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Radiative corrections to the magnetic moment of a charged lepton at finite
temperature from the photon-photino pair in SUSY standard model
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Within the context of the Supersymmetric Standard Model of Electroweak Unification, we compute the radiative virtual corrections, at finite
temperature, to the magnetic dipole moment of a charged lepton coming from the virtual photon-photino and lepton-slepton pairs. We show
that the corrections from the virtual photon-photino vanish in the limit of exact supersymmetry.
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1. Introduction

The subject of Quantum Field Theory at finite temperature
rises from the observation that non-abelian gauge theories
at zero temperature are broken but that they are restored at
high temperatures [1]. This means that in eras when some
phenomena of elementary particles were relevant for the evo-
lution of the universe, the temperature was extremely high.
Then, when we apply elementary particles theory to the early
universe, temperature must be taken into account [2]. Also at
high temperatures QCD loses its confinement and thermal ex-
citations generates a plasma of quarks and gluons screening
the color electric flux [3].

The radiative corrections to some physical quantities re-
ceive contributions dependent of temperature also. Sev-
eral authors have calculated finite temperature radiative cor-
rections to neutron decay [4] , to primordial nucleosynthe-
sis [2], and to the magnetic dipole moment of muon or elec-
tron [5-14]. By finite temperature we must understand “in the
presence of a distribution of particles in thermal equilibrium
(the thermal bath)”. These works were done in the real time
method because a separation of temperature contributions is
quite direct [15]. The characteristic feature of this formal-
ism is the doubling of the degrees of freedom, that is, to each
physical field a ghost field has to be introduced, but only the
physical ones on the external legs [16]. The propagator as-
sumes a2×2 matrix structure, and for each vertex there exist
now a complex conjugate ghost counterpart. The full matrix
structure of the theory is necessary only in higher orders in
perturbation theory: this doubling of fields ensures the can-
cellation of ill-defined distributions arising from self-energy
insertions on internal lines in multiloop diagrams [17]. As is
known, the real-time formalism agrees with the imaginary-
time formalism in the scalar case and in the case of fermions
with zero chemical potential [18].

In the present paper we calculate, following Ref. 7, the ra-
diative corrections to the magnetic moment of a charged lep-
ton (electron, muon or tau) from the virtual photon and its su-

persymmetric partner, the photino, in the minimal extension
of the standard model of electro-weak interactions (MSSM).
The virtual exchange of susy particles can contribute to the
magnetic moment of fermions. Some authors have used the
experimental results at zero temperature to constraint the
masses of the photino and the lepton scalar partners. A
well known result in field theories with spontaneously bro-
ken symmetries is that they behave like magnets, where mag-
netization vanishes beyond Curie temperature, restoring ro-
tational symmetry. However, since bosons and fermions re-
sponds differently to temperature, supersymmetry is sponta-
neously broken at finite temperature [19], but the degree of
rupture is small even at the temperatureT ≈ 1015 K, when it
is believed that exact supersymmetry ends. A recent analysis
of the constrained supersymmetric standard model, suggests
that the model is still compatible, and not ruled out, with the
present experimental constraints [20].

The paper is organized as follows. In Sec. 2 we present
the set of Feynman rules required for the calculation, and ob-
tain the amplitudes for the different contributions from par-
ticles and sparticles. In Sec. 3 we explicitly calculate the
radiative correction from the virtual photon and photino pair,
and in Sec. 4 those from the virtual lepton-slepton pair. In
Sec. 5 we discuss our result in the limit of exact supersym-
metry.

2. Feynman rules at finite temperature

To calculate the radiative corrections at finite temperature, we
need the propagators of the photon, the fermions and of the
scalars in the loop. These are taken from Ref. 7. For the
photon of 4-momentum k the propagator is

Dµν
β (k) = Dµν

0 (k)− 2πgµνδ(k2)nB(k) (1)

where

Dµν
0 (k) =

−igµν

k2
(2)
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FIGURE 1. Feynman diagram for the virtual photon correction.

is the photon propagator at zero temperature, and

nB(k) =
1

eβ·k − 1
(3)

is the Bose-Einstein distribution function. The exponentβ ·k
represents the scalar product of the 4-vectorkµ with the 4-
vector βµ = (1/kT, 0) in the thermal bath reference sys-
tem, T being its temperature. For fermions of massm and
4-momentump, the propagator is given by

Sβ(p) = S0(p)− 2πδ(p2 −m2)(/p−m)nF (p) (4)

where
S0(p) =

i

/p−m
(5)

is the zero temperature propagator, and

nF (p) =
1

eβ·p + 1
(6)

is the Fermi-Dirac distribution function. For scalars of mass
m and 4-momentumk, the corresponding propagator is

∆β(k) = ∆0(k)− 2πδ(k2 −m2)nB(k) (7)

FIGURE 2. Feynman diagram for the photinoγ contribution. The
fragmented lines (labeled̃f), represents the slepton partners to the
external fermions.

with
∆0(k) =

i

k2 −m2
(8)

the zero temperature scalar propagator.
The radiative corrections we consider in this work are de-

picted in Figs. 1 and 2, corresponding to the virtual photon
and leptons, and virtual photino and sleptons, respectively.
The amplitude from Fig. 1 is given by

M = −ieu(p2)Mµu(p1)εµ(q) (9)

In (9), u(p1) andu(p2) are Dirac spinors for the initial and
final fermions,εµ(q) is the external photon polarization 4-
vector, and

Mµ = (−ie)2
∫

d4k

(2π)4
γηSβ(p2 + k)γµ

× Sβ(p1 + k)γσDησ
β (k) (10)

After substitution, from (1) and (4), of photon and fermion
temperature dependent propagators in (10), we obtain

∆Mµ = Mµ(1) + Mµ(2) + Mµ(3),

where

Mµ(1) = 2πe2

∫
d4k

(2π)4
γηS0(p2 + k)γµ

× S0(p1 + k)γσδ(k2)nB(k), (11)

Mµ(2) = 2πe2

∫
d4k

(2π)4
γηS0(p2 + k)γµ

× (/p1 + /k −m)γσDησ
0 (k)

× nF (k + p1)δ((k + p1)2 −m2), (12)

Mµ(3) = 2πe2

∫
d4k

(2π)4
γη(/p2 + /k −m)γµ

× S0(p1 + k)γσDησ
0 (k)nF (k + p2)

× δ((k + p2)2 −m2). (13)

Here∆Mµ = Mµ−Mµ0, with Mµ0 is the zero temperature
amplitude.

The amplitude from Fig. 2 is

M̃ = −ieu(p2)(A∗ −B∗γ5)M̃µ (14)

× (A + Bγ5)u(p1)εµ(q),

where

M̃µ =
∫

d4k

(2π)4
∆β(k + p2)(pµ

+ 2kµ)∆β(k + p1)Sβ(k).
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The parameters A and B give the scalar and pseudoscalar cou-
plings in the lepton – slepton – photino vertex. After substi-
tution of (4) and (7), for the photino and slepton temperature
dependent propagators, we obtain

∆M̃µ = M̃µ(1) + M̃µ(2) + M̃µ(3),

with

M̃µ(1) = 2π

∫
d4k

(2π)4
1

k2 + 2k · p1 + m2 − m̃2

× (p + 2k)µ
1

k2 + 2k · p2 + m2 − m̃2

× δ(k2 − m̃2
γ)(m̃2

γ − /k)nF (k), (15)

M̃µ(2) = −2π

∫
d4k

(2π)4
1

(k + p2)2 − m̃2
(m̃γ + /k)

× (p + 2k)µδ((k + p1)2 − m̃2)nB(k + p1), (16)

M̃µ(3) = −2π

∫
d4k

(2π)4
1

(k + p1)2 − m̃2
(m̃γ + /k)

× (p + 2k)µ δ((k + p2)2 − m̃2)nB(k + p2). (17)

Herem̃ andm̃γ are the masses of the slepton and photino in
the loop, respectively.

3. Radiative corrections from virtual photon
and photino

The contribution (11) is the one coming from the virtual pho-
ton, while those from (12) and (13) come forth the virtual
leptons in the loop. To evaluate (11), we substitute fermion
propagators at zero temperature from (5),

Mµ(1) = 2πe2

∫
d4k

(2π)4
1

2k · p2 + iε

1
2k · p1 + iε

× Γµ(k)δ(k2)nB(k) (18)

The restrictionk2 = 0, imposed by the Dirac delta, has been
applied, and

Γµ(k) = −4kµ/k + . . . (19)

where the ellipsis contains terms that do not contribute to
the magnetic moment. The evaluation of (18) has been per-
formed in Ref. 7; we rewrite the result in the form

Mµ(1) = −16e2

π2

∞∑

N=1

∞∫

0

sds

1∫

−1

dυΓµ(z1), (20)

with

Γµ(z1) = γα ∂

∂zα
1

∂

∂zµ
1

f(z1),

f(z1) =
z2
1 −N2β2

(z2
1 −N2β2)2 + 4N2β2z2

1

,

and

z1 = ps− qυs,

p = p2 + p1, q = p2 − p1.

Evaluation is easily performed in the static limitq2 = 0, giv-
ing

Γµ(z1) =
32m

D3
1

{
(p2s2 − b2)[(p2s2 − b2)2

− 12N2(β · p)2s2(
/p

2
) + N2[3(p2s2 − b2)2

−4N2(β · p)2s2](β · p)/β
}

(
pµ

2m
)s2 (21)

whereD1 = (p2s2 − b2)2 + 4N2(β · p)2s2 andb = Nβ0.
Then,

Mµ(1) =
256e2

15π2

m

(β · p)3p2

( ∞∑

N=1

1
N2

)

× [3(β · p)
/p

2
+ p2β](

pµ

2m
) (22)

The sum overN gives the Spence function, defined as

Li2(x) = −
x∫

0

ln(1− χ)
χ

dχ =
∞∑

N=1

xN

N2

After considering thatu(p2)/pu(p1) = 2m u(p2)u(p1), we
obtain

M(1) = −ieu(p2)Mµu(p1)εµ(q) =
[
−α

π

64
3

(
T

m
)2Li2(1)

]

× (−ie)u(p2)
(

iσµνqν

2m

)
u(p1)εµ(q) (23)

The contribution to the magnetic moment is within the square
bracket,

∆µ(1) = −α

π

64
3

(
T

m
)2Li2(1) (24)

The contributioñMµ(1) is the analogous one toMµ(1).
We make the same algebraic steps to get

M̃µ(1) = − 1
8π3

∞∑

N=1

(−1)N

∞∫

0

ds

1∫

−1

dv

2

× e−i δ̃ms
µ

[
Γ̃µĨ(z1)

]
(25)

whereδ̃ = m2−m̃2 +m̃2
γ , with the terms contributing to the

magnetic moment given by

Γ̃µ = m̃γpµ + 2γα ∂

∂z̃α
1

∂

∂z̃µ
1

, (26)
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and

Ĩ(z̃1) =
∫

d4k

(2π)4
e−ik·z̃1 δ(k2 − m̃2

γ)nF (k).

To obtain an analytical result we proceed as follows. For the
first term in (26), already proportional to the photino mass,
which we denote bỹMµ(1)′, we neglect the contribution on
the mass of the photino in the argument of the delta function,
to obtain

M̃µ(1)′ = m̃γpµ


− 1

2π2

∞∑

N=1

(−1)N

∞∫

0

ds

×
1∫

−1

dv

2
e−iδ̃sf(z̃1), (27)

with f(z̃1) identical tof(z1), but replacing̃z1 instead ofz1,

f(z̃1) =
z̃2
1 − b2

(z̃2
1 −N2β2)2 + 4N2(β · z̃1)2

,

and in the static limitq2 = 0, z̃2
1 = p2s2, β ·z̃1 = (β ·p)s. The

v-integral is simple, and the integral overs is evaluated using
the Mathematica program, leading to Meijer’s G-functions,

M̃µ(1)′ =

[
− 1

8π5/2

m̃γ

m

∞∑

N=1

(−1)N+1

×
{

G3,1
1,3

(
− b2δ̃2

16m2
| −1

0, 0, 1/2

)

−G3,1
1,3

(
− b2δ̃2

16m2
| 0

0, 1/2, 1

)}] ( pµ

2m

)
(28)

Now, substitution of (28) in (14) shows that this contribution
to the magnetic moment has a factor|A|2− |B|2, which van-
ishes because in the MSSM the parameters A and B take the
same valueie/

√
2.

For the second contribution in (26), denoted bỹMµ(1)′′,
we again assumẽm2

γ = 0 in the delta function and take the
static limit, to obtain

M̃µ(1)′′ = −512m

π2

∞∑

N=1

(−1)N

∞∫

0

s3e−iδ̃sΓ̃µ(z̃1)ds (29)

with Γ̃µ(z̃1) as in (26). The integral is evaluated using the
same program and gives

M̃µ(1)′′ = − 32
π5/2

T 2

m2

[ ∞∑

N=1

(−1)N

N2
Λ(N)

] (pµ

2

)
, (30)

where

Λ(N) =
[
−G3,1

1,3

(
−∆ | −4

0, 1/2, 1

)

+ 15G3,1
1,3

(
−∆ | −3

0, 1/2, 2

)

− 15G3,1
1,3

(
−∆ | −2

0, 1/2, 3

)

+G3,1
1,3

(
−∆ | −1

0, 1/2, 4

)](
/p

2

)

+
N2(β · p)

b2

[
3G3,1

1,3

(
−∆ | −3

0, 1/2, 2

)

− 10G3,1
1,3

(
−∆ | −2

0, 1/2, 3

)

+G3,1
1,3

(
−∆ | −1

0, 1/2, 4

)]
/β (31)

with

∆ =
N2δ̃2

16m2T 2

We rewrite Eq.(30) as

M̃µ(1)′′ = M̃µα(1)′′γα, (32)

then, its contribution to (25) is

M̃(1)′′ = −ieu(p2)(A∗ −B∗γ5)

× M̃µα(1)′′γα(A + Bγ5)u(p1)εµ(q)

= −ieu(p2)(|A|2 + |B|2 − 2Re(A∗B)γ5

× M̃µα(1)′′γαu(p1)εµ(q)

The term inγ5 does not contribute to the magnetic mo-
ment. In the MSSM the parameters A and B take the same
valueie/

√
2, then|A|2 + |B|2 = e2. Besides, we must take

into account that there are two scalar (fL andfR) in order to
match the number of helicity states with those of the virtual
fermions in Fig. 1. In this way we have

M̃(1)′′ =

[
−256α

π3/2

T 2

m2

[ ∞∑

N=1

(−1)N

N2
Λ(N)

]]

× (−ie)u(p2)
(

iσµνqν

2m

)
u(p1)εµ(q) (33)

The term in square brackets is the contribution to the
magnetic moment

∆̃µ(1) = −256α

π3/2

T 2

m2

[ ∞∑

N=1

(−1)N

N2
Λ(N)

]
. (34)
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4. Radiative corrections from virtual lepton
and sleptons

The contribution from (12) is

Mµ(2) = − e2

8π3

∞∫

0

e−im2ssds

×
1∫

−1

dv

2
e−im2sv∆µ(z2), (35)

where∆µ(z2) is given by the same expression as∆µ(z1),
but

z2 =
1 + v

2
sp,

f(z2) =
z2
2 −N2β2

0

(z2
2 −N2β2

0)2 + 4N2β2
0z2

2

.

(the contribution (13) can be obtained after the substitution
2 ←→ 1 in the indexes in (12)). The integration over the
variablev has no analytic result unless we takem2 = 0 in
the exponential function, allowing for an integration over the
variables

Mµ(2) =

[
2α

45π3/2

(
T

m

)2

×
∞∑

N=1

(−1)N

N2
Φ(N)

] ( pµ

2m

)
(36)

with

Φ(N) = 5G3,1
1,3

(
−m2N2

4T 2
| −3

0, 1/2, 1

)

− 20G3,1
1,3

(
−m2N2

4T 2
| −2

0, 1/2, 2

)

− 25G3,1
1,3

(
−m2N2

4T 2
| −1

0, 1/2, 3

)
(37)

The contribution to the magnetic moment is

∆µ(2) =
2α

45π3/2

(
T

m

)2
[ ∞∑

N=1

(−1)N

N2
Φ(N)

]
(38)

The contribution from the virtual sleptons is given bỹMµ(2)
andM̃µ(3),

M̃µ(2) = − 1
4π3

∞∫

0

e−iδ̃′s/2sds

×
1∫

−1

dv

2
e−iδ̃′sv/2∆µ(z̃2), (39)

whereδ̃′ = m2 + m̃2 − m̃2
γ and

z̃2 =
1 + v

2
sp.

The integrals in (39) are of the same form as those in (36),
and to obtain an analytic result we putδ̃′ = 0 in the exponen-
tial function in the integration over the variablev , allowing
for an integration over the variables,

M̃µ(2) =

[
1

45π5/2

(
T

m

)2 ∞∑

N=1

1
N2

Φ̃(N)

] ( pµ

2m

)
(40)

where

Φ̃(N) = 5G3,1
1,3

(
− δ̃′

2
N2

8T 2
| −3

0, 1/2, 1

)

− 20G3,1
1,3

(
− δ̃′

2
N2

8T 2
| −2

0, 1/2, 2

)

− 25G3,1
1,3

(
− δ̃′

2
N2

8T 2
| −1

0, 1/2, 3

)
(41)

The result for the anomalous magnetic moment is

∆̃µ(2) =
2α

45π3/2

(
T

m

)2
[ ∞∑

N=1

1
N2

Φ̃(N)

]
(42)

5. Conclusions

In summary, we have calculated,under some approximations,
the radiative corrections to the anomalous magnetic moment
of a charged lepton from virtual photon, photino, lepton
and sleptons in the supersymmetric version of the standard
model. The respective contributions are given by analytic
functions of the temperatureT in Eqs. (24), (34), (38)
and (42).

It is interesting to note that when we consider the re-
sult (34) in the limit of exact supersymmetry,i.e. when
m̃ = m andm̃γ = 0, and since Meijer’s functions are de-
fined only when its argument is different from zero, it is bet-
ter to take this limit before evaluation of the integral in (29).
Then, the result for the magnetic moment is

∆̃µ(1) = −α

π

128
3

(
T

m
)2Li2(−1) (43)

Adding this result to (24) we obtain

∆µ(1) + ∆̃µ(1) = −α

π

64
3

(
T

m
)2

× [Li2(1) + 2Li2(−1)]

which vanishes since [21]2Li2(−1) = −Li2(1). Then, in
the limit of exact susy, the radiative correction to the mag-
netic moment of a charged lepton at finite temperature from
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the pair photon-photino, vanishes as in the case of temper-
ature T = 0 [22]. However this is not the case for the
other contributions, as can be seen from (38) and (42). As
is stressed in [19] in a supersymmetric theory bosonic and
fermionic contributions tend to cancel each other atT = 0,
but at high temperatures supersymmetry must be broken.
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(COFAA)-IPN and Secretarı́a de Investigación y Posgrado
(SIP)-IPN.

1. D.A. Kirzhnits, A.D. Linde,Phys. Lett. B42 (1972) 471.

2. D.A. Dicuset al., Phys. Rev. D26 (1982) 2694.

3. D.J. Gross, R.D. Pisarski, L.G. Yaffe,Rev. Mod. Phys.53
(1981) 43.

4. J.L. Cambier, J.L. Primack, M. Sher,Nucl. Phys. B209(1982)
372.

5. G. Peressutti, B.S. Skagerstam,Phys. Lett.110B(1982) 406.

6. Y. Fujimoto, J. Hyung Lee,Phys. Lett.114B(1982) 359.

7. P.H. Cox, W.S. Hellman, A. Yildiz,Ann. Phys.154(1984) 211.

8. I.M. Ternov, V. Ch. Zhukovskii, P.G. Midodashvili, P.A. Ter-
nov,Sov. J. Nucl. Phys.43 (1985) 485.

9. G. Barton,Phys. Lett. B162(1985) 185.

10. A. Johansson, G. Peressutti, B.S. Skagerstam,Nucl. Phys.278B
(1986) 324.

11. F. Ruiz Ruiz, R.F. Alvarez-Estrada,Z. Phys. C34 (1987) 131.

12. A. Muller, hep-th/9912240.

13. A.V. Strlechenko,Phys. Lett. B542(2002) 223.

14. V.J.F. Donoghue, B.R. Holstein, R.W. Robinett,Ann. Phys.164
(1985) 233.

15. L. Dolan, R. Jackiw,Phys. Rev. D9 (1974) 3312.

16. P. Elmfors, B.S. Skagerstam,Z. Phys. C49 (1995) 251.

17. W. Keil, Phys. Rev. D40 (1989) 1176.

18. R.L. Kobes, G.W. Semenoff, N. Weiss,Z. Phys. C29 (1987)
371.

19. A. Das,Finite Temperature Field Theory, (World Sci. Pub. Co.
Pte. Ltd. 1997), Chap. 9.

20. C. Stregeet al., JCAP04 (2013) 013.

21. L. Lewin, Dilogarithms and associated functions, (North Hol-
land, N.Y. 958).

22. S. Ferrara, E. Remiddi,Phys. Lett. B53 (1974) 347.

Rev. Mex. Fis.63 (2017) 291-296


