD is obtained:

Ky=—(Pg + 4Pg + 4P19 + 4P11 + 8P12

(16)

2 .2 /0-N Table 1l shows that few neighbors in the linear chain cor-

D(a) = M Z @ (n)sin ( 5 ) , (14) respond to a larger number of neighbors in the 3D case. Of

, " ] ] course, in the bulk there is a larger number of neighbors at

wheren = x (1) —x (I'). Thus equation (13) yields the known g,me distance from an arbitrary atom. This simple case illus-

dispersion relation for the monatomic linear chain [20] trates why the linear chain with interaction with a few neigh-
4 I maa bors fits well with the experimental results in a variety of sit-

W' =— > K, sin’ (i) : (15)  uations

M m>0 2 .
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TaBLE Ill. Position and distance from the origin of the first three nearest neighbors for both the diamond and zincblende structures.

Neighbor x (1)
1 lo =1(0,0,0); 11 = (ao/2,—ao/2,0);
lo =(0,—ao/2,—ao/2) ;s = (ao/2,0, —ao/2)
2 Lo = (a0/2,a0/2,0) ; L1 = (—ao/2,a0/2,0) ;
Ly = (—ao/2,—a0/2,0) ; Ls = (ao/2, —ao/2,0) ;
Ly =(0,a0/2,a0/2) ; Ls = (0, —ao/2,a0/2) ;
Le = (0,—ao0/2,—ao/2) ; Ly = (0,a0/2, —ao/2) ;
Ls = (a0/2,0,a0/2) ; Ly = (—ao/2,0,a0/2) ;
Lo = (—a0/2,0,—ao/2) ; L11 = (a0/2,0, —ao/2)
3 Ly = (0,a0/2,—ao/2) ; L1 = (a0/2,0,a0/2) ; Ly = (ao/2,a0/2,0) ;

Lz = (0,—a0/2,a0/2) ; L} = (—a0/2,0,—ao/2) ; Ly = (—ao/2, —ao/2,0) ;
L/6 = (a07 _a0/27 _a0/2) ; L/7 = (a0/27 —ao, —ao/2) ) Lé = (a0/27 _a0/27 —LLO) ;

N
o

ao

Lé = (ao,0,0) ; /10 = (07 —ao,O) ; ,11 = (0707 —ao)
4. Diatomic crystal: zincblende and diamond
structures are needed.
o 11
We consider here the elementary cell of a fcc structure with Q) = | a2
lattice constanty and a two-atom basis. The basis atom lo- Q12
cated at the lattice point is labeled and the other one is a1
shiftedx (k') = (—ao/4, a0/4,a0/4), and labeled:’. If the o) — 01
two atoms are different, we have the zincblende structure, i —oy
whereas if the two basis atoms are equal we have the dia- ?
mond structure. We study the equations of motion with third- 11
nearest neighbors interaction, and then we consider some par- <I>l(21) = | —oa2
ticular directions. We should note that the first and third —02
neighbors are:’ atoms, located at = x (1) + x (x’). Sec-
ond neighbors are atoms, located at = x ({). Only the o) Z”
coordinate (1) are needed to compufe (x+’, q) after (6). 13 _0152

The position of all the atoms(?)) and their distance from
the origin are found in Table III.
We first computeD (kx', q)

—Q12
Qi1
—Qq2

—Qq2
11
12

following. Note that only two independent force constants

Q12
—Q12 s
a11

(19)

—Qq2

12 ) (20)

—Q12
(21)

—Q2 )
a11

(22)

Using these expressions in (6), we obtain the dynamical
. The first nearest neighbors matrix for the first neighbors

are 4 atoms, which are invariant under the operations of thg)() (.’ q) = ! {q)l(l) + &Y exp (Z a0 (¢ — qy))
groupCs, [19]. For example, we have the following repre- MMy | ! 2
sentation for the combined operation of third order rotation 1) “ag (qy + ¢2)
and inversion acting on the atom locatedlat+ « (x') (see + &;," exp <—12>
Table III).
(1) .ag (qcc - QZ)
Cs= _01 (1) 8 v Tu= _01 8 (1) - (@7 The force constant matrices are invariant under transla-

The force matrix® is invariant under this transforma-

tion z («'). Then the difference between the first and third
neighbors is just a labeling convention, as can be seen in the

. . following:
tion (9),i.e. o® _ @, —o® _g®
O’UC;;CI)CéO'f} = . (18) Ly Lio Ly lo
. , . G _ 56 _ 3 _ 66
In this way we find the independent elements. For the ‘I’L; = (I’Lg = ‘I’Lg =&,
other three first neighbors, we use the symmetry operations 2@ — o® _ @ _ p®
which transform the matri®;, at the pointly into matrices Ly = Ly — TLg T Tl

®;; at the pointd;, i = 1,2, 3, i.e. Cf for &1, o7¥C} for
®;p andoVC§ for ¢;3. The results are summarized in the
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And we have for the corresponding dynamical matrix (6),  Property (3) helps to obtain the diagonal elements of the
force constant matrix

1 : a
D® (5K, q) =——— {2<D(3) cos (qutqy) —> .
() MM L0 (0:+0,) 2 O (lk, k) = =4 (11 + 3711 + 2611 + P33) 1, (38)
3 3 ~
+2‘I)z(2) cos (qy — qz) +2‘I’( ) cos (qrtg.) = 5 where] is the identity matrix of order 3.

We obtainD (k«, q) from (6):

+ exp (igzap) <<I>(3)—|—(I>( ) exp ( i (qy+qz) )) )
D (kk,q) = — (P (&, lk) + 4A4), (39)
+exp (—igyao) (CD( )+<I>( )exp ( )) M
(3) (3) A:c;r _61251'53; 612Sx5z
+exp (—ig.a0) (@ +0{" exp (i (¢:—g,) 7)) | @9 A=| —BiS:S, Ay PSS |

ﬁlZSmSz _512SySz Azz
To calculateD (kk, q), we only need in our case the sec- _
ond neighbors. These atoms are invariant under operations of Age = 110z (Cy + C2) + P33Cy C,
the groupCs,, [19]. Following the same method as before, Ayy = 110y (Cy + C.) + B33C,C.,

we arrive at the representation
Azz = ﬁllcz (Cac + Cy) + 63301’01/7

f11 Bz O .
q)(L?) —| B B O ’ (26) Wher(?Cw = cos (¢za0/2), S, = sin (gya0/2), etc...
0 0 0 s Given thatx andx’ have the same symmetry, we could
write for D (x'k’, q)
0@ 5511 —5512 8 e )
L, — —M12 11 y 1ot _ ’ /
0 0 Ban D (x'k,q) A (@ (Ix',1k") + 44), (40)
(2) _ 52 Amx _6125$Sy (SIQS:rSz
PL, = PLo; (28) A= —6125.5, Ayy —0125,5;
Q)(LZS) (I)(LQl)7 (29) 512stz —512Sysz A,
Bs3 0 0 In order to estimate the 3D force constants, we proceed
‘1)(54) — 0 Bu b2 |, (30) as follows. We consider the decoupled L and T modes in
0 B2 On the [100] direction, and the decoupled T modes in {h#0]
direction. The equations of motion in these directions are
@ P33 0 0 equivalent to linear chains, as in the preceding section. We fit
P,=1 0 Bu b |, (1)  thelinear chain dispersion relation to the experimental values
0 —fi2 fn reported for Ge in Ref. 21. As we only need a few constants,
3@ _ @ (32) we calculate the analytical expressions for frequencies both
Ls La> at the edge and at the center of the BZ for the linear chain
@(2) q)(L2), (33)  model (for the acoustical branch, we calculate the expression
of the sound velocity). From the expressions obtained, we
P11 0 —pbi2 compute the values of the linear chain force constants. For
q)fg) = 0 Bz O ; (34)  these decoupled oscillations, planes of atoms are oscillating
—f12 0 B11 with the same frequency. For this reason, it is usual to speak
fii 0 Pz about planar vibrations. We will use this terminology be-
3?2 — 0 fBs 0 (35) low. With the help of the planar force constants, we compute
Lo 3 0 B ’ the 3D force constants. We will see that, for Ge, all the 3D
12 1 force constants up to the third-neighbor approximation are es-
‘I’(LQ1)O — ‘I’(ng)» (36) timated straightforwardly. We first study tlieandT" modes
in the [100] direction, and then the decouplgdmodes in
oY =0, (37)  the[110] direction.

Employing (23), (25), (39), and (40), it is possible to
where we use the symmetry operations which transform theurite the equation of motion in th@01] direction. In this
matrix®,,, at the point, into the matrice®, at the points  direction, the structure has,,, symmetry [19]. Itis straight-
Li,i =1,2,---,11, e Cf for &, C5 for ‘1>L2. C;®  forward enough to compute the irreducible representation for
for @, C f0f ®p,, C{C, Y for @, C5C, Y for @1, the atomic oscillations along this direction:
cyreyY for ., Cy for @, C,YCF for &, CYCF for
®,,,,andCYCe for oy, . DY = Ay & Ay & 2A;, (41)
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where we use the notation from [19]. We find the longitudi-
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In Table VII, the planar force constants fitted to [21] are

nal oscillations are decoupled from the transverse ones. Faresented. The results from the first principles calculations
the longitudinal case, the equations of motion are

4 . 5 qa
wer (k) =——— (0111+2711+’Y11+4511 sin’ %) e1 (k)

M
1

+ ——= (20111 + 4v11) (1 4 exp (iqap/2))

MRMR/

+ 2711 (exp (—igao/2) + exp (iqag))) e1 (K'),

4 . a
wle; (k) =——— (a11+2%1+”¥11+4511 sin? q—o> e (k)
M, 4
1
+ Naymom ((2a11 + 47y11) (1 + exp (igao/2))

+ 2711 (exp (—igap/2) + exp (igap))) e1 (k) ,

These expressions are equivalent to a diatomic linear

(42)

(43)

of Ref. 11 are shown in parentheses. The dispersion rela-
tion in this direction is represented in Fig. 1 with a solid line.
The experimental values of Ref. 21 are also included in this
figure. A good agreement is found. Employing the relations
presented in Table 1V, it is possible to estimate the values of
the 3D force constants;, 511 and~1, which are reported
in Table VII.

In the[100] direction we have the following characteristic
equations for the transverse oscillations:

w? (e2 (k) — es(k)) = *% (11 4 3711 + 2(B11 + Bs3)
x sin? qa0/4) (e2 (k) — e3(k))
+ ﬁ(@an +4v11 + 4y12 — 20012)

chain with second-neighbor interactions (See [20] and Ap-+ (27,1 — 2712) exp(—igag/2)

pendix 5.).
needed.

TABLE IV. Relation between the 3D bulk and the linear chain with
second neighbor interaction for tHe01] direction: longitudinal
oscillations. For the diamond structuf®, = 611 (v« = 7.), and

The substitutions presented in Table IV are

+ (2011 + 411 + 2012 — 4712) exp(igao/2)
+ (2712 + 2711) exp(igao)) (e2 (k") — es(x')),

w? (e2(') — es(r')) = —

(44)

i (o1 + 3v11 + 2(611 + I33)

M. = M. x sin® gag/4) (ea(K') — es(K'))
Bulk (3D) linear chain 1
ao N 2 + m(@all + 4v11 + 412 — 20412)
- 20¢ + 4 — ca .
(Raus + 1) ! + (2711 — 2712) exp(—igao/2) (45)
72’}/11 — Yeal
—481, = Yo + (2011 + 411 + 2002 — 4m12) exp(igao/2) + (2712
—4611 — Ve + 2v11) exp(iqag))(e2(k) — es(k)).
This problem is again equivalent to a diatomic linear
Bulk Ge chain, and the replacements shown in Table VI are needed.
: However, in this case, the force between neighboring atoms
300} vV Y Th e, depends on whether they are in the same cell or in differ-
vy * L._{ A ent cells, as shown in Appendix A. This situation is also dis-
250 cussed in Ref. 20.
75 200} i i i
% TABLE V. Relation between the 3D bulk and the linear chain for
-] the [001] direction: transverse modes. For the diamond structure,
g B11 + B33 = 011 + 933 (Yo = 7e), andM,, = M,.s.
('™
100} o Bulk (3D) linear chain
v A A A AA
w v 725 2 () — e3 (1) — W
A ‘/‘ ez (k') —e3 (k) — e (k")
s 04 02 oo 02 04 06 08 10 @o - 2a
qa,/2[110] 9a/2r [100] — (2011 + 4711 + 412 — 20012) — Yea
FIGURE 1. Calculated bulk Ge frequencies (in ci) as a function —(2011 + 4711 + 2012 — 4712) — Yeal
of the normalized wave vector for tH&00] and [110] directions — (2711 — 2712) — Vea2
are represented with solid lines. Experimental values from [21] for
o . ’ — (2911 + 2712) — Yea3
[100] longitudinal modes (circles]100] transverse modes (up tri-
angles), and110] transverse modes (down triangles) are given for — (2611 + 2033) — Ya
comparison. See text for details. —(2611 + 2033) — Ve
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Given the Cy, symmetry for the directiorj110], it is
straightforward to compute the irreducible representation forrasLe VI,  Relation between the 3D bulk and
the atomic oscillations along this direction: the linear chain with fourth neighbor interaction

for the [110] direction: transverse modes. For
(46) the diamond structure, [11 — Bi2 =011 — d12(Ya = 7o),
G114 B33 = 611 + 033(Ya1 = Ye1), andM,, = M,..
where one of the transverse oscillations is decoupled from the

DY = 2% @ 39 & 233 & Xy,

other, with the following equations of motion: Bulk (3D) linear chain
, 4 e1 (k) —e2 (k) — e ()
w(e1(k) — e2(r)) = _E[all + 3711 e1 (k') —ea (k') — e (k)
ao — 2a
+2 + B33) sin® gag /2
(Bur + fsa) , 4ao/2) —(2a11 + 4y11 — 2012) — Yea
+ (/611 - ﬂlz) sin qa0/4](61(/€) - 62("5)) —(o11 4 2911 + a2 + 2712) — Yeal = Yea2
1 _(2'}/11 — 2")/12) - Yecad = Yea4d
— —— 2011 — 2012 + 211 — 2
ﬁMNMﬁl [ 11 12 Y11 Y12 —(Bur — Br2) . .
(a1 +ana+3711+3712) (exp(iqao/2)+ exp(—iqao /2)) ~ (0 = 012) - e
—(2f11 + 2033) — Va1
2911 — 2 )
+ (2711 Y12)(exp(igao) —(2611 + 2033) — Vel
+ exp(—igao))](e1(x") — ea(k)), (47)
4 These equations are equivalent to those obtained for the
w(er(x') — ea(r)) = Y [a11 + 3711 linear chain with fourth-neighbor interaction, shown in Ap-

pendix A. The substitutions shown in Table VI are needed.

Employing the relations presented in both Tables V
and VI, it is possible to fit the remaining bulk force constants.
The numerical values are presented in Table VII. The cal-
culated dispersion relation (solid line) and the experimental
points of Ref. 21 are shown in Fig. 1. The agreement with
the experimental values for almost all the BZ could be used
as an additional check of the calculations. Note that some
1D force constants are fixed by previous fittd force con-
stants, reducing the freedom to fit some experimental points
x (e1(k) — ea(k)). (48)  with the linear chains. For this reason, a good agreement with
the experimental results for sonf€ modes in the[001]

—+ 2((511 =+ 533) sin2 qa0/2)

+ (011 — 012) sin® qag /4] (e1 (k') — ea(x))
1

- W[Qan — 2012 + 2711 — 2712

+(ai+ai2+3711+3712) (exp(igaog /2)+ exp(—igao/2))

+ (2711 — 2712) (exp(iqao) + exp(—iqao))]

TABLE VII. Planar and 3D force constants for Germanium (ift diby cm ). In parentheses, the value reported in Ref. 11 for the planar
force constants.

Bulk (3D) linear chain

11 -0.4928 L [100] Yea -0.9867 (-0.941)
B11 = 611 -0.0305 Ya = Ye -0.1221 (-0.130)
Y11 -0.0002 Yeal -0.0005 (0.000)

@12 0.3682 T [100] Yea -1.72546

B33 = d33 0.0582 Ya = Ye 0.05537

Y12 -0.0005 Yeal -0.24806

B2 = 012 -0.0195 Yea2 0.00066

Yea3 -0.00162

T [110] Yea -1.7232

Ya = Ye -0.0109

Yeal = Yea2 -0.1263

Yead = Yead 0.00066

Yal = Yel 0.05537
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problem. We report for the first time the explicit relationships

between 3D and 1D parameters.

Yot E— P Yoa3 3D forqe constants can t_hen be_ estima_ted .from a few ei-
ther experimental or theoretical points, which in general are

FIGURE 2. A representation of a diatomic linear chain with 4 most frequently available for high symmetry directions. At

neighbor interaction. this stage, the frequency at a general point of the Brillouin

Zone can be found.
direction of the BZ is not observed. In order to improve this  \we illustrate the calculation for Ge which crystallizes in

calculation, more neighbors should be considered; but this ifhe diamond structure, and excellent agreement is found with
beyond the scope of the present work. the experimental data.
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oscillation equations of motion into 1D problems for high
symmetry directions for diamond and zincblende lattices.

Instead of following the more traditional way of finding
the irreducible representation for a given direction, we con-The most general linear chain we consider for the fcc struc-
sider a given number of atoms and limit ourselves to the harture has an interaction with up to 4 neighbors. The force
monic interaction between a limited number of neighborsconstants are sketched in Fig. 2. Simpler linear chains are
The dynamical matrix is then constructed taking into accounbbtained as a particular case, when the right force constants
the symmetry of the underlying lattice. In this way, we foundtend to zero. To fit the experimental values, only the fre-
that the force constants in these decoupled 1D equations aggiencies at the center and edge of the Brillouin zone, and the
related to a larger number of force constants in the whole 3ound velocity of the acoustic phonons are needed. These
| expressions are written as

Appendix A: Linear chains

A
W(F) = R
I
Me (270 + )+ ma (27 + A) + 1/ 2mame Y + (me (29, + A) — ma (250 + A))°
wOP(X) - m.m ’
Me (27a + A) + mg (29. + A) — \/ZmamCT2 + (me (270 + A) — mg (2. + A))2
wac(X) = U 3
atq? 2
Vs = MA |:A ('Ya +Ye + 4Ya1 + 4701) -2 (7(:a1 — Yea2 + 2Vca3 — 270@4) s (49)

wherep = (mgq + me)/mqm. is the reduced mas3/ = m, + m. is the total mass) = vea + Yeal + Yea2 + Yeas + Yead,
andY = Yea — Yeal — Yea2 T Vea3 + Vead-
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