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The backscattered intensity of the scattered light in rectangular-grooved surfaces is used as a design parameter for randomly rough surfaces.
A modified Kirchhoff method and the integral equation method are used to calculate the scattered light distribution for these designed
surfaces. The results of the two calculation methods are found to show good agreement, with the Kirchhoff method slightly overestimating
the double scattered intensity, perhaps due to the limitations of the geometrical shadow functions used in this method. These results show
that the backscattered intensity can be controlled in this type of surface.
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Se utiliza la intensidad de la retrodispersión de la luz esparcida en una superficie con zurcos de forma rectangular como parámetro de disẽno
de la superficie. El ḿetodo de Kirchhoff modificado y el ḿetodo de la ecuación integral son empleados para calcular la distribución de la
luz reflejada de la superficie. Se encuentra que los resultados de los dos métodos est́an de acuerdo aunque el método de Kirchhoff sobre
estima el esparcimiento doble, probablemente debido a las aproximaciones requeridas para las funciones de sombra geométrica utilizada.
Los resultados presentados muestran que se puede controlar la intensidad en retrodispersión para este tipo de superficies.

Descriptores:Superficies rugosas, esparcimiento; aproximación de Kirchhoff.

PACS: 42.25.Fx; 42.25.Mj

1. Introduction

There has been a great deal of interest in recent years in the
scattering of light from rough surfaces. In particular, light
scattering from sea surfaces, and from Gaussian and fractal
rough surfaces has been investigated both theoretically and
experimentally. However, surfaces with a rectangular sur-
face structure shape have not attracted as much attention.
Jakeman and Hoenders [1] studied the statistics of the light
scattered by a telegraph-wave surface of rectangular grooves
distributed with a Poisson distribution of zero crossings. In
this case, the grooves were the same depth but with variable
width and separation. Similarly Depine and Skigin [2] used a
modal method to calculate the scattering from rough surfaces
with random rectangular grooves, all of the same depth. They
also calculated for finitely conducting materials forming the
surface. Mendoza-Suárez and Ḿendez [3] presented an in-
tegral equation method which has also been used to resolve
the scattering from rectangular grooved surfaces and for this
method the depth, width and separation of the grooves can
vary. Also, a reformulation of the Kirchhoff method was re-
cently presented [4,5] which permits the multiple scatter cal-
culation of infinite-slope surfaces; again, this method is ap-
plicable to surfaces with variable depth, width and separation
of the grooves. Hollins and Jordan [6] measured the inten-
sity distribution and the speckle statistics of a telegraph signal
form phase screen. Surfaces with rectangular-shaped grooves
can be produced experimentally using ion-beam milling tech-
niques [6] or by optical lithography using photoresist materi-
als [7,8].

The phenomenon of enhanced backscatter has been
widely studied in the literature. One of the mechanisms re-
sponsible for the effect is the coherent interference of a ray
with its time-reversed (the same ray traversed in the oppo-
site direction) partner. When both of these rays are reflected
back towards the source, there is no phase difference between
them and they add coherently; when they add in other direc-
tions, the phase difference is a function of the scatter angle,
the wavelength and the separation of the scatter points on the
surface. In a surface with rectangular groove surfaces (for a
1D problem, see Fig. 1), the rectangular grooves act like cor-
ner cube retro-reflectors, sending the double-scattered rays
back in the same direction that they came from (see Fig. 2).
In this case, there will always be enhanced backscattering for
the double-scattered light due to the double scattering of light
within each groove, and there will, therefore, be an enhance-
ment of the retro-reflected light. There is no way of avoiding
this effect. However, it is possible to alter the distribution
of light within the enhanced backscatter peak using the in-
terference of the light retro-reflected from different grooves.
Previously it was shown how the depths of the grooves could
be changed to affect the intensity backscattered by the sur-
face [5]. In that work, the interference between the light
from different grooves gave an interference pattern superim-
posed on the enhanced backscatter peak. The interference
pattern consisted of a number of intensity peaks which added
or subtracted from the enhanced backscatter peak, alternately
giving an enhanced backscatter peak with additional points
of light or darkness. In this work we show how it is pos-
sible, by adding variations of the groove width and separa-
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tion, to reduce the side peaks of the interference patterns and
control the intensity in the backscatter angle of the enhanced
backscatter peak, and leave the remaining scatter angles with
almost the same scattered intensity. The resulting designed
surfaces are rough in the sense that the correlation functions
differ from their mean values only for correlation for a groove
with itself; the correlation between different grooves gives
the mean value. Numerical scattering patterns are calculated
for the designed surfaces using the reformulated Kirchhoff
method and the integral equation method.

2. Theory

The reformulated Kirchhoff method [4,5] uses the redefini-
tion of the inward surface normal (see Fig. 1)

n = − sin βx + cos βy = − dy

dS
x +

dx

dS
y (1)

FIGURE 1. The geometry of the problem studied here.

FIGURE 2. The geometry used for calculation of the phase change
for double scattered light from two different grooves of different
depths. The phase difference is calculated for the rays with the
dark arrows. The parametera is the sum of the groove separation
and the groove width.

to give the diffraction equation

Φsc =
−1
4π

∫
SincSscΦinc(xs, ys)

×
[
(1 + R) sin θscH

(1)
1 (kr)

− i(1− R) sin θincH
(1)
0 (kr)

]
dy

− 1
4π

∫
SincSscΦinc(xs, ys)

×
[
(1 + R) cos θscH

(1)
1 (kr)

+ i(1− R) cos θincH
(1)
0 (kr)

]
dx, (2)

whereΦ denotes the electric field, the subscriptinc refers to
the incident field, the subscripts refers to the surface,R is
the Fresnel reflection coefficient which depends on the sur-
face material and the local angle of incidence on the surface
segment of interest, the subscriptsc refers to the scattered
field, k is the wavevector of the field,H(1)

0 (kr) is the zeroth-
order Hankel function, which is the Green function for the
one-dimensional Helmholtz equation,H

(1)
1 (kr) is the first-

order Hankel function resulting from the normal derivative of
the Green function, andSinc andSsc are geometric shadow
functions indicating whether the surface point of interest is
illuminated or visible from the detector, respectively.

Double-scattered light is taken into account in the Kirch-
hoff approximation by first calculating the field at a point on
the surface which is scattered from all the other points on the
surface:

Φ(1)
sc (x2, y2) =

−1
4π

∫
SincS12Φinc(xs, ys)

×
[
(1 + R1) sin θ12H

(1)
1 (kr12)

− i(1− R1) sin θincH
(1)
0 (kr12)

]
dy1

− 1
4π

∫
SincS12(xs, ys)

×
[
(1 + R1) cos θ12H

(1)
1 (kr12)

− i(1− R1) cos θincH
(1)
0 (kr12)

]
dx1 (3)

where the subscript 1 refers to the first interaction point on
the surface and the subscript 2 the second point, andS12 is a
geometric shadow function indicating whether point 1 is vis-
ible from point 2. This field is then used as the incident field,
and the corresponding field scattered from all of the second
points on the surface can be calculated:
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Φ(2)
sc (x, y) =

−1
4π

∫
Ssc

×
[
Φ(1)

sc (x2, y2)(1 + R2) sin θscH
(1)
1 (krsc)

− (1− R2)
dΦ(1)

sc (x2, y2)
dn2

H
(1)
0 (kr12)

]
dy2

− 1
4π

∫
Ssc

[
Φ(1)

sc (x2, y2)(1 + R2) cos θscH
(1)
1 (krsc)

− (1− R2)
dΦ(1)

sc (x2, y2)
dn2

H
(1)
0 (kr12)

]
dx2. (4)

The term[dΦ(1)
sc (x2, y2)]/dn2 is approximated by taking

the derivatives of only the Hankel function terms in Eq. (3).
Note that for the double-scatter term the points 1 and 2 can-
not coincide, thus there is no problem with the singularities
of the Hankel functions.

The integral equation method [3] for scattering of s-
polarised light from a perfectly conducting rough surface is
given by

Φinc(x, y)− 1
4π

∫
H

(1)
0 (kr)

∂Φ(xs, ys)
∂n

ds

=
{

Φ(x, y) if (x, y) is above the surface
0 if (x, y) is below the surface,

(5)

where ds is a surface segment length.

In the calculations presented here, TM (p) polarization
was used. It was found that the differences between the re-
sults for TE and TM polarization were not detectable in the
scattered intensity distributions. In the Kirchhoff method, a
perfectly conducting surface with TM polarization requires a
Fresnel reflection coefficient of -1.

Rectangular shaped grooves contain right angles which
act to return the light in the incident direction, back to-
wards the source. As in Gaussian randomly rough surfaces, a
backscattered ray and its time-reversed partner (see Fig. 2)
will be in phase and will add coherently. This is the en-
hanced backscatter effect. The phase difference between the
backscattered rays coming from different grooves is given by

∆φ = k (AB + CD + DE + EG)

= k (AB + CD + DE + CH−CF) ,

wherek = 2π/λ and

AB = CH = a sin (θinc)

CD = DE =
∆h

cos (θinc)

CF = 2∆h tan (θinc) sin (θinc) .

FIGURE 3. Probability distributions for the groove width (top left), groove separation (top right) and groove height (bottom) for 40000 real-
izations of a surface with 20 grooves. Full line, random distribution; open circles, adjusted surface with equation (9) and∆ϕ = (m + 0) 2π;
crosses,∆ϕ = (m + 0.25) 2π; and open triangles,∆ϕ = (m + 0.5) 2π. In this case the groove heights were not changed. Note that the
probability distributions of the adjusted surfaces are independent of the phase difference used in the surface design.
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FIGURE 4. The arrangement of the pairs of grooves used for the
surface design. The pair of grooves in the centre of the surface are
adjusted first and then the successive pairs of grooves nearest the
centre until the outermost pair is adjusted.

The phase difference is then

∆φ = 2k

[
a sin (θinc) + ∆h

(
1

cos θinc
− sin2 θinc

cos θinc

)]

= 2k [a sin (θinc) + ∆h cos θinc] , (6)

i.e. the phase difference depends on the separation of the two
groovesa (which depends on the width and separation of the
grooves) and the difference in the depth of the two grooves

∆h, as well as on the incidence angle and the wavelength.
The purpose of this paper is to show how Eq. (6) can be used
to design randomly rough surfaces with infinite slopes with
specific scattered intensities in the backscattered direction.

The intensity in the backscattered direction depends on
the interference term: for∆φ = (m + 0)2π there will be
constructive interference, and for∆φ = (m + 0.5)2π there
will be destructive interference.

3. Surface generation

For a surface with many grooves, we require that the grooves
can be grouped together in pairs for which the separations
and depths satisfy Eq. (6) with the required value of the phase
difference. The rough surfaces are generated by first generat-
ing the groove widths, the groove separations and the groove
depths or heights from independent probability distributions
with predefined average values and widths of the rectangular
probability distributions (see Fig. 3). Then the grooves are
taken in pairs, starting from the two central grooves and the
widths, separations and heights of the grooves are adjusted
to satisfy Eq. (6). Once the two central grooves are fixed to
satisfy Eq. (6) the next two grooves (the next to the left and
the next to the right of the two central grooves (see Fig. 4) are

FIGURE 5. Correlation functions〈hihj〉, 〈didj〉 and〈cicj〉 for 40000 realizations of a surface with 20 grooves. It can be seen that there is
no correlation between different grooves.
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FIGURE 6. Graphs of the correlation function
〈
2k

(
a sin

(
θinc

)
+ ∆h cos θinc

)〉
. The fractional parts show the relation between the

grooves used in the surface design in the diagonal from top left to bottom right. The integer part is the same for all cases and increases for
larger groove separations.

adjusted, and so on until all the grooves are arranged to give
the correct phase difference. The adjustments in the widths,
separations and heights or depths are made in such a way that
the probability distributions of these parameters are symmet-
rical (see Fig. 3) with the same mean as the original random
distribution. We define the correlation function

〈xixj〉 =
∑

N

xiNxjN

with xiN being the value of the variablex for thei’th groove
of the N ’th realization of the random surface. A total of
40000 realizations of the surface (different combinations of
the random parameters used but with the same probability
distributions) were used to calculate the correlation functions.
The resulting surfaces are random in the sense that the corre-
lation functions〈hihj〉, 〈didj〉 and〈cicj〉 show no correlation
between the groovesi andj (Fig. 5, note that, since the depth,
separation and width of the grooves do not have zero mean,
the background values of the correlations are not zero, but
rather are given by the square of the mean values). However,
graphing the function〈2k[a sin(θinc) + ∆h cos θinc]〉 (Fig. 6)
shows the relation between the pairs of grooves used in the
surface design. Finally, Fig. 7 shows two examples of the
surface shapes for the two cases studied here. The variations

of the surface profile for different phase differences (between
0 and 0.5λ) in the surface design are too small to be seen
clearly on these graphs.

4. Results

All the results presented here are for a perfectly conducting
surface material and a 1D rough surface with plane wave il-
lumination. The surfaces were divided into 4000 points for
the numerical calculation and the final results were averaged
over 200 realizations of the random surface with the same
statistics. The calculation took approximately 5 minutes per
realization on a 2.4 GHz PC. For all cases, the normalized
(with respect to the incident energy) integrated scattered en-
ergy from the rough surfaces was between 0.97 and 1.03,i.e.
with an error of±3% (the normalized integrated scattered en-
ergy should be 1 for a perfectly conducting surface). Figure 8
shows an example of the results obtained with the new Kirch-
hoff method and the surfaces designed as described above.
This figure shows the single scatter (black curve), double
scatter (gray curve) and total (sum of single and double scat-
ter) (black crosses) for a surface with 8 lines above the plane
reference surface, an average line separation of 4λ and a
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FIGURE 7. Examples of the surfaces generated for grooves
(top) and lines above the surface (bottom). The curves are for
∆ϕ = (m + 0) 2π.

FIGURE 8. Graph showing the single scatter (black curve), dou-
ble scatter (gray curve) and total (sum of single and double scatter)
(black crosses) for a surface with 8 lines above the plane reference
surface, an average line separation of4λ and a variation of±2λ,
an average line width of4λ and a variation of±2λ, and an average
line height of3λ and a variation of±2λ. The line height was not
adjusted in the designed surface, and the designed phase difference
was . The designed incidence angle was 30◦.

variation of±2 λ, an average line width of 4λ and a vari-
ation of ±2 λ, and an average line height of 3λ and a

variation of ±2 λ. The line height was not adjusted in
the designed surface, and the designed phase difference was
∆φ = (m + 0.5)2π. The designed incidence angle was 30◦.
It can be seen that, as expected, the single scatter contribu-
tion appears in the specular direction and the double-scatter
term in the backscatter direction. The double-scatter peak
corresponds to the enhanced backscatter peak in these cases
because all of the double scattered rays are directed back to-
wards the source. In the double scatter term it can be seen
that there is a narrow (< 0.4◦ wide limited by the resolution
of the calculations) minimum in the backscatter direction, as
is expected for the case of∆φ = (m + 0.5)2π. Note that
the width of the interference peak in the backscatter direction
depends on the widest separation of the grooves contributing
to the interference. A different arrangement of the pairs of
grooves will give a different width of the interference peak.

Figure 9 shows only the double scatter case for the same
surface as Fig. 8, but with different phase variations used for
the surface design. The phase differences are:∆φ =random,
top left; ∆φ = (m + 0)2π, top right;∆φ = (m + 0.5)2π,
bottom left; and∆φ = (m + 0.25)2π, bottom right. For
all these cases, the single scatter term was indistinguish-
able on the same scale. It can be seen that for the ran-
dom surface the double-scatter term is smooth with no struc-
ture in the backscatter direction. However, the intensity
in the backscatter direction depends on the phase differ-
ence used in the surface design. For∆φ = (m + 0)2π,
there is an interference maximum in the backscattered di-
rection; for ∆φ = (m + 0.5)2π, there is a minimum; and
for ∆φ = (m + 0.25)2π, there is a point of inflexion, with a
small maximum at smaller negative scatter angles and a small
minimum for larger negative scatter angles, as expected from
the interference model used in the surface design. It can also
be seen that there are still secondary interference peaks at -
34◦ and -26◦. These peaks correspond to the position where
the contributions from the pairs of grooves have a phase dif-
ferenceπ different from the phase difference in the backscat-
ter direction. This can be calculated from Eq. (6), assuming
that the phase difference from (6) is given by

∆φ = 2k (a sin (θinc) + ∆h cos θinc) = (m + 0.5) 2π. (7)

Then, writing the equation for the phase difference for
different incidence and scatter angles, and requiring that this
phase difference beπ different from the value in Eq. (7) gives

k[a sin(θinc) + ∆h cos θinc] + k[a sin(θ) + ∆h cos θ]

=
{

(m + 0)2π
(m + 1)2π,

(8)

whereθ is the scatter angle. Substituting (7) into (8) and re-
arranging terms gives

2k[a sin(θ) + ∆h cos θ] =
{

(m− 0.5)2π
(m + 0.5)2π.

(9)
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FIGURE 9. Graphs of the double scatter contributions for the same surface as figure 8 but with phase differences of:∆φ = random, top
left; ∆φ = (m + 0) 2π, top right;∆φ = (m + 0.5) 2π, bottom left; and∆φ = (m + 0.25) 2π, bottom right. For all these cases the single
scatter term was indistinguishable on the same scale.

FIGURE 10. The light scattered from a random surface of grooves in a flat plane. The value of the designed phase difference is shown above
each graph. The continuous lines are the results of the calculation with the integral equation method and the crosses are the results of the
modified Kirchhoff method. The surface figures are as given in Fig. 8 and the incident angle is 30◦. The surfaces contained 8 grooves.
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FIGURE 11. As Fig. 10 but for a random surface with lines above the flat plane.

Eliminatingm from (8) and (9),

2k{a[sin(θinc)− sin(θ)] + ∆h(cos θinc − cos θ)}

=
{

2π
−2π.

(10)

To estimate the value ofθ from Eq. (10) we take the average
values of the termsa and∆h over the surface:

2k{〈a〉[sin(θinc)− sin(θ)] + 〈∆h〉(cos θinc − cos θ)}

=
{

2π
−2π.

(11)

From the parameters given above for the rough surfaces
〈a〉 = 8λ and〈∆h〉 = 0, we have

sin(θinc)− sin(θ) = ± λ

2〈a〉 (12)

and withθinc = 30◦, θ = 34.22◦, 25.94◦, in very good agree-
ment with the results of the calculations.

Figures 10 and 11 show the comparison between the mod-
ified Kirchhoff method presented here and the integral equa-
tion method presented in Ref. 3 for the surfaces presented
above. In Fig. 10 the results are for the light scattered from
a random surface of grooves in a flat plane. The value of the
designed phase difference is shown above each graph. The
continuous lines are the results of the calculation with the in-
tegral equation method, and the crosses are the results of the
modified Kirchhoff method. The surface figures are as given
in Fig. 8 and the incident angle is 30◦. The surfaces con-
tained 8 grooves. Figure 11 shows the same as Fig. 10 but

for lines above a flat plane. It can be seen that the agreement
between the results of the two methods is very good. The
Kirchhoff method tends to slightly overestimate the energy
in the double-scatter contribution, particularly with grooves
in a flat plane, perhaps due to the limitations of the geomet-
rical shadow functions used in the calculation (these shadow
functions do not take into account the diffraction at the sur-
face edges). The variation of the backscattered intensity with
the designed phase difference can be seen to be as expected
in all cases.

5. Conclusions

In this paper, it has been shown that the backscattered in-
tensity from a random rectangular-grooved surface can be
controlled with small (fractions of a wavelength) changes in
the roughness parameters. Numerical calculations performed
with a modified Kirchhoff method and with the integral equa-
tion method show good agreement and confirm the intensity
variations. Note that the effect presented here is an interfer-
ence effect so that it is wavelength dependent. The intensity
required in the design can only be achieved at the designed
wavelength.

Acknowledgements

This work was partially supported through project IN101502
from DGAPA, UNAM.

Rev. Mex. F́ıs. 52 (3) (2006) 246–254



254 N.C. BRUCE

1. E. Jakeman and B.J. Hoenders,Optica Acta29 (1982) 1587.

2. R.A. Depine and D.C. Skigin,J. Opt. Soc. Am. A11 (1994)
2844.
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