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The dynamics of coupled atom and field assisted by continuous external pumping
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The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driv
Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the alge
sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results \
dissipation and external field detuning from the cavity field are also discussed.
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Estudiamos la diamica de un sistema acoplado deatomo de dos niveles y un campo electron&go quantico de cavidad asistidos

por un campo electromagtico chsico externo continuo (modelo Jaynes-Cummings guiado). Cuando el campo de la cavidad inicialmen
es preparado en un estado coherente, lardica depende fuertemente de la suma algebraica de ambos campos. Si este suma es ¢
(caso compensativo) en el sistema solo ocurren las oscilaciones de Rabiiale Tambén discutimos los resultados con disigaciy
desintonizadn del campo externo con respecto al campo de la cavidad.

Descriptores:Atomo de dos niveles; modelo Jaynes-Cummings guiado; oscilaciones de Rabiale vac

PACS: 32.80; 42.50; 42.50.

1. Introduction with the atom has been studied by several authors. Alsing,
Guo and Carmichael [13] studied the Stark splittings in the
The ability to create, manipulate, and characterize quantumuasienergies of the dressed states resulting from the pres-
states is becoming an increasingly important area of physicence of the driving field in the case where both fields are res-
research, with implications for such areas of technology agnant with the atom. Jyotsna and Agarwal [14] studied the
guantum computing, quantum cryptography, and communieffect of the external field on the Rabi oscillations in the case
cations (see Refs. 1 to 4). Most research in quantum nonlowxhere the cavity field is resonant with the atom, but the exter-
cality and quantum information is based on the entanglemental field may be resonant or nonresonant. Dutra, Knight and
of two-level particles. One of the most interesting aspectdvioya-Cessa [15] studied a similar model where the external
of its dynamics is the entanglement between atom and fielfleld was taken to be quantized. Much attention was given to
states. This essentially quantum mechanical property with nthe limit of high-intensity of the driving field. Chough and
classical analog is characterized by the impossibility of com-Carmichael [16] studied the JCM with an external resonant
pletely specifying the state of the global system through thelriving field, and showed that the collapses and revivals of
complete knowledge of the individual subsystem’s dynamicsthe mean photon number occur over a much longer time scale
The Jaynes-Cummings model [5] (JCM) for the inter-than the revival time of the Rabi oscillations for the atomic in-
action between a two-level atom and a single mode of th&ersion. Gerry [17] studied the interaction of an atom with a
electromagnetic field holds a central place in the descriptiofiuantized cavity field and the external classical driving field
of such interaction and provides important insight into thein the regime where an atom and classical fields are highly
dynamical behavior of atom and quantized field. In driv-detuned.
ing JCM, the cavity field and driving field start to interact, The goal of the present work is to calculate the dynamics
which provides an opportunity to study directly the field dy- of an atom coupled to a cavity field assisted by continuous ex-
namics at joint interaction with a two-level atom. Recently,ternal pumping in the case when the initial field is prepared
it was shown that the effective coupling between an atomin a coherent state. The main result is the following: starting
and a single-cavity field mode in JCM (driving JCM) can be with a field’s mode in a coherent state and with the atomin its
drastically modified in the presence of a strong external drivupper state, the dynamics strongly depends on the algebraic
ing field [6-8]. The important line of this direction is to use sum of the amplitudes of the initial cavity field and the exter-
microcavities and microspheres for changing the features afal field. If this sum is close to zero (the compensative case),
atom-field interaction as a result of placing an atom or quanenly the vacuum Rabi oscillations occur in the system.
tum dots in a microcavity (see Refs. 10 to 12). This paper is organized as follows. In Sec. 2, we discuss
The driven Jaynes-Cummings model for cases where théhe equations of motion for a two-level atom coupled to the
cavity and external driving field are close to or in resonancdield in a cavity with the assistance of a continuous pumping
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classical field. Section 3 presents results of a numerical studg used. Establishing in (4) the Hamiltonian
of the dynamics of the atom and field subsystems for the dis-

sipative case, using the technique of the master equation. The D(Y)H;; D" (y) =g(cTa+ato™)
behavior of the entropy and Fourier spectrum of oscillations
is also studied. In the last section, we discuss and summarizghd the state vecto qZ = D(y)[¢), one obtains the
our results. Schidinger equation as
2. Basic equations d ’{E> _
7:87:<O'+a+a+0'7)"¢)>. (5)
-

Consider a two-level atom driven by a classical external field
(1/2)E, exp(iwct) + c.c. and coupled to a cavity mode of Now consider the case when the initial state of the field in
the quantized electromagnetic field. The Hamiltonian for thehe cavity is a coherent state), with a=n'/2e=" (7 is
atom-cavity system (assumirig= 1) in the rotating-wave the average number of photons in the fields a phase of
approximation (RWA) is given by this state). Also we assume the atom is prepared in the ex-
cited statée) (|g) is the ground state). The initial state vector
[v) = le) |a) = |e) D(«)|0) allows us to write for Eq. (5)

1
H = —wyo3+weata+glo at +0ota L
073 “ g [ ] the corresponding initial state vec@> as

2
1 TWe * _—  —1iWe
+ 3 [5U+€ Ly &*0 e t} (@

| 2 | @) = DO) ) = le) D)D) 0) = &) 7), (©)
wherewy is the atomic transition frequency,, is the cav-
ity frequency,g = d(w./hVeo)'/? is the coupling constant wherey=~ + a and overall factoexp(:3(ya*)) is dropped.

between the atom and the cavity field modegthe atomic  with Eq. (6), the solution to the standard JCM Eq. (5) is
dipole matrix element for the transition, ahdis the mode  gjven by

volume),£ = E.d is the coupling constant between the atom

and the external classical field’{ is the amplitude of the ~ s _

external field)a* anda are the creation and annihilation op- ‘w (f)> = Z Cr(M){cos(§vn +1) [e) [n)

erators for the cavity mode, a™] = 1. In generalwg , wq, n=0

andw,. are different. To remove the time dependencéiin —isin(évn +1)[g) |n + 1)}, (7)

we use the operatekp|—iw.t(os + a™a)] to transform to a

frame rotating at the frequency.. The Hamiltonian in the where¢=gr, C,, = C,,(7)=exp(— W|2 /2)3™ /\/n! are ex-

rotating frame (the interaction picture) is then pansion coefficients for thg) state in the number represen-
tation |n). Equation (7) allows us to write the solution to

H, = %03 tg [ofaJre*i& + 0+a6i5t] resonant driving JCM (3 (§)) = D(—~) ‘J> as follows:
1 o
+5 [T+ e @) [$(€)) = Y- Cu@)cos(eVn+ 1) [e) |=7i)
n=0

whereA=wy — we, § = Wy — We, 0T=(0* £icY) /2, 0, o
o,, 0. are Pauli matrices. First we consider the resonant case —isin({vn+1)[g) |[=v;n+ 1)}, (8)
whenA = 0 andé=0. The case of non-zero detuning# 0

is discussed in the second part. The resonant Hamiltoniafyhere|—y;n) = D(—v) |n) is the displaced number state.
(wa = wo = w,) in the interaction picture has the form Note the following: formally, quantitie§ anda have differ-

1 ent physical meaning$is used as a parameter of the driving
Hi =g [g*(ﬁ 4 0’+a] 4+ = [&ﬁ + 5*0*] . (3 field in the Hamiltonian (1), whilex is a factor of the ini-

2 tial conditions for the field’'s mode in the cavity. However,
Furthermore we use the following dimensionless variablegshe dependence of the probability coefficiefits(3) on the
T=wot, g/wo—g, E/we—E. If € = 0, then Eq. (3) de-  combinationy = £/2g + a in (8) shows a deep similarity of
scribes the standard JCM, while the c&sg 0 corresponds  these quantities (at least the resonant dase0 considered
to driving JCM. To obtain the solution to Eq. (3), we in- here) since the coherent field statehas minimum uncer-
troduce the displacement operafofy)= exp{ya* —~*a},  tainty, and resembles the classical field as closely as quantum

v=E/2g, which allows us to rewrite Eq. (3) as follows: mechanics permits [18]. From Eq. (8), the density operator
Hi = gD (1) (0" a + a0 )D(v), 4 can be written as follows:

where the identity p=10(&) (Y]
D*(y)(a*,a)D(y)=(a"+7",a+7) = le) (e Ueet le) (g Ueg+|g) (€] Uge+ |9) (9] Ugg, (9)
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where matrix elements);; are given by Taking into account the identity
Use= Y CpCmcos(éV/m+ 1) Tri{a*a|-y;m) (~v;n|}
n,m=0 =Tr{D*Da™ D" DaD™" () |m) (n| D(y)}
x cos(évn + 1) |—y;m) (—v;n|, (10) = (| (a* = 7*)(a =) |m),
Ueg=—1 »_ CiCpcos(éVm+1) and after minor algebra, one may write (13) as follos:
n,m=0
x sin(év/n + 1) |—y;m) (—y;n + 1], (n) = (a® a> =A-B-D", (14)
Ueg=i Z CrCp,cos(€vVm + 1) where
n,m=0

A=+ ] Cp1|” sin? , (15
xsin(€v/n+ 1) [=yim + 1) (=], AP+ +Z::| 1l sin(grvn) (15)

Ugg= Z C; Cyysin(évm + 1) 777 Z 1Cpy|? {Q+ cos [Q;, g7]
n,m=0
x sin(€vn + 1) [=y;m +1) (=y;n + 1], —Qy cos [Q 7]}, (16)
and are still operators with respect to the field. To describe e C = 9 R
the evolution of the atom (field) alone, it is convenient to in- @ n Vit G = exp(= M / )\/E 7
troduce the reduced density matrix P
=y+a=—+a. a7)

p*V) = Trpay{p}, (11) 29

where the trace is over the field (atom) states. We have usddlis worth noting that in the field case considered, driving
the subscript:, f to denote the atom (field). Unlike the state the coefficientsA and B in Egs. (15)-(16) depend o
vector, the density operator does not describe an individuséand~ separately. Therefore, the mean photon numbgr
system, but rather an ensemble of identically prepared atoni8 Eq. (14) (witha # 0) cannot be obtained by a simple shift
(see for example Ref. 19). A condition for the ensemble to bdrom the mean photon number in the initially vacuum state
in a pure state is thar{ (p™)*} = 1. In this case, a state- (@ = 0).

vector description of each individual system of the ensemble We may observe that the quantum Rabi oscillations
is possible. On the other hand, for a two-level system, a maxf (14) appear as the sum of the sinusoidal terms at

imally mixed ensemble corresponds®o{(p>/)"} = 1/2.  incommensurable frequenme@f 9Qi, weighed by
Due to the identity the probabilities|C,, ( )| One can see from Egs. (12),
(15) (16) the following: sinceC, | has a maximum at
Trp{|—y;m) (—=vinl} = Tro{D" (v) Im) (n| D(v)} ~[F* =(£/29) + a|® (n > 1), one may underscore the
_ + _ amplltude of specific Rabi oscillation in the spectrum of the
= Trallm) (n[ DD} = S, excited-state probabilit’+ (7)=p%, (12) (the probability for
one can writep® as follows: the atom to be in the excited state) appd (14) by the ade-

o guate choice of the complex quantify Simple calculation
a_ 2 2 in2 ieldsn,, = E(3% — 1), where functionE(z) is the integer
pt = Cr—1|” (cos®(Ev/n) [e) (e| +sin*(§v/n) |g) (g y m v . . :
{Zl 1 ( ( Jlep el ( o) D} part of x. In an other interesting case, the external fi€ld
may be chosen as

+ ﬁ{z |Crei|? (cos(év/n + 1) sin(€/n) [e) (9] & = —2ga. (18)

. In this case, in Egs. (12), (14) the equalities= 0, B = 0,
—sin(€vn + 1) cos(§v/n) |g) (e]) }- 12) C, = 0, are fulfiled, soP* and (n) are reduced to the

From Eq. (12), one can see that off-diagonal matrix elementéollowing simple form:

pl,= (el p*|g),and pf,= (peg)+ are of the first order with

respect toy=v + «, y=&/2¢, and therefore contain the in- P+ = cos?(gr) and (n) = ’5

formation on the relative field’s phase even in a weak field 29

limit. The mean photon numbénr) is given by

2
+sin?(g7). (19)

In this case, the two-level atom, which is initially in the ex-
(n) = <a+a>f = Tr{atap’}. (13) cited state, undergoes the one-photon oscillations (radiating
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and absorption of a photon), and only the vacuum Rabi freupper statée), then initially p = |a) (o] ® |e) (e| must hold.

guency peak is present in the frequency spectrum. Note thdsing numerically obtained joint density matrx we have

Rabi oscillations for standard JCM were directly observed incalculated the following quantities. Tracing out the mafrix

Ref. 20. over the field (atom) states, we calculated the reduced atom
The following experiment can be proposed on the basigfield) density matrixp®/ = Tr;.{p} , whereTr, ;{p}

of Egs. (18)-(19). One can vary both amplitude and phasare the partial traces over the atom or field states accordingly.

of the external field until only a single vacuum Rabi fre- The latter allows us to study the dynamics of the excited-state

guency is observed in the spectrum. In this case the condprobability P () = p2, , the mean photon numbén (7))

tion « = —&/2¢ must hold, which provides the opportunity and the entropys®(7) = —Tr{p®Inp®}. Also the Fourier

to measure parameters of the coherent steteln the com-  spectrum of”* (7) is explored. The convergence of the equa-

pensative case (18), these fields have equal amplitudes atidns is tested and the dynamics of the system is studied for

frequency, but are shifted in phase by different values of the external field relative to the atom-field
The above analytical approach is valid in the case of verynode coupling. The results of the numerical solution of mas-

small dissipation (which describes the interaction of the atonter equation (20) are shown in Figs. 1-4.

and field subsystems with the environment) and zero detun-

ing 0 = 0. But in the experiments, the damping of the cavity

mode and the rate of spontaneous emission of the atom real§.  Numerical results

are not small. Thus, a cavity damping must be included in

a treatment of driving JCM to study the real dynamics andFirst we briefly consider the dynamics of the vacuam- 0

compare it with the experiments. An equation for the densityof driving JCM in order to understand some general features.

operatorp(r) is required (master equation) because the loss Figure 1 shows the evolution of the system for the reso-

of coherence due to the reservoir transforms any pure statgant cased = 0) for initial vacuum state0) at losses case,

into a mixture of states. With cavity damping in effect, we obtained as a result of the numerical solution of the master

must solve a master equation for the joint atom-field densityequation (20). This solution is close to Eq. (12), but with a

operatorp of the two-level atom coupled to the electromag- damping due to both mirror losses in the cavity and sponta-

netic field in the cavity. This equation is given by neous emission from the atom. We use the following param-
eters:€ =0.7, g = 0.2, v1/v2 = 5andy; = 5-1073. To
dp _ —i[H;, p| + L1p + Lap, (20) makg the details of time.evc')lution clearer, we have us.ed'the
dr time intervalr = 200, which is larger than the characteristic

with H; given by (2). For the sake of simplicity, we con- time scale of revival [23t > 27x, whererg = 2y7/g = 55,

sider only the casé # 0 and A = 0, when the external 7 = £/2g = 1.75. Therefore, one can see that the dynamics
field is not resonant to the cavity mode, which is an impor-Of the probability of the excited level occupatioR$ (1) has

tant case for the microcavities with the finite distance (fre-the form of a damped sequence of collapses and revivals.
guency separations) between eigenfrequencies. The mas
ter equation (20) is more difficult to solve, and numerical S
methods usually need to be used. At interesting frequency _ os ) B PP N SO R

a)
1

ranges, the dissipation is written in Eq. (20) as mirror losses ™ Y _ __ _ ___ R R T . ST NSO NOTONE SO
in the cavity that defines the mode of the electromagnetic e
field £1p, and as spontaneous emission from the athp. o™ o 10 1200 W0 160 180 200

At Born-Markov approximation and zero temperature, these ~ wof : ‘ : : ‘ ' ‘ A
parts are written in Eq. (20) as the following. One term
is as follows: L1p = 71 (2apa™ — atap — pa*ta), where

~1 is the rate of the single-photon losses. Another term : : : , : : : : :

£2/) — (72/2) (20_p0_+ _ O'+O'p _ p0_+0_) takes into account 0 20 40 60 80 13)0 120 140 160 180 200
the spontaneous emission from the atom out of the sides of W ' ‘ ' '
the cavity [21]. In this case, the atom is damped by sponta- B

neous emission with damping raigto modes other than the ' N N

privileged cavity mode with frequenay,. We have solved . ; : : , , : . ‘ ;

0 20 40 60 80 100 120 140 160 180 200

Eqg. (20) numerically using truncated number statgsand ®

atom statege), |g) bas_ls. The algorithms for |n'Fegrat|on of FIGURE 1. Quantum dynamics in driving JCM as a function of the
such a system numerically can be found, e.g. in Ref. 22. Iri]nteraction timer for the initial vacuum casé), 6 — A — 0
generab < n < oo, but for numerical calculations we have ¢ _ (7" — (9 4 —5.10%,~, — 10-%. (é) Probability of
used) < n < M. Afinite basis of the number statd$ was  tne excited levele) occupationsP™ (solid line), 3(p2.) (dashed
kept large enough so that the highest energy state is nevge), 7{(p*)?} (dotted line). (b) Mean photon numbés). (c)
populated significantly. Since we assume previously that th@&ntropy 5S¢ (solid line), Tr{(p")?} (dashed line). See details in

field is initially in the coherent stajer), and the atom isinthe  text.

<n(x)>
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Dynamical collapses and revivals are specific features of a
unitary evolution. They are strongly affected by decoherency,
which has the time constant set by the cavity field energy
damping time~ 1/(y1 + v2). From Fig. 1a, one can see
that both collapses and revivals are progressively less pro-
nounced due to dissipation » # 0. The dissipation also
reduces the magnitudes of non-diagonal elemgitsin this
caseps, = (pg.)* are purely imaginary quantities). One can
see that the quantity (g, ) over time approaches zero due to
losses, which causes the field phase information to wash ou
and hastens decoherence in the coupled system.

The dynamicgr{(p*)?} in Fig. 1a shows that in the col-
lapse area the quantiyr{(p®)?} has a maximum close tb
atto = 7r/2 = 27.5. This point corresponds to the atomic
attractor state which is completely independent on the initial
atomic state [24]. At this point the compound systemis in the
disentangled state when in a lossless sys$ém — 0 and
Tr{(p»/)?} — 1. In lossy systems, such limit values are
fulfilled only approximately. One can see from Fig. 1b that

p(x)

<

Next, we studied details of the driving and initial coherent
the mean photon numbén) increases from the initial zero field interaction. Fig. 2a shows the dynamics of the atom sub-

1
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FIGURE 3. The same as in Fig. 2 but for detunifig= 0.1.

value; however, over timg) assumes the steady-state valuesystem for the compensative casg=ty+a=¢&/2g+a=0)

justified by the amplitude of external driving fiefd Fig. 1c

[see Eq. (18)] for the exact resonance case= 0)), but

shows the dynamics of the entropy of the atom subsysteri@king into account the dissipation » # 0. A comparison

Se(1) = =Tr{p®Inp*}. In the area of the first collapss?

of Fig. 2a and Fig. 2a shows that the dynamics for this case

has an oscillating behavior. However, these oscillations arés essentially different from that of the initial vacuum case
smoothed away over time arftt (7) approaches the steady- o = 0 and has the form of damped vacuum Rabi oscillation
state valuén(2) = 0.69, which corresponds to a maximally in standard JCM.

entangled state of two-level atom and field mode. In a loss-
less case the exact equaliti€s{(p*)?} = Tr{(p/)?} and
S = ST fulfil the standard JCM [25]. This fact confirms our

simulation with a high degree of accuracy.

a)

R VDR VAR V2
el <5 e Sttt

= Mo M M

1 1 1
0 20 40 60 80 100 120 140
b)

!
160

!
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T

FIGURE 2. Quantum dynamics in driving JCM as a function of the
interaction timer for the initial coherent casgy), « = —1.75
(compensating case (18)), = A = 0, £ = 0.7, g = 0.2,
y1 =5-1073, v = 1073, (a) Probability of the excited levét)
occupations”™ (solid line),S(pg. ) (dashed line), Rgg.) (dash-
dot line), Tr(p™)? (dotted line). (b) Mean photon numbét). (c)
EntropyS® (solid line), Tr(p*)? (dashed line). See details in text.

I
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180
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The dynamics of the mean photon numigey is of in-
terest and is shown in Fig. 2b. The solid line in Fig. 2(b)
shows resultgn) from a numerical simulation of the atom-
field master equation (20) for the compensative case, taking
into account the losses in the system. For a short period of
time 7 < 10, this simulation is in very good agreement with
the exact formula (19). However a discrepancy arises over
time due to losses not included in (19). One can see that,
despite the mutual compensation of the initial coherent field
and driving field in Eq. (19), the mean number of photons
oscillates in the vicinity of~ |a|2, which is justified by the
field |€]. One can see from Fig. 2c that, for a short time,
the dynamics of entropy is similar to that of the vacuum case.
However, over longer time intervals, the impact of dissipa-
tion becomes essential. Despite this dissipation at the time
instancesy, = 7(2k+1)/2g, k = 0, 1... the entropy5*(7%,)
is very close to zero, which implies the transition of the cou-
pled atom-field system to the uncoupled pure state. At mo-
mentsr, = wk/g, the entropy has a value closdi®, which
corresponds to the maximum entanglement of the two-level
atom and the field. Since the mean photon number does not
vanish (see Fig. 2b), this dynamics is asymptotically stable.
Figure 3 shows the dynamics of the coupled subsystem
in the compensative casg (= 0) when both dissipation
v1,72 # 0 and detuning # 0 are non-zero. Notice in a
non-resonant casé ¢ 0) the time dependence in the Hamil-
tonian (2) is not removed, and therefore the displacement
operator transformation already does not allow a reduction
of driving JCM to standard JCM. Compared to the case of
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the exact resonance (Fig. 2), the sequential collapses and rae initial coherent fielda). Note that, for standard JCM,
vivals now practically disappear over long periods of time;such peaks were observed experimentally in Ref. 20. The
in Fig. 3a only the first collapse can be seen. Neverthelesspectrum in Fig. 4a is rather similar to the spectrum shown
the maxima ofl'r{(p*)?} remain resolvable. One can see in Fig. 2d of the experiment [20] foy = 1.77. We can con-
from Fig. 3c that during short periods of time < 7 the  clude that the vacuum case of driving JCM is similar to a
behaviorS® is similar to that of the vacuum case (Fig. 2c). standard JCM case with a coherent initial field, at least for the
However, over longer periods of time the influence of deco-exact resonance. This conclusion reiterates the fact that the
herence becomes essential. The entropy quickly approachesherent field state is as close to the classical field as quantum
its asymptotic value. mechanics permits [18]. Note that Fig. 4a shows that peak
Figure 4 shows the Fourier spectrum for the cases of theumber2 is the highest one. In this case= 1.75; therefore,
driving JCM considered above. This spectrum, obtained byhe calculated number of the highest peak§? — 1] = 2.
the Fourier transform of numerically calculatéd (1), ex- Figures 4b-4d represent the compensative case (18) for
hibits well separated discrete frequency components, whicthe loss and detuning case. Fig. 4b shows the spectrum for
are scaled as square roots of the successive integers. Tt casé = 0; however, for losses, which are not small. One
spectrum in Fig. 4a corresponds to the time dynamics precan see only the peak, which corresponds te- 0, that is
sented in Fig. 1a. One can see that fPre spectrum at the present in the Rabi spectrum. This spectrum in Fig. 4b corre-
initial vacuum state0) for the driving JCM case is similar sponds to the measured spectrum shown in Fig. 2ain Ref. 20
to that in a standard JCM (without driving fiell = 0) at  for a nearly vacuum case (no injected fields). Thus, the

a) b
i )
0 : :
0.8f- oo P P
- o6t} .............. ...............
\8/ : "
© 9 f :
Q 04t} R e
0.2 wmee ] ERERRERTaEaey RRTERRERRIOTE
INEA
0 0.5 1 1.5
©)
1
0 . .
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=~ 06r -}t B s e i e o man axe snmey
<) ; :
o 1
e (7 ] R | e & B P P R P
2
: 3 :
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O L ' L
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FIGURE 4. Fourier transforms of the probability* () revealing the discrete Rabi frequencies, occurring at the successive square roots of
the integers/n + 1, numbers=0, 1, 2... are inserted in the vicinity of peaks. Spectra correspond to a) Fig. 1a; b) Fig.2a; c) Fig. 3a, but
with v1=5 - 107%, v,=10">; d) Fig. 3a.
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conclusion about the possible subtracting of the coherentand.  Conclusion

classical fields remains valid in the loss case also. In Fig. 4¢c, . _ . o

the influence of detuning is shown for smaller losses. Ond Ne field-atom interactions in the driving JCM show that a
can see that even for caée= 0.1, which is not very small, variation of the amplitude or/and the phase of the driving field
the spectrum of several first Rabi frequencies is well recogenables one to manipulate the dynamics and the spectrum of
nizable. There are a few peaks in Fig. 4c, which corresponfuantum Rabi oscillations. There are two distinct regimes.
to detuningd # 0. Such peaks are present even at a Iargef” the summarizing case of the driving field and the initial
dissipation rate (the dissipation rate in Fig. 4d is increasegoherent field, one can underscore a selected frequency in

by two orders, with respect to Fig. 4c. Nevertheless the peal'® Rabi frequency spectrum. The subtraction provides the
of vacuum oscillations remains dominant. possibility of compensation of both fields. For the case of

the exact compensation, the frequency spectrum of a two-
gevel atom becomes similar to that of vacuum oscillations in

standard JCM. Such processes may be useful in quantum in-
formation technology if the decoherence time is greater than
the time scale of the atom-field interaction. In this case, these

one can obtaifEl, = Eyqcm'/” exp(i(v + m)). The latter rocesses may have various applications related to monitor
equation shows that for the compensated case (18), the drif Y PP ) )
ng the entanglement of the two-level atom with a quantized

ing field E, should be in a coherent state, but shifted by phase. . -
7r ?:oncerning to initial state.. In general, the conditiony(ES) %eld, and may be used to develop quantum information tech-
does not hold exactly due to quantum fluctuations. Howevetr,1O|Ogy devices.

since the ratio of fluctuation to the mean number (fractional

uncertainty in the photon number, see for example Ch. 3 ilAcknowledgements

Ref. 26 isAn/m = n—'/? for a Poisson process, the larger
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In general, one can readily derive that the quantity
can be rewritten (with the previously used notations) a
=& /29=E./Eyac, Where Eyu.= (hw,/2¢0V)"? is the
field per photon. Then from the equalify=y + a=0 (18),
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