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Radiative corrections to the magnetic moment of a charged lepton at finite
temperature from the photon-photino pair in SUSY standard model
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Within the context of the Supersymmetric Standard Model of Electroweak Unification, we compute the radiative virtual corrections, at finite
temperature, to the magnetic dipole moment of a charged lepton coming from the virtual photon-photino and lepton-slepton pairs. We show
that the corrections from the virtual photon-photino vanish in the limit of exact supersymmetry.
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1. Introduction persymmetric partner, the photino, in the minimal extension
of the standard model of electro-weak interactions (MSSM).

The subject of Quantum Field Theory at finite temperaturel he virtual exchange of susy particles can contribute to the
rises from the observation that non-abelian gauge theorig®iagnetic moment of fermions. Some authors have used the
at zero temperature are broken but that they are restored 8xperimental results at zero temperature to constraint the
high temperatures [1]. This means that in eras when som@asses of the photino and the lepton scalar partners. A
phenomena of elementary particles were relevant for the evavell known result in field theories with spontaneously bro-
lution of the universe, the temperature was extremely highken symmetries is that they behave like magnets, where mag-
Then, when we apply elementary particles theory to the earlj€tization vanishes beyond Curie temperature, restoring ro-
universe, temperature must be taken into account [2]. Also d@tional symmetry. However, since bosons and fermions re-
high temperatures QCD loses its confinement and thermal ex¢ponds differently to temperature, supersymmetry is sponta-
citations generates a plasma of quarks and gluons screenifigously broken at finite temperature [19], but the degree of
the color electric flux [3]. rupture is small even at the temperatiire- 10'° K, when it

The radiative corrections to some physical quantities reis believed tha_t exact supersymmetry ends. A recent analysis
ceive contributions dependent of temperature also. Se\f2f the constrained supersymmetric standard model, suggests

eral authors have calculated finite temperature radiative co}hat the model is still compatible, and not ruled out, with the

rections to neutron decay [4] , to primordial nucleosynthe—present experlmental c.onstralnts [20].
sis [2], and to the magnetic dipole moment of muon or elec- 1 N€ Paper is organized as follows. In Sec. 2 we present

tron [5-14]. By finite temperature we must understand “in thethe set of Feynman rules required for the calculation, and ob-

presence of a distribution of particles in thermal equilibrium@n the amplitudes for the different contributions from par-

(the thermal bath)”. These works were done in the real timdiCles and sparticles. In Sec. 3 we explicitly calculate the
method because a separation of temperature contributions j@diative correction from the virtual photon and photino pair,

quite direct [15]. The characteristic feature of this formal-and in Sec. 4 those from the virtual lepton-slepton pair. In
ism is the doubling of the degrees of freedom, that is, to eaci?€C: > We discuss our result in the limit of exact supersym-
physical field a ghost field has to be introduced, but only theMetry-

physical ones on the external legs [16]. The propagator as-

sumes & x 2 matrix _structure, and for each vertex there exis_tzl Feynman rules at finite temperature

now a complex conjugate ghost counterpart. The full matrix

structure of the theory is necessary only in higher orders iR ¢5\cjjate the radiative corrections at finite temperature, we

perturbation theory: this doubling of fields ensures the canaed the propagators of the photon, the fermions and of the

cellation of ill-defined distributions arising from self-energy ¢ .o« in the loop. These are taken from Ref. 7. For the

insertions on mte_rnal lines in multiloop dla_grams _[17]. _As is photon of 4-momentum k the propagator is
known, the real-time formalism agrees with the imaginary-

time formalism jn the scalgr case and in the case of fermions Dg”(k) = D (k) — 2#9“”6(1@2)713(1@) 1)
with zero chemical potential [18].

Inthe present paper we calculate, following Ref. 7, the rawhere
diative corrections to the magnetic moment of a charged lep- DI () = —ig" @
ton (electron, muon or tau) from the virtual photon and its su- 0 2
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FIGURE 1. Feynman diagram for the virtual photon correction.

is the photon propagator at zero temperature, and

is the Bose-Einstein distribution function. The expongnk
represents the scalar product of the 4-veétowith the 4-

vector 5, = (1/kT,0) in the thermal bath reference sys-

tem, T' being its temperature. For fermions of massand
4-momentunp, the propagator is given by

S5(p) = So(p) — 216 (p* —m*)(p — m)np(p)  (4)

where .
1

So(p) = —m ®)
is the zero temperature propagator, and
nr(p) = Br 11 (6)

is the Fermi-Dirac distribution function. For scalars of mass

m and 4-momentunk, the corresponding propagator is

Ag(k) = Ag(k) — 276(k* — m*)np (k) 7
A(d) n
_ ’I’ ‘\\ -
ff _\f
Y4 AY
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FIGURE 2. Feynman diagram for the photinocontribution. The

fragmented lines (Iabelé‘?)l, represents the slepton partners to the

external fermions.

with )
(3
Ao(k) = 52— m2 (8)
the zero temperature scalar propagator.
The radiative corrections we consider in this work are de-
picted in Figs. 1 and 2, corresponding to the virtual photon
and leptons, and virtual photino and sleptons, respectively.

The amplitude from Fig. 1 is given by
M = —ieu(p2)M,u(p1)e” (q) 9)

In (9), u(p1) andu(ps) are Dirac spinors for the initial and
final fermions,e#(q) is the external photon polarization 4-
vector, and

4
m, = (~ie)* [ %w@(m .
x Sp(p1 + k)veDj (k) (10)

After substitution, from (1) and (4), of photon and fermion
temperature dependent propagators in (10), we obtain

Ai)ﬁﬂ = mu(l) + 93?;,,(2) + mu(3)a

where

d*k
M, (1) = 2me? / W’Ynso(pz + k)Y

% So(p1 + k)ved(k2)np k), (11)
M, (2) = 2me? / (ir];’ynSo(pz + k)Y
x (p1 + F — m)vo Dy’ (k)
x ng(k+p1)d((k —|—p1)2 —m2), (12)
,(3) = 20 [ S+ k= mp,
x So(p1 + k)veDi’ (k)np(k + p2)
X 8((k + p2)* —m?). (13)

HereAOMt, = M, — M0, with M, is the zero temperature
amplitude.
The amplitude from Fig. 2 is

M = —iet(p2)(A* — B ;)M

x (A + Bys)u(p1)e(q),

(14)

where

ﬁu:/%Aﬁ(k+P2)(Pﬂ

+ ijH)Ag(lﬁ + p1)55(k).
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The parameters A and B give the scalar and pseudoscalar coand

plings in the lepton — slepton — photino vertex. After substi-
tution of (4) and (7), for the photino and slepton temperature

dependent propagators, we obtain

A, = My, (1) + M, (2) + M, (3),

with
M, (1) = 2”/ (gjrl;‘l k2 + 2k -p11+ m? —m?
x(p+ 2k)”k:2 +2k -p21+ m2 — m2
X 32 — i) (2 — By (k). 15)
,(2) = —on [ (jﬁ’;? e G

x (p+ 2k)u0((k + p1)? = m*)np(k +p1), (16)

—~ d*k 1 ~
T,(0) =25 [ oo G B

X (p+2k), 0((k + p2)* —m*)np(k +p2). (A7)

Herem andm., are the masses of the slepton and photino in

the loop, respectively.

3. Radiative corrections from virtual photon
and photino

z1 = ps — qus,
p=p2+pi, q=p2—pi

Evaluation is easily performed in the static limft = 0, giv-
ing

32m

Lu(21) = Dii’ {(p252 - bQ)[(P252 - b2)2

12373 pPs? (1) + N - 1)
—AN?(3-p?S)B-)BY (%) (21)

whereD; = (p?s? — b2?)2 + 4N?(3 - p)%s? andb = Nf,.
Then,

256e2  m =1
Dﬁ#(l) = 1572 (6']9)3]72 (Afz_l ]\72>

<1308 p)2 + 922 22

The sum overV gives the Spence function, defined as

x

Lig(x):—/MdX: Z Lz

4 N=1

The contribution (11) is the one coming from the virtual pho-After considering thati(ps)pu(p1) = 2m u(p2)u(p:1), we
ton, while those from (12) and (13) come forth the virtual obtain

leptons in the loop. To evaluate (11), we substitute fermion w6l T
propagators at zero temperature from (5), M(1) = —ieu(pe) M, u(p1)e*(q) = [_ﬂg(m)QLiQQ)}

d*k 1 1
2m)4 2k - py + i€ 2k - py + i€

mﬂ(1)=2we2/(

x Dyu(k)3(k*)n (k) (18)

- 10uq”
< (cieyatrn) (2L ) utp)et o) @3)
The contribution to the magnetic moment is within the square
The restrictionk? = 0, imposed by the Dirac delta, has been bracket,
applied, and Ap(l) = —==(=)2Li»(1 24
Lyu(k) = —dkuf+ ... (19) ) =25 G b (24)
where the ellipsis contains terms that do not contribute to The contributiomﬁﬁu(l) is the analogous one i, (1).
the magnetic moment. The evaluation of (18) has been peite make the same algebraic steps to get

formed in Ref. 7; we rewrite the result in the form

0o 1

oo 1 = 1 & N dv

1662 & - (1) =~ g5 > (-0 [as [

M, (1) = —— > /sds/dvFH(zl), (20) 87 L= TR

N=1} i N
—idms |7V T,
it x e {F#I(zl)} (25)
T, (21) = ~° aa 8u f(z1), Whereg_: m? —m? +ﬁ13 with the terms contributing to the
0zf 0z magnetic moment given by
2 2132
_ i NS - 9 0

Hz) = (22 — N2(32)2 4 4N23222’ T, =myp, + QVQ@@, (26)
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and where
~ &'k _ 3,1 —4
I(z) = / 2t MR (K — m2)np (k). A(N) = [ GTs ( | 0, 1/2, 1 >
-3
To obtain an analytical result we proceed as follows. For the + 15G?Z§ (—A | 0, 1/2, 2 >
first term in (26), already proportional to the photino mass, ' ’
which we denote by, (1), we neglect the contribution on 15631 <—A | -2 >
the mass of the photino in the argument of the delta function, 13 0, 1/2, 3
to obtain - . )
. +Gs (‘A o, 172, 4 )} (2)
— _ 1 &
ML) = Tap | =52 Z(_l)N/ds R Y C N
N=1 0 b2 1,3 0, 1/2, 2
/ d 3,1 -2
x / S G, (27) — 1067 (—A o, 12, 3 )
-1
—1
with f(z1) identical tof (21 ), but replacing; instead of:q, ’ ’
2 with
~ VA ~,
&) = = T 2(3.2.)2° A:7N262
(21 — N23?)2 +4N2%(3 - z1) 16m2T2

and in the static limig? = 0, 22 = p2s2, -3, = (G-p)s. The ~ We rewrite Eq.(30) as
v-integral is simple, and the integral oveis evaluated using —

the Mathematica program, leading to Meijer's G-functions, My (1) = Mya (1), (32)
1 o & then, its contribution to (25) is
am _ N+1
N=1 M(1)" = —ieu(p2)(A" — B*s5)
o - X By (1) (A + Brs)ulpr ) (o)
W\ 1em2 ' 0, 0, 1/2 ) )
= —ietu(p2)(|A]” + [B|” — 2Re(A"B)s

b252 0 D —~ ,
3 " mta 1/ a m
G1,3< 16m2 | 0, 1/2, 1 >}] (Qm) (28) X (1)"y*u(p1)e"(q)

The term in+; does not contribute to the magnetic mo-
Now, substitution of (28) in (14) shows that thls contribution ment. In the MSSM the parameters A and B take the same
to the magnetic moment has a factet” — | B|*, whichvan-  valueie/\/2, then|AJ> + |B|> = ¢*. Besides, we must take
ISheS because n the MSSM the parameters A and B take thﬁto account that there are two Sca|¢£ (ande) in order to

same valuge/v/2. . match the number of helicity states with those of the virtual
For the second contribution in (26), denoteddly,(1)”,  fermions in Fig. 1. In this way we have
we again assurmé’zi = 0 in the delta function and take the
static limit, to obtain ﬁ(l)” 7 256 T2 i (71)NA(N)
- | g3z m2 ~ N2
~ ., 5l2m N [ 3 iFem o~ o,
m,(1)" = — Nz::l( 1) 0/3 e Ty (Z1)ds (29) % (—ie)a(p) (zcr;;lq >u(p1)s“(q) (33)

with fu(%) as in (26). The integral is evaluated using the The.term in square brackets is the contribution to the
same program and gives magnetic moment
25600 T? |

M| (%), @0 Au(V) = =575 o

=~ 32 T2

_ (34)
gﬁu(l)” 71_5/2 mg

N=1

25
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4. Radiative corrections from virtual lepton
and sleptons

The contribution from (12) is

1
dv 2
X /?e—mn S?)AM(Z,2)7 (35)
-1

where A, (z2) is given by the same expression Ag(z1),
but

14+wv
zZ9 = 5

sp,

23 — N232
CERE e =

f(z2) =

(the contribution (13) can be obtained after the substitution
2 «— 1in the indexes in (12)). The integration over the

variablev has no analytic result unless we také = 0 in

the exponential function, allowing for an integration over the

variables

e} _1\N
3 (]\2 @(N)} (5*“) (36)
N=1
with
272 _
O(N) = 5G7; (—%' 0, 1/2, 1)

2 7n72
3,1 m*N -2
_ 20G1,3 (_ AT 0, 1/2’ ) )

2 A72
3,1 m*“N —1
— 25G (—4T2 \ 0. 1/2, 3 > (37)

The contribution to the magnetic moment is
20 [T\’ | (=N
Ap(2) = 5.2 <m> 1\/2::1 N2 ®(N) (38)

The contribution from the virtual sleptons is given ?ﬁm@)
andi,(3),

— 1 7 5,
M, (2) = e e/ 255
0

1
« / %“e—ig’sv/mu(zg), (39)
2

whered’ = m? +m? — m?2 and

- 14w
29 =
2 2

The integrals in (39) are of the same form as those in (36),
and to obtain an analytic result we pit= 0 in the exponen-
tial function in the integration over the variahle allowing

for an integration over the variable

2 oo
W, (2) = [45;/ (5) X 5o

N=1

sp.

(o) @0

where
w1z Lo, 12 1
o [ 57 N2 -2
_20G1:3 <_8T2 0, 1/2, 2)
~2
2563 (W -1 3) (41)

872 | 0, 1/2,
The result for the anomalous magnetic moment is
20 (T
~ 45m3/2 \'m

5. Conclusions

5’ N2 _3 )

L aw)

N=1

(42)

In summary, we have calculated,under some approximations,
the radiative corrections to the anomalous magnetic moment
of a charged lepton from virtual photon, photino, lepton
and sleptons in the supersymmetric version of the standard
model. The respective contributions are given by analytic
functions of the temperatur@ in Egs. (24), (34), (38)
and (42).

It is interesting to note that when we consider the re-
sult (34) in the limit of exact supersymmetrye. when
m = m andm, = 0, and since Meijer’s functions are de-
fined only when its argument is different from zero, it is bet-
ter to take this limit before evaluation of the integral in (29).
Then, the result for the magnetic moment is

Ap(l) = —===(=)*Lis(-1) (43)

Adding this result to (24) we obtain

Ap(1) + Bp(1) = - 22 ()2

X [ng(l) + QLZQ(—l)]
which vanishes since [28Lio(—1) = —Liy(1). Then, in

the limit of exact susy, the radiative correction to the mag-
netic moment of a charged lepton at finite temperature from

Rev. Mex. Fis63(2017) 291-296
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the pair photon-photino, vanishes as in the case of tempeAcknowledgments

atureT = 0 [22]. However this is not the case for the

other contributions, as can be seen from (38) and (42). A#uthor wishes to aknowledge partial support from Coonisi
is stressed in [19] in a supersymmetric theory bosonic andle Operadin y Fomento de las Actividades Adadicas
fermionic contributions tend to cancel each othef"at 0, (COFAA)-IPN and Secretéa de Investigaéin y Posgrado
but at high temperatures supersymmetry must be broken. (SIP)-IPN.
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