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A numerical technique for finding the limit cycles of nonautonomous dynamical systems is presented. This technique uses a matrix represen-
tation of the time derivative obtained through the trigonometric interpolation of periodic functions. This differentiation matrix yields exact
values for the derivative of a trigonometric polynomial at uniformly spaced points selected as nodes and can therefore be used as the main
ingredient of a numerical method for solving nonlinear dynamical systems. We use this technique to obtain some limit cycles and bifurcation
points of a sinusoidally driven pendulum and the steady-state response of an electric circuit.
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Se presenta una técnica nuḿerica para encontrar los ciclos lı́mite de algunos sistemas dinámicos no aut́onomos. Esta técnica usa una
representación matricial de la derivada temporal obtenida mediante interpolación de funciones periódicas. Produce valores exactos para
la derivada de un polinomio trigonométrico en puntos equiespaciados y puede ser usada como elemento principal de un método nuḿerico
para resolver sistemas dinámicos no lineales. Usamos esta técnica para obtener algunos ciclos lı́mite y puntos de bifurcación de un ṕendulo
forzado sinusoidalmente y la respuesta estacionaria de un circuito eléctrico.

Descriptores:Sistemas dińamicos no-aut́onomos; circuitos no-lineales; ciclos lı́mites; matrices de diferenciación; polinomios trigonoḿetricos.
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1. Introduction
Dynamical systems are usually given by a set of ordinary dif-
ferential equations and some initial conditions. Such prob-
lems are solved by conventional procedures such as Runge-
Kutta methods, multistep methods or general linear methods
(see for example Ref. 1). Shooting methods [2] and extrapo-
lation methods [3] have been applied to accelerate the conver-
gence of the solution to the periodic steady-state of electric
systems. Some of these implementations require a consid-
erable computational effort and therefore an alternative and
more simple technique may be welcomed.

In a series of papers (see Ref. 4 and references therein),
a Galerkin-collocation-type method for solving differential
boundary value problems has been developed. In some sim-
ple cases this technique yields exact results,i.e. the numer-
ical output can be interpolated to obtain the functions that
exactly solve the problem, and therefore it have been used
to implement a numerical scheme to solve boundary-value
problems. Such a method consists basically in the substitu-
tion of the derivatives that appear in the differential equa-
tions with finite-dimensional matrix representations of the
derivative (differentiation matrices) whose entries depend on
the nodes in a simple form. In some cases, the nodes must
be chosen according to some criterion in order to accelerate
the convergence to the solution. The differentiation matri-
ces used in this technique arise naturally in the context of the
interpolation of functions (see for instance [5]).

The aim of this paper is to present a novel method for ob-
taining numerical approximants to the steady-state solutions
of nonautonomous systems, based on the use of the differen-
tiation matrix for periodic functions given in Refs. 5 and 6.
The main idea of the method is established in Sec. 3 and two
examples are given in Sec. 4.

2. Discrete formalism

In this section, we present only the main results of our dis-
cretization scheme for periodic functions; proofs and further
applications can be found in [5] and [6]. LetD be theN ×N
matrix whose components are given by

Djk =





N∑′
l=1

1
2 cot tj−tl

2 , j = k,

τj

2τk
csc tj−tk

2 , j 6= k,

wheretk, k = 1, 2, · · · , N are arbitrary (but different) points
of [−π, π), i.e.−π < t1 < t2 < · · · < tN ≤ π and

τj =
d

dt

[ N∏

l=1

sin
t− tl

2

]
tj

.

Let x(t) be a trigonometric polynomial of degree at most
n andx andx′ denote theN × 1 vectors whose elements
arex(tj) andx′(tj), i.e. the values of the polynomial and
its derivative at the nodes respectively. Then, the matrixD
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applied tox becomes equal tox′ wheneverN = 2n + 1.
Since the derivative of a trigonometric polynomial is again a
trigonometric polynomial of the same degree, we have that

x(k) = Dkx, k = 0, 1, 2, . . . , (1)

wherex(k) is the vector whose elements are given by thekth
derivative ofx(t) evaluated at the nodes.

The differentiation matrixD takes the simple form

Djk =





0, j = k,

(−1)j+k

2 sin π
N (j−k) , j 6= k,

(2)

if the nodes are chosen to be theN equidistant pointsi

tj = −π +
2πj

N
, j = 1, 2, · · · , N. (3)

If the periodic functionx(t) is not a polynomial, a residual
vector depending onx(t), k, andN must be added to the
right-hand side of (1). However, it is expected that the norm
of such a vector will approach zero as the number of nodes
is increased, sincex(t) can be expanded in a Fourier series.
Therefore, ifN is great enough, the residual vector can be
ignored and the functionx(k)(t) can be approximated by an
interpolation of the elements ofDkx.

3. Method

Let us consider now a nonautonomous system ofm compo-
nents described by

ẋ = f(x, ωt), (4)

wherex is the vector of componentsx1(t), x2(t), . . . , xm(t)
andf is a nonlinear vector function ofm + 1 variables, pe-
riodic in t, with periodT = 2π/ω. A very important prob-
lem is to find the response of the system in the steady-state
regime. Taking into account the periodicity of this response,
we can use the differentiation matrix (2) to obtain approxi-
mants to the steady-state solution of (4) according to the fol-
lowing scheme.

First of all, we makeωt → t in (4) in order to change the
period off to 2π. Thus, (4) becomes

ωẋ = f(x, t). (5)

Let us take an odd numberN of points tj as given by (3)
and evaluate (5) at each node to form an equality between
Nm × 1 vectors in such a way that the firstN entries of
the left-hand side are the components of the vectorẋ1, i.e.
ẋ1(t1), ẋ1(t2), . . . , ẋ1(tN ); the following N entries are the
components oḟx2, i.e. ẋ2(t1), ẋ2(t2), . . . , ẋ2(tN ), and so
on. Now we can approximate the vector blocksẋk by Dxk

to obtain the discrete form of (5), which can be written as

ω

N∑

l=1

Djlxk(tl) = fk(x1(tj), x2(tj), . . . , xm(tj), tj), (6)

wherej = 1, 2, . . . N , andk = 1, 2, . . . , m, or in the more
compact form

ωDX = F, (7)

whereF denotes theNm×1 vector whose elements are given
by the right-hand side of (6) first runningj and thenk, X is
the vector whose elements are given byxk(tj) (the unknown
solution) ordered in a similar way, andD = 1m ⊗D, where
1m is the identity matrix of dimensionm.

The points on which our method is based are the follow-
ing:

1. If (4) has a limit cycle, then the solution of (7) is an
approximation of the steady-state solution of (4).

2. Since (7) [or equivalently (6)] is a system ofNm non-
linear equations withNm unknownsxk(tj), its so-
lution can be obtained by using a standard procedure
(Newton’s method for instance).

This shows that a nonautonomous system in the steady-
state regime can be described approximately by a system of
nonlinear algebraic equations. The procedure sketched in
these statements is not concerned at all with the initial con-
ditions of the system and yields simultaneously all the values
of xk(tj) (at all times). Thus, this method is quite different in
essence from those designed as initial-value-problem solvers.

To obtain the solution of (6), we can use the Newton
method or some variation of it with global convergence. As
is well-known, it is not always easy to give a good initial ap-
proximationX0 to attain convergence in Newton’s method.
For dynamical systems depending on a parameterp, this
problem can be circumvented by buildingX0 with the val-
ues of a known solution of the system for a certain value of
the parameterp0 (this is the case of many dynamical sys-
tems). By using such an initial approximation, it is possible
to obtain the steady-state solution for a value ofp close to
p0. By iteration of this procedure, the solution for any value
of p can be obtained. For the case in which a solution is not
known, a few Runge-Kutta integrations of the system yield a
good initial approximation, but this procedure can be time-
consuming.

Due to the nature of our method for approximating the
steady-state solution of (5), an algorithm for this technique
will consist necessarily in the algorithm selected to solve the
set of nonlinear equations.

In the following section, we solve two important nonau-
tonomous dynamical systems and we find, according to the
case, the limit cycles and bifurcation points.

4. Test cases

We have chosen a chaotic mechanical system and a very com-
mon electrical circuit as test cases. To find their steady-state
solutions, we rewrite the equations describing the dynamics
of these problems in the discretized form (7) and use a FOR-
TRAN90 program with standard libraries running on a per-
sonal computer to solve them.
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4.1. Test case 1: the driven pendulum

In spite of the fact that the classical pendulum is a very old
problem, interest in it is still growing. The pendulum be-
comes a chaotic system when it is driven at the pivot point.
Let us consider a rigid and planar pendulum consisting of
a mass attached to a light rod of lengthl which is verti-
cally driven by a sinusoidal force of the form−A cos ωt and
damped by a linear viscous force with dampingµ as in [7].
If θ denotes the angular displacement of the pendulum mea-
sured from the vertically downward position, the equation of
motion is

d2θ

dt2
+ a

dθ

dt
+ (1 + b cosωt) sin θ = 0, (8)

where

a =
2µ√
lg

, b =
Aω2

l
.

To compare the steady-state solutions yielded by our proce-
dure with those obtained by other authors, we take0 ≤ b ≤
200 (the driving amplitude) as the control parameter,a = 0.1
andω = 17.5. For values ofb near zero, a good initial guess
is a vectorX0 whose entries are a sinusoidal deviation from
π. Once we have found a solutionX(p), we proceed to obtain
X(p + δp) by usingX0 = X(p). We have takenN = 101
nodes of the form (3) in this case.

As is known, this system presents period-doubling and
bifurcation. Figure 1 displays these phenomena for solutions
of (8) close to the inverted stateθ = π. To make the draw-
ing more simple, we only plot the maximum and minimum
values of the angular displacementθ(t) as functions of the
control parameterb. Other solutions, such as the hanging
state, are not considered here.

FIGURE 1. Maximum and minimum values of the angular dis-
placementθ of the vertically driven pendulum (8) vs. the driven
amplitudeb for a = 0.1 andω = 17.5. For any value ofb, the
solutionθ1 = π (the inverted pendulum) was always found. The
curves labeled byθk, k = 2, · · · , 5 correspond to different solu-
tions.

FIGURE 2. Phase-space diagram of the period-2 “mariachi” solu-
tion θ4 for a = 0.1, ω = 17.5 andb = 181.

FIGURE 3. A typical commutation circuit.

The information displayed is in line with the findings of
other authors (see for example [7]), but in our case the prob-
lem of stability of the solution is not revised. In Fig. 1,θ1

is the solution corresponding to the inverted state,θ2 andθ3

correspond in essence to the same period-1 solution (one can
get the second from the first by a reflection through the axis
θ = π), andθ4 andθ5 are period-2 solutions both of which
oscillate about the vertical. The asymmetrical way in which
θ5 oscillates is illustrated in Fig. 2.

4.2. Test case 2: a commutation circuit

Figure 3 shows a rectifier-filter circuit and a resistive load,
excited by a squared wave pulse voltage source. This circuit
is a simplified model for a typical output stage of a switching
power supply.

The equations for the state variablesV1 = x1, V2 = x2

andiL = x3 can be simplified to the form

ẋ1 =
1

C1R2

[
Vs − x1 − Vd − isR1

(
exp(

Vdq

ηkT
)− 1

)]
,

ẋ2 =
1

C2(R3 + R4)

(
− x2 + R4x3

)
,
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FIGURE 4. Steady-state solution for the diode currentid = x3 + C1ẋ1 and the voltageV0 = C2R3ẋ2 + x2 along two periods obtained
by the present method withN = 251 nodes (4a) and by a Spice simulation (4b). The left-hand and right-hand vertical axes are used for
different scales.

ẋ3 =
1
L

[
Vs − R4

(R3 + R4)
x2 − R3R4

(R3 + R4)
x3

−Vd − isR1

(
exp(

Vdq

ηkT
)− 1

)]
, (9)

where

Vd = Vs − C1(R1 + R2)ẋ1 − x1 −R1x3,

k is the Boltzmann constant,q is the electron charge,T the
absolute temperature which is taken at the standard value
T=300◦K, andη is the emission coefficient. The driving volt-
age is chosen asVs(t) = Amsgn(2πt/T ), t ∈ [−T/2, T/2],
and the remaining parameters of this problem are taken at
typical values: Am = 5.6V, T = 10−5s, is = 10−8A,
R1 = 0.0149Ω, R2 = 0.15Ω, R3 = 0.2Ω, R4 = 2.0Ω, C1 =
470.0 × 10−6F, C2 = 20.0 × 10−6F, L = 20.0 × 10−6H,
η = 0.8953.

In order to compare the performance of the technique pre-
sented in this paper, we have simulated the circuit using an LT
version of the Spice program which is currently available for
free from Linear Technology. For this circuit, the response of
the system was computed by the Spice simulation over 150
cycles to achieve the steady-state. A maximum step size of
0.04µs was specified. In our case, we use 251 equispaced
time valuestj of the form (3) (yielding a constant step size
approximately equal to0.04µs), and all of the steady-state

response values were computed at once. Since Spice uses an
adaptive strategy for the step size, it is not possible to com-
pare both of the results on a point-by-point basis. However,
it turns out that they agree generally up to10−2. It is worth
to notice that the present method is able to handle a discon-
tinuous driving voltage pretty well.

The outputs yielded by the present method and by the
Spice simulation forid = x3 +C1ẋ1 andV0 = C2R3ẋ2 +x2

are displayed in Figs. 4a and 4b, respectively.

5. Final remarks

As the simple tests of the previous section show, the method
presented in this paper gives a novel approach to obtaining
the limit cycles of nonautonomous systems and represents an
alternative to the conventional methods of integration. Based
on a well-behaved differentiation matrix for periodic func-
tions, it departs from standard procedures in the way in which
the limit cycle is found: the usual integration of the system
for long periods of time is replaced by the problem of finding
the solution to a set of nonlinear algebraic equations. This
feature makes this method a tool for studying dynamical sys-
tems from a new point of view.
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i. The same result is obtained for the set of pointstj = π(2j −
N − 1)/N .
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