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Ex. Hacienda Santa Catrina Ḿartir, Cholula, Puebla, 72820, Mexico.

Recibido el 30 de septiembre de 2005; aceptado el 27 de abril de 2006

The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving
Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic
sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with
dissipation and external field detuning from the cavity field are also discussed.
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Estudiamos la dińamica de un sistema acoplado de unátomo de dos niveles y un campo electromagnético qúantico de cavidad asistidos
por un campo electromagnético cĺasico externo continuo (modelo Jaynes-Cummings guiado). Cuando el campo de la cavidad inicialmente
es preparado en un estado coherente, la dinámica depende fuertemente de la suma algebraica de ambos campos. Si este suma es cero
(caso compensativo) en el sistema solo ocurren las oscilaciones de Rabi de vacı́o. Tambíen discutimos los resultados con disipación y
desintonizacíon del campo externo con respecto al campo de la cavidad.

Descriptores:Átomo de dos niveles; modelo Jaynes-Cummings guiado; oscilaciones de Rabi de vacı́o.

PACS: 32.80; 42.50; 42.50.

1. Introduction

The ability to create, manipulate, and characterize quantum
states is becoming an increasingly important area of physics
research, with implications for such areas of technology as
quantum computing, quantum cryptography, and communi-
cations (see Refs. 1 to 4). Most research in quantum nonlo-
cality and quantum information is based on the entanglement
of two-level particles. One of the most interesting aspects
of its dynamics is the entanglement between atom and field
states. This essentially quantum mechanical property with no
classical analog is characterized by the impossibility of com-
pletely specifying the state of the global system through the
complete knowledge of the individual subsystem’s dynamics.

The Jaynes-Cummings model [5] (JCM) for the inter-
action between a two-level atom and a single mode of the
electromagnetic field holds a central place in the description
of such interaction and provides important insight into the
dynamical behavior of atom and quantized field. In driv-
ing JCM, the cavity field and driving field start to interact,
which provides an opportunity to study directly the field dy-
namics at joint interaction with a two-level atom. Recently,
it was shown that the effective coupling between an atom
and a single-cavity field mode in JCM (driving JCM) can be
drastically modified in the presence of a strong external driv-
ing field [6-8]. The important line of this direction is to use
microcavities and microspheres for changing the features of
atom-field interaction as a result of placing an atom or quan-
tum dots in a microcavity (see Refs. 10 to 12).

The driven Jaynes-Cummings model for cases where the
cavity and external driving field are close to or in resonance

with the atom has been studied by several authors. Alsing,
Guo and Carmichael [13] studied the Stark splittings in the
quasienergies of the dressed states resulting from the pres-
ence of the driving field in the case where both fields are res-
onant with the atom. Jyotsna and Agarwal [14] studied the
effect of the external field on the Rabi oscillations in the case
where the cavity field is resonant with the atom, but the exter-
nal field may be resonant or nonresonant. Dutra, Knight and
Moya-Cessa [15] studied a similar model where the external
field was taken to be quantized. Much attention was given to
the limit of high-intensity of the driving field. Chough and
Carmichael [16] studied the JCM with an external resonant
driving field, and showed that the collapses and revivals of
the mean photon number occur over a much longer time scale
than the revival time of the Rabi oscillations for the atomic in-
version. Gerry [17] studied the interaction of an atom with a
quantized cavity field and the external classical driving field
in the regime where an atom and classical fields are highly
detuned.

The goal of the present work is to calculate the dynamics
of an atom coupled to a cavity field assisted by continuous ex-
ternal pumping in the case when the initial field is prepared
in a coherent state. The main result is the following: starting
with a field’s mode in a coherent state and with the atom in its
upper state, the dynamics strongly depends on the algebraic
sum of the amplitudes of the initial cavity field and the exter-
nal field. If this sum is close to zero (the compensative case),
only the vacuum Rabi oscillations occur in the system.

This paper is organized as follows. In Sec. 2, we discuss
the equations of motion for a two-level atom coupled to the
field in a cavity with the assistance of a continuous pumping
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classical field. Section 3 presents results of a numerical study
of the dynamics of the atom and field subsystems for the dis-
sipative case, using the technique of the master equation. The
behavior of the entropy and Fourier spectrum of oscillations
is also studied. In the last section, we discuss and summarize
our results.

2. Basic equations

Consider a two-level atom driven by a classical external field
(1/2)Ee exp(iωet) + c.c. and coupled to a cavity mode of
the quantized electromagnetic field. The Hamiltonian for the
atom-cavity system (assuming~ = 1) in the rotating-wave
approximation (RWA) is given by

H =
1
2
ω0σ3 + ωaa+a + g

[
σ−a+ + σ+a

]

+
1
2

[Eσ+eiωet + E∗σ−e−iωet
]

, (1)

whereω0 is the atomic transition frequency,ωa is the cav-
ity frequency,g = d(ωa/~V ε0)1/2 is the coupling constant
between the atom and the cavity field mode (d is the atomic
dipole matrix element for the transition, andV is the mode
volume),E = Eed is the coupling constant between the atom
and the external classical field (Ee is the amplitude of the
external field),a+ anda are the creation and annihilation op-
erators for the cavity mode[a, a+] = 1. In general,ω0 , ωa,
andωe are different. To remove the time dependence inH,
we use the operatorexp[−iωet(σ3 + a+a)] to transform to a
frame rotating at the frequencyωe. The Hamiltonian in the
rotating frame (the interaction picture) is then

Hi =
∆
2

σ3 + g
[
σ−a+e−iδt + σ+aeiδt

]

+
1
2

[Eσ+ + E∗σ−]
, (2)

where∆=ω0 − ωe, δ = ωa − ωe, σ±=(σx ± iσy) /2, σx,
σy, σz are Pauli matrices. First we consider the resonant case
when∆ = 0 andδ=0. The case of non-zero detuningδ 6= 0
is discussed in the second part. The resonant Hamiltonian
(ωa = ω0 = ωe) in the interaction picture has the form

Hir = g
[
σ−a+ + σ+a

]
+

1
2

[Eσ+ + E∗σ−]
. (3)

Furthermore we use the following dimensionless variables
τ=ω0t, g/ω0→g, E/ω0→E . If E = 0, then Eq. (3) de-
scribes the standard JCM, while the caseE 6= 0 corresponds
to driving JCM. To obtain the solution to Eq. (3), we in-
troduce the displacement operatorD(γ)= exp{γa+ − γ∗a},
γ=E/2g, which allows us to rewrite Eq. (3) as follows:

Hir = gD+(γ)(σ+a + a+σ−)D(γ), (4)

where the identity

D+(γ)(a+, a)D(γ)=(a++γ∗, a + γ)

is used. Establishing in (4) the Hamiltonian

D(γ)HirD
+(γ) = g(σ+a + a+σ−)

and the state vector
∣∣∣ψ̃

〉
= D(γ) |ψ〉, one obtains the

Schr̈odinger equation as

i
∂

∣∣∣ψ̃
〉

∂τ
= (σ+a + a+σ−)

∣∣∣ψ̃
〉

. (5)

Now consider the case when the initial state of the field in
the cavity is a coherent state|α〉, with α=n1/2e−iv (n is
the average number of photons in the field,v is a phase of
this state). Also we assume the atom is prepared in the ex-
cited state|e〉 (|g〉 is the ground state). The initial state vector
|ψ〉 = |e〉 |α〉 = |e〉D(α) |0〉 allows us to write for Eq. (5)

the corresponding initial state vector
∣∣∣ψ̃

〉
as

∣∣∣ψ̃
〉

= D(γ) |ψ〉 = |e〉D(γ)D(α) |0〉 = |e〉 |γ̃〉 , (6)

whereγ̃=γ +α and overall factorexp(i=(γα∗)) is dropped.
With Eq. (6), the solution to the standard JCM Eq. (5) is
given by

∣∣∣ψ̃ (ξ)
〉

=
∞∑

n=0

Cn(γ̃){cos(ξ
√

n + 1) |e〉 |n〉

− i sin(ξ
√

n + 1) |g〉 |n + 1〉}, (7)

whereξ=gτ , Cn ≡ Cn(γ̃)= exp(− |γ̃|2 /2)γ̃n/
√

n! are ex-
pansion coefficients for the|γ̃〉 state in the number represen-
tation |n〉. Equation (7) allows us to write the solution to

resonant driving JCM (3)|ψ(ξ)〉 = D(−γ)
∣∣∣ψ̃

〉
as follows:

|ψ(ξ)〉 =
∞∑

n=0

Cn(γ̃){cos(ξ
√

n + 1) |e〉 |−γ; n〉

− i sin(ξ
√

n + 1) |g〉 |−γ; n + 1〉}, (8)

where|−γ;n〉 = D(−γ) |n〉 is the displaced number state.
Note the following: formally, quantitiesE andα have differ-
ent physical meaningsE is used as a parameter of the driving
field in the Hamiltonian (1), whileα is a factor of the ini-
tial conditions for the field’s mode in the cavity. However,
the dependence of the probability coefficientsCn(γ̃) on the
combinatioñγ = E/2g + α in (8) shows a deep similarity of
these quantities (at least the resonant caseδ = 0 considered
here) since the coherent field stateα has minimum uncer-
tainty, and resembles the classical field as closely as quantum
mechanics permits [18]. From Eq. (8), the density operatorρ
can be written as follows:

ρ = |ψ(ξ)〉 〈ψ(ξ)|
= |e〉 〈e|Uee+ |e〉 〈g|Ueg+ |g〉 〈e|Uge+ |g〉 〈g|Ugg, (9)
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where matrix elementsUij are given by

Uee=
∞∑

n,m=0

C∗nCm cos(ξ
√

m + 1)

× cos(ξ
√

n + 1) |−γ; m〉 〈−γ;n| , (10)

Ueg=− i

∞∑
n,m=0

C∗nCm cos(ξ
√

m + 1)

× sin(ξ
√

n + 1) |−γ;m〉 〈−γ; n + 1| ,

Ueg=i

∞∑
n,m=0

C∗nCm cos(ξ
√

m + 1)

× sin(ξ
√

n + 1) |−γ;m + 1〉 〈−γ; n| ,

Ugg=
∞∑

n,m=0

C∗nCm sin(ξ
√

m + 1)

× sin(ξ
√

n + 1) |−γ;m + 1〉 〈−γ; n + 1| ,
and are still operators with respect to the field. To describe
the evolution of the atom (field) alone, it is convenient to in-
troduce the reduced density matrix

ρa(f) = Trf(a){ρ}, (11)

where the trace is over the field (atom) states. We have used
the subscripta, f to denote the atom (field). Unlike the state
vector, the density operator does not describe an individual
system, but rather an ensemble of identically prepared atoms
(see for example Ref. 19). A condition for the ensemble to be
in a pure state is thatTr{(ρa,f

)2} = 1. In this case, a state-
vector description of each individual system of the ensemble
is possible. On the other hand, for a two-level system, a max-
imally mixed ensemble corresponds toTr{(ρa,f

)2} = 1/2.
Due to the identity

Trf{|−γ; m〉 〈−γ; n|} = Tra{D+(γ) |m〉 〈n|D(γ)}
= Tra{|m〉 〈n|D(γ)D+(γ)} = δmn,

one can writeρa as follows:

ρa = {
∞∑

n=1

|Cn−1|2
(
cos2(ξ

√
n) |e〉 〈e|+sin2(ξ

√
n) |g〉 〈g|)}

+ iγ̃{
∞∑

n=1

|Cn−1|2
(
cos(ξ

√
n + 1) sin(ξ

√
n) |e〉 〈g|

− sin(ξ
√

n + 1) cos(ξ
√

n) |g〉 〈e|)}. (12)

From Eq. (12), one can see that off-diagonal matrix elements
ρa

eg= 〈e| ρa |g〉,andρa
ge=

(
ρa

eg

)+
are of the first order with

respect tõγ=γ + α, γ=E/2g, and therefore contain the in-
formation on the relative field’s phase even in a weak field
limit. The mean photon number〈n〉 is given by

〈n〉 =
〈
a+a

〉
f

= Tr{a+aρf}. (13)

Taking into account the identity

Tr{a+a |−γ;m〉 〈−γ; n|}
= Tr{D+Da+D+DaD+(γ) |m〉 〈n|D(γ)}
= 〈n| (a+ − γ∗)(a− γ) |m〉 ,

and after minor algebra, one may write (13) as follos:

〈n〉 =
〈
a+a

〉
f

= A−B −B∗, (14)

where

A = |γ̃|2 + |γ|2 +
∞∑

n=1

|Cn−1|2 sin2(gτ
√

n), (15)

B =
1
2
γγ̃∗

∞∑
n=1

|Cn−1|2 1√
n
{Q+

n cos
[
Q−n gτ

]

−Q−n cos
[
Q+

n gτ
]}, (16)

Q±n =
√

n + 1±√n, Cn = exp(− |γ̃|2 /2)
γ̃n

√
n!

, γ̃

= γ + α =
E
2g

+ α. (17)

It is worth noting that in the field case considered, driving
the coefficientsA and B in Eqs. (15)-(16) depend onγ
and γ̃ separately. Therefore, the mean photon number〈n〉
in Eq. (14) (withα 6= 0) cannot be obtained by a simple shift
from the mean photon number in the initially vacuum state
(α = 0).

We may observe that the quantum Rabi oscillations
in (14) appear as the sum of the sinusoidal terms at
incommensurable frequenciesg

√
n, gQ±

n , weighed by
the probabilities|Cn(γ̃)|2. One can see from Eqs. (12),
(15)-(16) the following: since|Cn|2 has a maximum at
nm∼ |γ̃|2 = |(E/2g) + α|2 (n > 1), one may underscore the
amplitude of specific Rabi oscillation in the spectrum of the
excited-state probabilityP+(τ)=ρa

ee (12) (the probability for
the atom to be in the excited state) and〈n〉 (14) by the ade-
quate choice of the complex quantityE . Simple calculation
yieldsnm = E(γ̃2 − 1), where functionE(x) is the integer
part of x. In an other interesting case, the external fieldE
may be chosen as

E = −2gα. (18)

In this case, in Eqs. (12), (14) the equalitiesγ̃ = 0, B = 0,
Cn = δn1 are fulfilled, soP+ and 〈n〉 are reduced to the
following simple form:

P+ = cos2(gτ) and 〈n〉 =
∣∣∣∣
E
2g

∣∣∣∣
2

+ sin2(gτ). (19)

In this case, the two-level atom, which is initially in the ex-
cited state, undergoes the one-photon oscillations (radiating
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and absorption of a photon), and only the vacuum Rabi fre-
quency peak is present in the frequency spectrum. Note the
Rabi oscillations for standard JCM were directly observed in
Ref. 20.

The following experiment can be proposed on the basis
of Eqs. (18)-(19). One can vary both amplitude and phase
of the external fieldE until only a single vacuum Rabi fre-
quency is observed in the spectrum. In this case the condi-
tion α = −E/2g must hold, which provides the opportunity
to measure parameters of the coherent state|α〉. In the com-
pensative case (18), these fields have equal amplitudes and
frequency, but are shifted in phase byπ.

The above analytical approach is valid in the case of very
small dissipation (which describes the interaction of the atom
and field subsystems with the environment) and zero detun-
ing δ = 0. But in the experiments, the damping of the cavity
mode and the rate of spontaneous emission of the atom really
are not small. Thus, a cavity damping must be included in
a treatment of driving JCM to study the real dynamics and
compare it with the experiments. An equation for the density
operatorρ(τ) is required (master equation) because the loss
of coherence due to the reservoir transforms any pure state
into a mixture of states. With cavity damping in effect, we
must solve a master equation for the joint atom-field density
operatorρ of the two-level atom coupled to the electromag-
netic field in the cavity. This equation is given by

dρ

dτ
= −i[Hi, ρ] + L1ρ + L2ρ, (20)

with Hi given by (2). For the sake of simplicity, we con-
sider only the caseδ 6= 0 and ∆ = 0, when the external
field is not resonant to the cavity mode, which is an impor-
tant case for the microcavities with the finite distance (fre-
quency separations) between eigenfrequencies. The mas-
ter equation (20) is more difficult to solve, and numerical
methods usually need to be used. At interesting frequency
ranges, the dissipation is written in Eq. (20) as mirror losses
in the cavity that defines the mode of the electromagnetic
field L1ρ, and as spontaneous emission from the atomL2ρ.
At Born-Markov approximation and zero temperature, these
parts are written in Eq. (20) as the following. One term
is as follows: L1ρ = γ1 (2aρa+ − a+aρ− ρa+a), where
γ1 is the rate of the single-photon losses. Another term
L2ρ = (γ2/2) (2σρσ+ − σ+σρ− ρσ+σ) takes into account
the spontaneous emission from the atom out of the sides of
the cavity [21]. In this case, the atom is damped by sponta-
neous emission with damping rateγ2 to modes other than the
privileged cavity mode with frequencyωa. We have solved
Eq. (20) numerically using truncated number states|n〉 and
atom states|e〉, |g〉 basis. The algorithms for integration of
such a system numerically can be found, e.g. in Ref. 22. In
general0 ≤ n ≤ ∞, but for numerical calculations we have
used0 ≤ n ≤ M . A finite basis of the number statesM was
kept large enough so that the highest energy state is never
populated significantly. Since we assume previously that the
field is initially in the coherent state|α〉, and the atom is in the

upper state|e〉, then initiallyρ = |α〉 〈α| ⊗ |e〉 〈e| must hold.
Using numerically obtained joint density matrixρ, we have
calculated the following quantities. Tracing out the matrixρ
over the field (atom) states, we calculated the reduced atom
(field) density matrixρa,f = Trf,a{ρ} , whereTra,f{ρ}
are the partial traces over the atom or field states accordingly.
The latter allows us to study the dynamics of the excited-state
probabilityP+(τ) = ρa

ee , the mean photon number〈n(τ)〉
and the entropySa(τ) = −Tr{ρa ln ρa}. Also the Fourier
spectrum ofP+(τ) is explored. The convergence of the equa-
tions is tested and the dynamics of the system is studied for
different values of the external field relative to the atom-field
mode coupling. The results of the numerical solution of mas-
ter equation (20) are shown in Figs. 1-4.

3. Numerical results

First we briefly consider the dynamics of the vacuumα = 0
of driving JCM in order to understand some general features.

Figure 1 shows the evolution of the system for the reso-
nant case (δ = 0) for initial vacuum state|0〉 at losses case,
obtained as a result of the numerical solution of the master
equation (20). This solution is close to Eq. (12), but with a
damping due to both mirror losses in the cavity and sponta-
neous emission from the atom. We use the following param-
eters:E =0.7, g = 0.2, γ1/γ2 = 5 andγ1 = 5 · 10−3. To
make the details of time evolution clearer, we have used the
time intervalτ = 200, which is larger than the characteristic
time scale of revival [23]τ > 2τR, whereτR = 2γπ/g = 55,
γ = E/2g = 1.75. Therefore, one can see that the dynamics
of the probability of the excited level occupationsP+(τ) has
the form of a damped sequence of collapses and revivals.

FIGURE 1. Quantum dynamics in driving JCM as a function of the
interaction timeτ for the initial vacuum case|0〉, δ = ∆ = 0,
E = 0.7, g = 0.2, γ1 = 5 · 10−3, γ2 = 10−3. (a) Probability of
the excited level|e〉 occupationsP+ (solid line),=(ρa

ge) (dashed
line), Tr{(ρa)2} (dotted line). (b) Mean photon number〈n〉. (c)
EntropySa (solid line), Tr{(ρf )2} (dashed line). See details in
text.
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Dynamical collapses and revivals are specific features of a
unitary evolution. They are strongly affected by decoherency,
which has the time constant set by the cavity field energy
damping time∼ 1/(γ1 + γ2). From Fig. 1a, one can see
that both collapses and revivals are progressively less pro-
nounced due to dissipationγ1,2 6= 0. The dissipation also
reduces the magnitudes of non-diagonal elementsρa

ge (in this
caseρa

eg = (ρa
ge)

∗ are purely imaginary quantities). One can
see that the quantity=(ρa

ge) over time approaches zero due to
losses, which causes the field phase information to wash out
and hastens decoherence in the coupled system.

The dynamicsTr{(ρa)2} in Fig. 1a shows that in the col-
lapse area the quantityTr{(ρa)2} has a maximum close to1
at τ0 = τR/2 = 27.5. This point corresponds to the atomic
attractor state which is completely independent on the initial
atomic state [24]. At this point the compound system is in the
disentangled state when in a lossless systemSa,f → 0 and
Tr{(ρa,f )2} → 1. In lossy systems, such limit values are
fulfilled only approximately. One can see from Fig. 1b that
the mean photon number〈n〉 increases from the initial zero
value; however, over time〈n〉 assumes the steady-state value
justified by the amplitude of external driving fieldE . Fig. 1c
shows the dynamics of the entropy of the atom subsystem
Sa(τ) = −Tr{ρa ln ρa}. In the area of the first collapse,Sa

has an oscillating behavior. However, these oscillations are
smoothed away over time andSa(τ) approaches the steady-
state valueln(2) = 0.69, which corresponds to a maximally
entangled state of two-level atom and field mode. In a loss-
less case the exact equalitiesTr{(ρa)2} = Tr{(ρf )2} and
Sa = Sf fulfil the standard JCM [25]. This fact confirms our
simulation with a high degree of accuracy.

FIGURE 2. Quantum dynamics in driving JCM as a function of the
interaction timeτ for the initial coherent case|α〉, α = −1.75
(compensating case (18)),δ = ∆ = 0, E = 0.7, g = 0.2,
γ1 = 5 · 10−3, γ2 = 10−3. (a) Probability of the excited level|e〉
occupationsP+ (solid line),=(ρa

ge) (dashed line), Re(ρa
ge) (dash-

dot line),Tr(ρa)2 (dotted line). (b) Mean photon number〈n〉. (c)
EntropySa (solid line),Tr(ρf )2 (dashed line). See details in text.

FIGURE 3. The same as in Fig. 2 but for detuningδ = 0.1.

Next, we studied details of the driving and initial coherent
field interaction. Fig. 2a shows the dynamics of the atom sub-
system for the compensative case (γ̃=γ+α=E/2g+α=0)
[see Eq. (18)] for the exact resonance case (δ = 0)), but
taking into account the dissipationγ1,2 6= 0. A comparison
of Fig. 2a and Fig. 2a shows that the dynamics for this case
is essentially different from that of the initial vacuum case
α = 0 and has the form of damped vacuum Rabi oscillation
in standard JCM.

The dynamics of the mean photon number〈n〉 is of in-
terest and is shown in Fig. 2b. The solid line in Fig. 2(b)
shows results〈n〉 from a numerical simulation of the atom-
field master equation (20) for the compensative case, taking
into account the losses in the system. For a short period of
time τ < 10, this simulation is in very good agreement with
the exact formula (19). However a discrepancy arises over
time due to losses not included in (19). One can see that,
despite the mutual compensation of the initial coherent field
and driving field in Eq. (19), the mean number of photons
oscillates in the vicinity of∼ |α|2, which is justified by the
field |E|. One can see from Fig. 2c that, for a short time,
the dynamics of entropy is similar to that of the vacuum case.
However, over longer time intervals, the impact of dissipa-
tion becomes essential. Despite this dissipation at the time
instancesτk = π(2k+1)/2g , k = 0, 1... the entropySa(τk)
is very close to zero, which implies the transition of the cou-
pled atom-field system to the uncoupled pure state. At mo-
mentsτk = πk/g, the entropy has a value close toln 2, which
corresponds to the maximum entanglement of the two-level
atom and the field. Since the mean photon number does not
vanish (see Fig. 2b), this dynamics is asymptotically stable.

Figure 3 shows the dynamics of the coupled subsystem
in the compensative case (γ̃ = 0) when both dissipation
γ1, γ2 6= 0 and detuningδ 6= 0 are non-zero. Notice in a
non-resonant case (δ 6= 0) the time dependence in the Hamil-
tonian (2) is not removed, and therefore the displacement
operator transformation already does not allow a reduction
of driving JCM to standard JCM. Compared to the case of
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the exact resonance (Fig. 2), the sequential collapses and re-
vivals now practically disappear over long periods of time;
in Fig. 3a only the first collapse can be seen. Nevertheless,
the maxima ofTr{(ρa)2} remain resolvable. One can see
from Fig. 3c that during short periods of timeτ < 7 the
behaviorSa is similar to that of the vacuum case (Fig. 2c).
However, over longer periods of time the influence of deco-
herence becomes essential. The entropy quickly approaches
its asymptotic value.

Figure 4 shows the Fourier spectrum for the cases of the
driving JCM considered above. This spectrum, obtained by
the Fourier transform of numerically calculatedP+(τ), ex-
hibits well separated discrete frequency components, which
are scaled as square roots of the successive integers. The
spectrum in Fig. 4a corresponds to the time dynamics pre-
sented in Fig. 1a. One can see that theP+ spectrum at the
initial vacuum state|0〉 for the driving JCM case is similar
to that in a standard JCM (without driving fieldE = 0) at

the initial coherent field|α〉. Note that, for standard JCM,
such peaks were observed experimentally in Ref. 20. The
spectrum in Fig. 4a is rather similar to the spectrum shown
in Fig. 2d of the experiment [20] forγ = 1.77. We can con-
clude that the vacuum case of driving JCM is similar to a
standard JCM case with a coherent initial field, at least for the
exact resonance. This conclusion reiterates the fact that the
coherent field state is as close to the classical field as quantum
mechanics permits [18]. Note that Fig. 4a shows that peak
number2 is the highest one. In this caseγ̃ = 1.75; therefore,
the calculated number of the highest peak isE[γ̃2 − 1] = 2.

Figures 4b-4d represent the compensative case (18) for
the loss and detuning case. Fig. 4b shows the spectrum for
the caseδ = 0; however, for losses, which are not small. One
can see only the peak, which corresponds ton = 0, that is
present in the Rabi spectrum. This spectrum in Fig. 4b corre-
sponds to the measured spectrum shown in Fig. 2a in Ref. 20
for a nearly vacuum case (no injected fields). Thus, the

FIGURE 4. Fourier transforms of the probabilityP+(τ) revealing the discrete Rabi frequencies, occurring at the successive square roots of
the integers

√
n + 1, numbersn=0, 1, 2... are inserted in the vicinity of peaks. Spectra correspond to a) Fig. 1a; b) Fig.2a; c) Fig. 3a, but

with γ1=5 · 10−5, γ2=10−5; d) Fig. 3a.
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conclusion about the possible subtracting of the coherent and
classical fields remains valid in the loss case also. In Fig. 4c,
the influence of detuning is shown for smaller losses. One
can see that even for caseδ = 0.1, which is not very small,
the spectrum of several first Rabi frequencies is well recog-
nizable. There are a few peaks in Fig. 4c, which correspond
to detuningδ 6= 0. Such peaks are present even at a larger
dissipation rate (the dissipation rate in Fig. 4d is increased
by two orders, with respect to Fig. 4c. Nevertheless the peak
of vacuum oscillations remains dominant.

In general, one can readily derive that the quantityγ
can be rewritten (with the previously used notations) as
γ=E/2g=Ee/Evac, where Evac=(~ωa/2ε0V )1/2 is the
field per photon. Then from the equalitỹγ=γ + α=0 (18),
one can obtainEe = Evacn

1/2 exp(i(v + π)). The latter
equation shows that for the compensated case (18), the driv-
ing fieldEe should be in a coherent state, but shifted by phase
π concerning to initial stateα. In general, the condition (18)
does not hold exactly due to quantum fluctuations. However,
since the ratio of fluctuation to the mean number (fractional
uncertainty in the photon number, see for example Ch. 3 in
Ref. 26 is∆n/n = n−1/2 for a Poisson process, the larger
the values ofn become, thehigher the accuracy of the condi-
tion (18).

4. Conclusion

The field-atom interactions in the driving JCM show that a
variation of the amplitude or/and the phase of the driving field
enables one to manipulate the dynamics and the spectrum of
quantum Rabi oscillations. There are two distinct regimes.
In the summarizing case of the driving field and the initial
coherent field, one can underscore a selected frequency in
the Rabi frequency spectrum. The subtraction provides the
possibility of compensation of both fields. For the case of
the exact compensation, the frequency spectrum of a two-
level atom becomes similar to that of vacuum oscillations in
standard JCM. Such processes may be useful in quantum in-
formation technology if the decoherence time is greater than
the time scale of the atom-field interaction. In this case, these
processes may have various applications related to monitor-
ing the entanglement of the two-level atom with a quantized
field, and may be used to develop quantum information tech-
nology devices.
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