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We consider the Schdinger equation for the rotational spectra of the most asymmetric molecules. The energy eigenfunctions are also
eigenfunctions of the square of the angular momentum vector and of one component of the angular momentum in the inertial frame. We
follow our point of view in which the properties of the angular momentum spectra are used to delete, without loss of generality, one constant
of motion and one of the Euler’s angles. Then, instead of using Euler's angles, tligliBger equation and the energy eigenfunctions are
expressed in terms of spheroconal coordinates in which that equation may be separable.

The most asymmetric case is specially analyzed. The characteristic symmetries of this problem are used to reduce the number of differential
equations considered and the number of steps for a complete solution.

Keywords: Asymmetric molecule; rotation spectrum; spheroconal coordinatesé leauation.

Se considera la ecu@ci de Schidinger de las mélculas nas asingtricas. Las eigenfunciones de la enargpn tamkén funciones propias

del cuadrado del momento angular y de una componente del momento angular en el sistema inercial. Seguimos nuestro punto de vista er
que las propiedades del espectro del momento angular se usan para supriraidisia e generalidad, una constante de movimiento y uno

de losangulos de Euler. La ecuéci de Schidinger y las eigenfunciones de la eriarge expresan en furgei de coordenadas esferoconales

en las cuales dicha ecuéanies separable.

Se analiza en especial el cas@srasingtrico. Las simeias caractésticas de este caso se usan para reduciGigleno de ecuaciones
diferenciales a considerar y eimero de pasos para una soarccompleta.

Descriptores: Molécula nas asingtrica; espectro rotacional; coordenadas esferoconales; énuwLang.

PACS: 33.20Sn; 33.15.Mt: 33.20.-t; 31.15.Hz

1. |Introduction

) . 0 0 cosp 0
The study of the rigid body has a very old history that is still Ly = —in { sin g — cot Coswaw t g 8¢] 2)
far from finished because of the incomplete knowledge of the
analytical properties of the spectra of the quantum rigid body. L. = —ih%,
The torque-free rigid body has been solved in Classical [1]
and Quantum Mechanics [2], but the known solution is farand the components of the angular momentum vector in the

from explicit. Our task has been to make explicit many as-nertial frame result in

pects of this problem and its solutions. 9 o sing 8
S o . M, = —ih {cos ¢— —cotf singp— + — }

The hamiltonian of the rigid motion of a molecule may be 00 d¢ ~ sinf Oy
indicated by the same expression as that of classical kinetic 9 8 cos¢ O
energy M, = —ih {sin gb% + cot @ cos qﬁa—(b ~Sno aw} 3)

.0
H=L"T"'L/2, (1) M, = *lhafqﬁ.

These equations imply a definition of Euler angles where
providedL is interpreted as the angular momentum vectorthe angle of the second rotation is measured fromcthgis,
operator in the fixed frame that has been generally expresseghereas it is theg axis that is used in Ref. 6. It follows that
in terms of Euler angles. thea, 3, ~, Euler angles of those authors correspond in our

The components of the angular momentum vector operdlotation toa = ¢ — /2, = 0,y = ¢ + /2. These equa-

tor as a function of the three Euler angles in the body framdions provide us with an easy comparison of corresponding
are quantities.

The physical information in Quantum Mechanics is ob-

. tained by solving the Schdinger equation
siny 0

| 9 0
Lz—_lh Cosw%—cote Slnw%‘f'm% H\IJ:E\I’, (4)
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whereH is the hamiltonian operatoF; is a real constant and and some simplification of the problem is obtained when one
¥ is a well-behaved complex function. Assuming a free toptakes a linear combination of these two equations to reduce
the Hamiltonian operator is equal to the kinetic energy operthe number of independent parameters. We define
ator (1).

Actually, the Schodinger equation has an infinite number 1/I; = Q + Pej, (10)
of solutions which should be classified by the use of other op-
erators, commuting with the Hamiltonian. Commutators inand one imposes two restrictions on theconstants, namely
Quantum Mechanics correspond (except by a constant factor
ik) to the Poisson brackets of Classical Mechanics. ert+erte3=0 (11)

The useful operators commuting with the Hamiltonian e+ e2+e2=3/2 (12)
are theL? and M, operators. These two also commute
among themselves. We look for common eigenfunctions, byynd the constant® and P are determined by the inertia mo-
solving the Schidinger equation and asking the eigenfunc-ments as
tions to be simultaneously solutions to the equations

3Q=1/I1 + 1/, +1/I; (13)
9P?/2 = (1/I, — 1/15)* + (1/I3 — 1/I,)?
+(1/1 = 1/13)%. (14)

L20 = h2((0 +1)T, M, ¥ = hmU, (5)
wherel andm are integers, restricted by the condition
—<m<V/. (6)

The three parametees can be written in terms of only
These are very well-known properties of Angular Momentumone parameter:

Theory [6].
The theory also includes the fact that operafatstiM,, €1 = coso
acting on a common solution of Egs. (4) and (5) give a solu-
tion to the same equations with the same valuand¢ but ez = cos(a — 2m/3) (15)
in which the integern is increased or reduced by one unit. e5 = cos(o + 21/3) (0<o<n/3),
This useful property is used here to consider the common so-
lutions havingE' and/, with m = 0. where the valuer = 0 corresponds to the prolate symmetric
The remaining functions withn # 0 can then con-  top and the value = /3 to the oblate symmetric case. The
structed by successive application of those operators. caser = /6 is the most asymmetric.
Substitution of the explicit form of operatdd, in Euler The energy valu& becomes
variables (form = 0) implies that thel function will not be
a function of anglep; the L operator is also simplified since 2F = Qh%(f +1) +2PE", (16)

in this case derivatives with respectd¢aan be deleted. The
angular momentum operator in the body frame becomes  whereE* is the constant eigenvalue of equation

L, = —ih [0051/)680 - cotHSinwaaw} 2H"U = (e1 L + e2Lj + e3L2)V = 2B V. (17)
9 9 We look for simultaneous solutions to the Eq. (17) and (8).
Ly =—-ih [— Simﬁ@ — cot f cos ¢81/J (7) In this system of equations, the three inertia moments
have been replaced by only one parameter
L. — _ih 0 . Many authors use a different asymmetry parametier-
? oy troduced by Ray [7]. Our parameters are related to his by
These operators are essentially the same as those found 3k
in the Quantum Mechanics of the hydrogen atom, except for €1 =Coso = m (18)

the sign and the transformatiah = 7 /2 — . The change
of sign is irrelevant, as operators appear in the equations iand Ray’s energy’(r) can be expressed in terms of our re-

guadratic form. duced energy* as
We ask thel function to satisfy the following two equa-
. ) : 4 4
tions in terms of the ned operator (7) B(x) = gh%(“_ 1)+ . + §H2 B (19)
(L2 + L2+ L)V = B2 (0 + 1)T (8)

The use of different parameters follows the use in mathemat-
and ics where the parametess, e; andes are frequently found
according to the masterly works of Weierstrass in the theory

2 2 2
(Ly/Ii+ Ly /I + L7/ 13)V = 2BV, (9  of elliptic functions.
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The equations are separable by using the spheroconal candn + 1 functions of each of the classes
ordinatesy1, x2, defined [8] in terms of Jacobi elliptic func-
tions

Uy H ut A(aj)u
sin 0 sin ¢ dn(x1, k1)sn(xe, k2) J
u= | sinfcosy | =1 cn(xi,ki)en(xa. k2) |, (20) T
cosf sn(x1, k1)dn(xe, k2) Uy H u A(aj)u (26)
J
whereu is the unit vector that is rotated by the rotation matrix T
in the constant vector Uz H u” A(aj)u,
J
0
(1) where matrixA(«) is defined in terms of their inverse matrix,
and wheré:; andk, are defined by er 0 0 1 0 0
_ _ Ata)=| 0 e 0 |—-a|l 0 1 0 (27)
€2 — €3 €1 — €2 )
k2 = k2 = 21
! er—e3’ 2 €] — es (21) 0 0 e 0 0 1

In these coordinates, whdhnis factored into the product and where the paramet e computed to satisfy Leis

U = Ay (x1)A2(x2), (22)  differential equation.
Each term in the wave functions is a linear combination

Eq. (17) and (8) are separated into two LEisequations [9] ¢ an ¢ number of factors of components of the veator

d?A, . )
dX; -~ [kaé(é 4 Dsn?(xg, ky) + hylA,; =0 23) A direct calculation leads to
J
{P1lxa) — a{Pa(x2) — o}
j=1,2 ut A(a)u = , 28
(7 2), () {e1 — a}{es — a}{es — a} (28)
written in terms of the separation constants
o o+ 1) in terms of the functions
&
hy =— + 3
h%(e1 — e3) €1 — €3 9
hy=—(l+1)—h (24) Pila) = e+ ea = e bas )
2= = —ny.
Pa(xa) = e1 + (ea — e1)sn’(xz2, k2), (29)

Lamé’s equation has been studied for a long time, and

many useful results are found in the last chapter of Whittaker , L
) . and therefore they's are the roots of two polynomials in
and Watson'’s book of Analysis [9].

In particular, for¢ = 2n (an even integer), the functioh terms of functions?s (x1) andPs (x»).

can be written in terms of the unit vectarin (50) as one of The Hamiltonian is invariant with respect to a change
four different classes of the form of sign of each of the components of vectar These
three changes of sign and the identity constitute the four-
HUTA(O(]‘)U component groupy that is basic [10] to the Quantum Me-
J chanics of the rigid molecule. Each of these transformations

allows us to classify the classes of wave functions according

T
tytz H u” Aaj)u to the parity associated with the group elements [11].
’ The parity of the functions fof an even number is col-
stz | [u" Alay)u (25)  lected in the Table I.
J
Ug Uy H uTA(ozj)u7 TABLE |. Classification of the eigenfunctions according to the
j group for ever?.
with n + 1 functions of the first class andfunctions of each
name d Uy Uy Uy
of the other three classes. - .
For/ = 2n + 1 (an odd integer), one hasfunctions of symmetric [T, u” Ale;)u even even  even
the class xtype  wyus []; ut Aey)

(
y type u.ug [[;uA(a;)u  odd even  odd

z type uzuy [J, u” Alay)

=]

u even odd odd
u

U Uy Uy H ut A(aj)u

J

odd odd even
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x = 0. The most asymmetric case is invariant under the trans-

TABLE Il. Classification of the eigenfunctions according to the

formationo — 7/3 — o, and one can expect some simplifica-

group for odd?. tion vis-a-vis the general case. For example, the parameters
name s . v . ki andky, become the same:
symmetric  uzuyu. [[;u” A(aj)u  odd  odd  odd K2 = k2= 1/2. (33)
X type ug [T, u" A(ey)u odd even even
y type uy [1; uT A(a)u even odd even We shall now study some properties of this case.
z type u- T, uT A(a;)u even even odd Making the change of variable
: : z =Pi(x1), (34)
The parity of the functions fof an odd number become
Table II. _ _ Lamé’s equation (23) takes the algebraic form [9]
For the symmetric cases, the wave functions may be
chosen to be the spherical harmonitg(0,v), with dZA 1/2 1/2 1/2 1 dA
—{ < M < (, that are also found in the quantum solytior] dz2 |z —e + T—ey  T—e3| dr
of the hydrogen atom. But, because the Hamiltonian is Y o
qguadratic in the angular momentum components one has, _ (l+ Dz —2E"/h A=0, (35)

for the symmetric cases, a double degeneracy in the en- 4(z —e1)(z — e2)(x — e3)
ergy levels that are conveniently labelled with the integer . . .
+M. In those cases it is better to use the wave functiong"hICh in the most asymmetric case becomes
(Yom £ Y- m)/V/2, which are real functions and can be
written in the forms (25) and (26), and classified by means of 2w(1 — w?)
the elements of the groul into four types associated with
the parity. This change of base functions was introduced by
Wang [12] in one of the pioneer works on quantum theory of
asymmetric molecules using matrix notation.

These wave functions in the oblate case<{ v/3) are

d?A(w)
dw?

+(1—3w2)%$ﬂ)

B (W;Uw + b) Aw) =0, (36)

where one makes the change of variable= v/3w/2 with

e [@e+1)(C— M)
‘I"*M_{ 8m(l + M)!
s [+ — M)
‘I’W_{ 8m(l+ M)!

where0 < M < ¢, and

\PZOZ{

7

1/2
} PM(cos ) cos M) (30)

1/2
} PM(cos §) sin M, (31)

(20+1)

1/2
] Py(cosb).

2F* /h? = —/3b.

Solutions to this differential equation are found to be of
eight types, seven of which are the product of a square root
times a polynomial inv, whereas one of the eight is just a
polynomial. See the Table IV, wher®(w) denotes different
polynomials.

Given one solution to this equatiak(w) for particular
values of the integef, and the separation constantthen
A(—w) is also a solution, with the sandebut separation con-
stant—b. This property causes a simplification in obtaining
the solutions to the Laéequation in this most asymmetric

(32

These real functions are easily classified according to thease.

V group [11] as is shown in the Table IlI.

2. The most asymmetric molecule

The most asymmetric case occurs for the value= 7/6,

We found that for each of the typeandy functions, the
separation constants with£ 0 come in a couple of the two
allowed valuestb. The corresponding polynomial is differ-
ent only in the sign of the odd powers af For these two
types of functiongy ands, one finds the possibility of the

which is equidistant between the prolate and oblate symmetla"»'eb = 0, occurring only once for each value. If the

ric cases. For this cagg = 0 and Ray’s parameter is also

reminder after dividind by 4 is 1 or 2, then the function co-

TABLE lII. Classification of the oblate functions according to the TABLE IV. Classification of the most asymmetric functions accord-

V group. ing to theV” group.
V% Ui Yoo A(w), evend A(w), odd¢
symmetric  everd, evenM odd/, evenM even/ symmetric P(w) w(l — w?)P(w)
X type odd¢, odd M even?, odd M X type Vw(l —w)P(w) VIF+ wP(w)
y type every, odd M odd/, odd M y type V1 —w2P(w) VwP(w)
z type odd¢, evenM even(, evenM odd? z type w(1l + w)P(w) V1 —wP(w)

Rev. Mex. 5. 52 (3) (2006) 220-229
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rresponding to this valug = 0 is of typey. If the reminder and

after dividing? by 4 is 3 or 0, then the function corresponding d 043
to the valueb = 0 is of types. The polynomials”(w) when 2w(l —w?)— — (L +1) (w? — —— )| Aro
. dw 20+5
b = 0 are even functions, formed only by even powerswof
On the other hand functions of typeandz never corre- D)0+ 2)(0+3)(C+4) A 43
spond to the null value af. Moreover, for any eigenfunction - 20+5 era0, (43)

of type z, with eigenvalué and polynomialP(w), there ex-
ists an eigenfunction of typewith eigenvalue-b and poly- . : : T
nomial P(—w), having a sign difference for the coefficients right hand side of these equations similar.

L Below, we shall study the cases in whigk: 0 and there
of the odd powers. These characteristics of the most asym- . ) " .
) ; : .~ ~7"are 6 types of functions occupying the upper positions in Ta-
metric case allow us to ignore the functions of typsince it

R, ble 1V, excluding the type:. We shall write the differential
is implicit in its partner of typer.

Let us consider first the particular solution belonging toequatlons for the polynomials without the root factor.
the most asymmetrical Lagnequation with a zero value for
constanth. In this case, the Lagfunctions could be writ-
ten in terms of Jacobi polynomials that obey the differentialin the symmetric case, with evénthe differential equation

where normalization factors were assumed so as to make the

Types, evenl

equation [13]: satisfied by the polynomial is the same (36):
d?f, dfy d’P dP
o= sy 14 o 2wt —w?) T 4y gy L)
+n(n+a)fu(y) = 0. (37) + <W;1)w + b) Pw)=0. (44)

When{ = 4n, (n = 0,1,2,...), andb = 0, the solution

N . X We substitute into it the polynomial
to the Lang equation is of type. The associated equation (36 poly

with b = 0) has also been considered in the context of Clas- k ,
sical Mechanics as a particular case of Hill's equation [14], P(w) = Z a;jw’ (45)
but without identifying it as a Jacobi equation with Jacobi 7=0
polynomials as solutions for it. setting the coefficients of all the powerswofequal to zero.
Whent = 4n, (n = 0,1,2,...), the solution to Lar@’s e then find the following results:
equation (36 withh = 0) is of the form 1.1 The degree of the polynomialfis= /2.
) 1.2 One ha# + 1 homogeneous linear equations relating the
Adpo(w) = fu(1/4,3/4,w7), (38) k4 1 coefficients of the polynomial. The matrix of this sys-

tem of linear equations is a function of the paraméteFhe
non-trivial solution exists only when the determinant is zero;
this determineg: + 1 different values ob. Each value pro-
vides a different polynomial. The coefficients of the polyno-

Whent¢ = 4n + 1, (n = 0,1,2,...), the solution of
Lamé’s equation (36 witth = 0) is of the form

— 2
Aan+10(w) = Vofa(3/4,5/4,07). (39) mial can be found by recurrence, starting fréranda,.

In the case — 4n +2(n = 0,1,2,...) , the solution of 1.3 The explicit forms of the equations for the coefficients are

Lamé’s equation (36 witlh = 0) is of the form baop +a; =0
A4n+2,0(w) =V 1- wan(5/47 3/47 w2) . (40) (2m + 1)(m + 1)am+1 + bam

And in the casé = 4n+3(n =10,1,2,...), the solution +(l/2=m+ 1)~ 1+ 2m)an-1 =0
of Lamé’s equation (36 witly = 0) is of the form (m=1,2,....k—1)

Anyso(w) = Vw(l —w?) f,(7/4,5/4, w?). (41) (£/2 —k+1)(2k — 1+ O)ag—1 + bay, = 0. (46)

1.4 The matrix of the above system of equations is tridiag-
onal. The determinant of this matrix produces the eigenval-
uesb. The tridiagonal form of the matrix allows us to obtain
the determinant by recurrence [16], by means of a family of
{4+ 2 polynomials inb. Each of these polynomials of degrgés

- 2£+5)] £+4,0 the determinant of the submatrix of dimensiprx j. We

defineyy = 1, y1(b) = b, and
_ VD E+3)(E+D)
= 3+ 5 Lo (A2) () = by (0) — Ayyia(b), (G=1.2.....k) (47)

The most asymmetrical Lag's functions can be con-
structed by means of the ladder operators [15] Wijtimping
by four:

2w(l — wQ)% + (0 +4) <w2

Rev. Mex. 5. 52 (3) (2006) 220-229
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whereA; is the product of two entries of the tridiagonal ma- where A; is the product of the two entries of the tridiago-
trix at both sides of the main diagonal at positigpsj + 1) nal matrix on both sides of the main diagonal at positions

and(j +1,7) (j,j+1)and(j+1,5):
. (+1 . ey

=5 -0 [ G onei-n]. e a4, =5 - e 69
The characteristic polynomial for determining the values of The characteristic polynomial for determining the values of
iS yg+1(b). iS Yr41(D).

In a similar way, one writes and solves the differential
equations for the other 5 types of polynomials. The differen2.3. Typez, event
tial equation is different in each case since the root factor h -
been deleted. The set of linear equations for the coe1‘ficier‘1’jlt:|:he substitution of the cast(w) = w(l- w)P(w)_
is also different. But in every case we use the same methodf (36) gives the following equation for the polynomalw):
of solution, and in each case the matrix for the coefficients ow(l 5 d2P(w) 3_9 ? dP(w)
of the polynomial is tridiagonal, and therefore the algebraic %1 — ")~ 5~ + (8 — 2w —Tw’)— -

equation for the eigenvalueis obtained by a similar recur- (£ —2)(¢+3)
rence with differentd; constants. (

w+b— 3/2) P(w) =0. (54)

2
2.2. Typey, evenl In analogous way to the previous cases, take the polyno-
mial (45)
The substitution of the cask(w) = v1 — w2 P(w) in (36) .
gives the foIIovx;mg equation for the polynomiBlw): P(w) = Z a;0 (55)
2w(l — wz)d P(;U) +(1- 7w2)dP(w) =0
dw dw to substitute in Eq. (54), set the coefficients of all the powers

(L—=2)(L+3) of w equal to zero. The following results are obtained:
+ ( 2 wt b) P(w) =0. (49) 3.1 The degree of the polynomialis= ¢/2 — 1.
By substituting into (49) the polynomial (45) 3.2We hav_ds_ + 1 homogeneous Ii_near equatio_ns relaf[ing the
k + 1 coefficients of the polynomial. The matrix of this sys-
il ; tem of linear equations is a function of the paraméterhe
P(w) = Zaiw (50) " hon trivial solution exists only when the determinant of the
=0 system is equal to zero; this determirtes 1 different values
and by setting the coefficients of all the powersioéqualto  of 5. Each value ob provides a different polynomial. The
zero, we found that: coefficients of the polynomial can be found by recurrence,
2.1 The degree of the polynomialis= ¢/2 — 1. starting fromb anday.
2.2 There aré+1 homogeneous linear equations relating thez 3 The explicit form of the equations for the coefficients is
k + 1 coefficients of the polynomial. The matrix of this new
system of linear equations is again a function of the parame- (b—3/2)ag +3a1 =0
terb. _The non-_trivial soIL_Jtion exis_ts only when the determi- (2m + 3)(m + D)ami1 + [b— 3/2 — 2m]am
nant is zero; this determinést+ 1 different values ob. Each
value provides a different polynomial, and as before the coef- +(/2—=m)(l+14+2m)ap—1 =0
ficients of the polynomial are obtained by recurrence starting
(m=1,2,...,k—1)

from b anday.
2.3 The explicit form of the equations for the coefficientsis  (¢/2—k)(2k + 1 + £)ax_1 + (b — 3/2 — 2k)ar, = 0. (56)

bag +a1 =0 3.4 The recurrence produces the family of polynomials of de-
greej equal to the determinant of the submatrix of dimension
j x j. We define hergg = 1, y1(b) = b — 3/2, and

Yi+1(0) = (b= 2j = 3/2)y;(b) — Ajy;-1(b),
(G=1,2,...,k)  (57)

2m+1)(m+ Dams1 + bap,
+¢/2—m)l+1+2m)ay,-—1 =0
(m=1,2,...k—1)
(€/2 = k)(2k + 1 + a1 + bay = 0. (51) whereA; is the product of the two entries of the tridiagonal
2.4 This recurrence produces the family of polynomials ofmatrix at both sides of the main diagonal at positiofg+1)

degreej equal to the determinant of the submatrix of dimen-and(j + 1, 5)
sionj x j. We again defingy = 1, y1 (b) = b, and oL+ 1)

v (8) = by (0) — Ajyy 1 (b), (G=1,2,....k) (52) A =3@j+1)

—-Jj2j+1)|. (58)
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The characteristic polynomial to determine the valuesisf 2.5. Typey, odd/

Y b).
k1 (b) The substitution of the casg(w) = \/wP(w) in (36) gives

the following equation for the polynomid?(w):
2.4. Types, odd/?

2
2w(1 — w2)d P(;U) +(3— 5w2)dP(w)
The substitution of the casé(w) = /w(l —w?)P(w) dw dw
in (36) gives the following equation for the polynomfa{w): n ((E - 1)2(£ +2) vt b) P(w) = 0. (64)
2
2w(1 — w?) d j(;u) + (3 - 9w2)d];<w) Let us again make the substitution of the the polynomial
w w
k
+ <<£ - 3)2(5 L b) P(w) =0. (59) P(w) =Y aju’ (65)
j=0

in Eq. (64), setting the coefficients of all the powerswof
equal to zero. We found the similar results:
k 5.1 The degree of the polynomialis= (¢ — 1)/2.
P(w) = Z ajwj7 (60) 5.2 0ne hag + 1 homogeneous linear equations relating the
=0 k + 1 coefficients of the polynomial. The matrix of this sys-
tem of linear equations is a function of the paramétefhe
setting the coefficients of all the powerswofequal to zero. non trivial solution exists only when the determinant is zero;
We find the following results: this determineg + 1 different values ob. Each value pro-
4.1 The degree of the polynomialis= (¢ — 3)/2. duces a different polynomial. The coefficients of the polyno-
4.2 A number ofk + 1 = (¢ — 1)/2 homogeneous linear Mial can be found by recurrence, starting fromnda,.
equations re'ate trVe+ 1 Coeﬂ:icients Of the po'ynomia'_ The 53 The eXpliCit form Of the equa.tions for the CoeffiCientS iS
matrix of this system of linear equations is a function of the +3a; =0
. .. . . 0 1

eigenvalueb. The non trivial solution exists only when the
determinant is zero; this leads+ 1 different values of. (2m+3)(m + D)amy1 + ban,
Each value determines a different polynomial. The coeffi- -
cients of the polynomial can be found by recurrence, starting + e+ 1)/2=m2m = Dam— =0
from b anday. (m=1,2,...k—1)
4.3 The explicit form of the equations for the coefficients is

We substitute into it the polynomial (45)

(€+2k)(€—2k+1)ak,1/2+bak =0. (66)

bag +3a1 =0 5.4 A new recurrence provides a family of polynomials of
degregj, equal to the determinant of the submatrix of dimen-

(2m +3)(m + Dam-1 + ban, sionj x j of the system: we again defing = 1, 4, (b) = b,

+ [0+ 1)/2 = (m+1)(2m +1)]am-1 =0 and
(m: 1,2,,,,,k—1) yj+1(b) :byj(b)_Ajyj—l(b)7 (.]: 1527~'~7k) (67)
(€2 + k + 1) (£ — 2k — 1)aj_q + bay, = 0. (61) where 4; is the product of the two entries of the tridiago-

nal matrix on both sides of the main diagonal at positions

4.4 A recurrence also produces a family of polynomials of(j"] +1)and(j +1,5)

degreej equal to the determinant of the submatrix of dimen-

A =4(25+1
sion;j x j. We again defing, = 1, 41 (b) = b, and ;=725 +1)]

D o). 9

The characteristic polynomial for determining the values of

Yi+1(0) = by;(b) — Ajy;—1(0), (j=1,2,...k) (62) isyxs1(b).

where 4; is the product of the two entries of the tridiago- 2.6. Typex, odd ¢

??I .1a}r)l);gg(pjfhlsl.??s of the main diagonal at the entrlesI'he substitution of the cas&(w) = /1 + wP(w) in (36)
J2J JT a0 gives the following equation for the polynomi&i(w):

0+1 2
4=+ ) e 69 2w(1 — w) LW L (1 4 9y — 5y 4P
2 dw? dw
s i i (= 1)(¢+2)
The characteristic polynomial that determines the valués of P () b 12) P(w) =0, (69)
iS Yr41(b). 2
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We substitute into it the polynomial (45)

TABLE V. Eigenvalue$ according to = 2 — 7, and type of thé”
group for the most asymmetric case.

k
P(w) = Zajwj (70)
7=0

setting the coefficients of all the powerswofequal to zero.
We find the following results:

6.1 The degree of the polynomialfis= (¢ — 1) /2.

6.2 One has + 1 = (¢ + 1)/2 homogeneous linear equa-
tions relating thek + 1 coefficients of the polynomial. The
matrix of this system of linear equations is a function of the
parameteb. The non trivial solution exists only when the de-
terminant is zero; this determinést 1 different values ob.
Each value provides a different polynomial. The coefficients
of the polynomial can be found by recurrence, starting from
b andag.

6.3 The explicit form of the equations for the coefficients is

(b+1/2)ag+a; =0
2m + 1)(m + D)am41 + [(b+1/2) + 2m]ay,
+(—2m+ 1)l +2m)ay,—1/2=0
(m=1,2,...,k—1)
(0—2k+1)(2k + O)ag—1/2+ (b+1/2 + 2k)ar, = 0. (71)

6.4 The recurrence produces the family of polynomials of de-
greej equal to the determinant of the submatrix of dimension
j x j. We defineyp = 1, y1(b) = b+ 1/2, and

Yi+1(b) = (b+ 27 + 1/2)y;(b) — A;y;-1(D),
(G=1,2,..k) (72

where 4; is the product of the two entries of the tridiago-
nal matrix on both sides of the main diagonal at positions
(J,J +1)and(j +1,5):

0+ 1)

A; =325 - 1) —Jj(2j =1 (73)

The characteristic polynomial for determining the values of
IS Yr41(b).

Below theb values are tabulated for all the polynomials
up to/ = 15 (See Tables V to VIII).

When writing the eigenvaluésin the table of values, for

)4 Type b

2 S +1.7320508075689

2 X,z +1.5

2 y 0

3 Z, X +3.949489742783

3 y +3.8729833462074

3 X, Z £0.949489742783

3 S 0

4 S +7.211102550928

4 X, Z £7.1904157598234

4 y +2.6457513110646

4 Z, X +2.19041575982343
4 S 0

5 Z, X +11.49414663819150
5 y +11.4891252930761
5 X, Z +5.36293051868569
5 S +5.1961524227066

5 z, X +1.368783880494185
5 y 0

6 S +16.78391092456886
6 X, Z +16.78276990032108
6 y +9.1651513899117

6 Z, X 49.11432541791537
6 5 +3.50718321108808
6 X, Z +2.83155551759430
6 y +]0

7 z, X +23.0755805845594
7 y +23.0753326277447
7 X, Z +14.0138380013389
7 S +14

7 Z, X +6.70803965346415
7 y +6.4443016781448

7 X, Z +1.76978223668465
7 S 0

each value of we find that they are ordered by the type of

a function corresponding to the classification of the grup TABLE VI

For /¢ an even number, the greater valué @ always of sym-
metric type ). The order from largest to smallestsdsz, v,

Eigenvalued according to/ = 8,9, 10, and type of
the V' group for the most asymmetric case.

z; which repeats cyclically. Fatan odd number, the greater

value ofb is of typez. The order is inverted te, y, x, s,
which repeats itself cyclically.

Another interesting property of the spectra is observed
when we note that the eigenvalues have almost a degener-
ation. As/ becomes larger, thieeigenvalues are grouped in
couples of values that become closer in value. This happens
for the different types of groufy. Since this corresponds to

Rev. Mex. 5. 52 (3) (2006) 220-229

l Type b

8 s +30.3678275070123
8 X, Z +30.3677753371381
8 y +19.8799558776245
8 Z, X +19.8764578561354
8 S +11.0360795803739
8 X, Z +10.949286970928
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8 y +4.33443817624644 12 Z, X +25.7695705527514
8 Z, X +3.44060445193073 12 s +14.6046016690127
8 S 0 12 X, Z 114.4345829402282
9 Z, X +38.6602918232738 12 y +5.91990928868307
9 y +38.6602811125303 12 zZ, X +4.59441661644294
9 X, Z +26.7521663013226 12 S 0
9 S +26.7513277147715 13 Z, X +81.83091588023716
9 zZ, X +16.4384418576797 13 y +81.830915864016
9 y +16.4128810481322 13 X, Z +64.255565603662
9 X, Z +8.00461661312847 13 s +64.2555636029947
9 S +7.63979485960849 13 Z, X +48.2253783140692
9 zZ, X +2.1580492334976 13 y +48.2252723291192
9 y 0 13 X, Z +33.7940412829763
10 +47.9528649646037 13 S +33.7909105594589
10 X, Z +47.9528628075232 13 zZ, X +21.0799222455574
10 y +34.6267329990633 13 y +21.0243743697317
10 Z, X +34.6265398453568 13 X, Z +10.4943386986705
10 s +22.8721621755032 13 s 49.91952164290954
10 X, Z +22.8651867293832 13 zZ, X +2.90772914544503
10 y 112.8448184810677 13 y 0
10 Z, X +12.7179634066876
10 S £5.13682188750577 TABLE VIII. Eigenvalue$ according to/ = 14, 15, and type of
10 X, Z +4.02645371505514 the V' group for the most asymmetric case.
10 y 0 l Type b
14 s +95.1236649296825
TaBLE VII. Eigenvalues according to/ = 11,12, 13, and type 14 X, Z +95.123664926568928
of theV group for the most asymmetric case. 14 y 176.132683413936
4 Type b 14 Z, X +76.132682994804036
11 Z, X +58.2455056491701 14 s +58.6822486303082
11 y +58.245505221429 14 X, Z +58.6822240700879
11 X, Z +43.5024224454497 14 y +42.8173767363793
11 S +43.502379328453 14 zZ, X +42.8165591447652
11 Z, X +30.3184753280879 14 s +28.620990959129427
11 y +30.3166758473324 14 X, Z +28.6041510322987
11 X, Z +18.7890799018142 14 y +16.3244223667596
11 S +18.7494797998074 14 z, X +16.1087758357521
11 zZ,X 19.26422979269084 14 S +6.68737187193915
11 y +8.79546969003276 14 X, Z +5.14797794636587
11 X, Z +2.5367084226849 14 y 0
11 s 0 15 Z, X +109.4164347698555773
12 s +69.5381933887331 15 y +109.41643476926258
12 X, Z +69.5381933049892 15 X, Z +89.010046827009155
12 y +53.3787715124891 15 s +89.0100467404952
12 Z, X +53.3787621276328 15 z, X £70.140462054122614
12 S +38.7704174638424 15 y +70.14045649788885
12 X, Z +38.7699730516097 15 X, Z +52.846648689261596
12 y +25.7810284091082 15 s +52.8464429052577
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15 Z, X +37.19316897069773 rotational spectrum. Referring to this case, H.W. Kroto has
15 y +37.1883478499097996 written pages 99-100 of Ref. [11]r1 the high asymmetric
case, as you might guess, the levels may not form an obvi-

15 X, Z 4+23.321012881185754 . . .
ous simple pattern and the resulting spectrum can be quite a

15 S +23.2479042392256 mesg

15 Z,X +11.7000964582398 On the other hand, it is possible to find examples of sym-

15 y +11.0175745445891 metric oblate and prolate molecules, but not of exactly asym-

15 X, Z 1£3.27245385545921 metric molercules. Looking at the table of Molecular Con-

15 s 0 stants involved in Microwave Spectrum [17], we found one

case that is close to the more asymmetric molecule. Itis ethy-

(almost) the same root for two polynomials, this root is Ob_len_e oxide, when the hydrogen has b_een re_zplacedz by Deu-
terium C D;—C = O D, and the Carbon is the isotop@?2. It

tained by the Euclidean algorithm, also valid for polynomials,, : led d q ldehvd
producing as the first approximation for the largest value ofS &S0 called deuterated acetaldehyde. o
For this molecule the inverses of the moments of inertia

the eigenvalues the prediction ) X
are proportional to the numbers 20399, 15457, 11544, which
(2e-1 ) (74)  correspond to a value of theangle of26.16°, near the30°
4 value of the most asymmetric case.
This prediction gives a value smaller that the maximum |t is evident that the most asymmetric case studied in this
eigenvalue by 1%. The next couple is well aproximated bypaper will be only the first step in a perturbation theory start-

b:

the value/(¢ — 3)/2 larger that the actual value by 1%. ing with the exact case of most asymmetric molecules, since a
very asymmetric molecule can only be approximated by this
3. Applicability of the Theory case.

However, perturbation theory is very similar to the one
In general, the cases of rotational spectrum of very asymmetwvhen the molecule is close to the symmetric oblate and pro-
ric molecules are not considered by most authors studying thiate cases. See for example Sec. 3.10c of Ref. [11].
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