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A limit-cycle solver for nonautonomous dynamical systems
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A numerical technique for finding the limit cycles of nonautonomous dynamical systems is presented. This technique uses a matrix repre
tation of the time derivative obtained through the trigonometric interpolation of periodic functions. This differentiation matrix yields exa
values for the derivative of a trigonometric polynomial at uniformly spaced points selected as nodes and can therefore be used as the
ingredient of a numerical method for solving nonlinear dynamical systems. We use this technique to obtain some limit cycles and bifurca
points of a sinusoidally driven pendulum and the steady-state response of an electric circuit.

Keywords: Nonautonomous dynamical systems; nonlinear circuits; limit cycles; differentiation matrices; trigopnometric polynomials.

Se presenta unadcnica nur@rica para encontrar los ciclosrlite de algunos sistemas dimicos no auinomos. Estaécnica usa una
representaéin matricial de la derivada temporal obtenida mediante intergniagté funciones perdicas. Produce valores exactos para
la derivada de un polinomio trigondtrico en puntos equiespaciados y puede ser usada como elemento principal ®dm munérico
para resolver sistemas dimicos no lineales. Usamos estariica para obtener algunos ciclasite y puntos de bifurcadn de un gndulo
forzado sinusoidalmente y la respuesta estacionaria de un cirozdtoied.

Descriptores:Sistemas diamicos no-atnomos; circuitos no-lineales; cicldsiites; matrices de diferencidci; polinomios trigonoratricos.

PACS: 05.45.Pq; 02.60.Lj; 02.60.Cb

1. Introduction The aim of this paper is to present a novel method for ob-
Dynamical systems are usually given by a set of ordinary diffaining numerical approximants to the steady-state solutions
ferential equations and some initial conditions. Such probof nonautonomous systems, based on the use of the differen-
lems are solved by conventional procedures such as Rung#ation matrix for periodic functions given in Refs. 5 and 6.
Kutta methods, multistep methods or general linear methodghe main idea of the method is established in Sec. 3 and two
(see for example Ref. 1). Shooting methods [2] and extrapoexamples are given in Sec. 4.

lation methods [3] have been applied to accelerate the conver-

gence of the solution to the periodic steady-state of electri?. Discrete formalism

systems. Some of these implementations require a consid-

erable computational effort and therefore an alternative and? this section, we present only the main results of our dis-
more simple technique may be welcomed. cretization scheme for periodic functions; proofs and further

In a series of papers (see Ref. 4 and references therei p|c:I|.cat|ﬁns can be foun? in [5] a_md [%]' LBtbe theN x N
a Galerkin-collocation-type method for solving differential atrix whose components are given by

boundary value problems has been developed. In some sim- N
. 3 i . /1 t ti—t; . k
ple cases this technique yields exact resulkés,the numer- D — Y. geot L5, j=k,
ical output can be interpolated to obtain the functions that I z=T17 t—th )
exactly solve the problem, and therefore it have been used a, sc g, J#K,
to implement a numerical scheme to solve boundary-valugyheret,, k = 1,2, - -- , N are arbitrary (but different) points

problems. Such a method consists basically in the substitysf [_r 7) ie. —7 <t; <ty <--- <ty < 7and
tion of the derivatives that appear in the differential equa-
tions with finite-dimensional matrix representations of the d Ct—1

derivative (differentiation matrices) whose entries depend on T w [H S ]t

the nodes in a simple form. In some cases, the nodes must (=1 ’

be chosen according to some criterion in order to accelerateet «(¢) be a trigonometric polynomial of degree at most
the convergence to the solution. The differentiation matri-n andz andz’ denote theN x 1 vectors whose elements
ces used in this technique arise naturally in the context of thare z(¢,) andz’(¢;), i.e. the values of the polynomial and
interpolation of functions (see for instance [5]). its derivative at the nodes respectively. Then, the mdrix

N
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applied tox becomes equal te’ wheneverN = 2n + 1. wherej = 1,2,... N, andk = 1,2,...,m, or in the more
Since the derivative of a trigonometric polynomial is again acompact form
trigonometric polynomial of the same degree, we have that wDX = F, @)

B — Dk k—=0.1.92. . 1) whereF denotes théVm x 1 vector whose elements are given
’ T by the right-hand side of (6) first runningand thenk, X is
wherez(®) is the vector whose elements are given byitie  the vector whose elements are givenuyt;) (the unknown

derivative ofz(t) evaluated at the nodes. solution) ordered in a similar way, afiti= 1,, @ D, where
The differentiation matrixD takes the simple form 1, is the identity matrix of dimensiom.
The points on which our method is based are the follow-
0, j=k ing:
Dj = ik (2 e ) )
255;1%)(]_716)7 j#k, 1. If (4) has a limit cycle, then the solution of (7) is an

approximation of the steady-state solution of (4).

if the nodes are chosen to be tNeequidistant points 2. Since (7) [or equivalently (6)] is a system fm non-

b 2y 19 N 3) linear equations withVm unknownszy(t;), its so-
e e R lution can be obtained by using a standard procedure
If the periodic functionz(¢) is not a polynomial, a residual (Newton's method for instance).
vector depending or:(t), k, and N must be added to the This shows that a nonautonomous system in the steady-

right-hand side of (1). However, it is expected that the normstate regime can be described approximately by a system of
of such a vector will approach zero as the number of nodesonlinear algebraic equations. The procedure sketched in
is increased, since(t) can be expanded in a Fourier series.these statements is not concerned at all with the initial con-
Therefore, if NV is great enough, the residual vector can beditions of the system and yields simultaneously all the values
ignored and the function®)(¢) can be approximated by an of z(t,) (at all imes). Thus, this method is quite different in

interpolation of the elements @ x. essence from those designed as initial-value-problem solvers.
To obtain the solution of (6), we can use the Newton
3. Method method or some variation of it with global convergence. As

is well-known, it is not always easy to give a good initial ap-
Let us consider now a honautonomous Systemc[fompo- prOXimationX() to attain convergence in Newton’s method.
nents described by For dynamical systems depending on a paramgjethis
problem can be circumvented by buildixg with the val-
= f(z,wt), (4)  ues of a known solution of the system for a certain value of
the parametep, (this is the case of many dynamical sys-
tems). By using such an initial approximation, it is possible
to obtain the steady-state solution for a valuepaflose to

wherez is the vector of components (¢), z2(t), . .., Ty (t)
and f is a nonlinear vector function ofi + 1 variables, pe-
riodic in ¢, with periodT" = 27 /w. A very important prob- gy itaration of this procedure, the solution for any value
lem is to find the response of the system in the steady-stalg , can be obtained. For the case in which a solution is not
regime. Taking into account the periodicity of this reSponseynawn, a few Runge-Kutta integrations of the system yield a
we can use the differentiation matrix (2) to obtain approxi-good initial approximation, but this procedure can be time-
mants to the steady-state solution of (4) according to the fo'éonsuming.
lowing scheme. _ _ Due to the nature of our method for approximating the
First of all, we makevt — ¢ in (4) in order to change the - gyo54y.state solution of (5), an algorithm for this technique
period of f to 2. Thus, (4) becomes will consist necessarily in the algorithm selected to solve the
) set of nonlinear equations.
In the following section, we solve two important nonau-
Let us take an odd numbéY of pointst; as given by (3) tonomous dynamical systems and we find, according to the
and evaluate (5) at each node to form an equality betweegase, the limit cycles and bifurcation points.
Nm x 1 vectors in such a way that the fir8f entries of
the left-hand side are the components of the vegtori.e. 4. Test cases
%1(t1), 41 (t2), ..., &1(tn); the following N entries are the
components ofiy, i.e. da(t1),&2(t2),...,%2(tn), and so  We have chosen a chaotic mechanical system and a very com-
on. Now we can approximate the vector bloaksby Dz, mon electrical circuit as test cases. To find their steady-state
to obtain the discrete form of (5), which can be written as  solutions, we rewrite the equations describing the dynamics
of these problems in the discretized form (7) and use a FOR-

N - . . .
WZDjlxk(tl) = fulm1(t)), 22(t;), . . 2 (ts),15), (6) TRAN9O program with standard libraries running on a per-
1=1

wi = f(x,t).

sonal computer to solve them.
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0.6

4.1. Testcase 1: the driven pendulum

In spite of the fact that the classical pendulum is a very old
problem, interest in it is still growing. The pendulum be- 0.3
comes a chaotic system when it is driven at the pivot point.
Let us consider a rigid and planar pendulum consisting of -
a mass attached to a light rod of lengtlwhich is verti- deo

cally driven by a sinusoidal force of the formA cos wt and dr 0.0
damped by a linear viscous force with dampjna@s in [7]. L _
If & denotes the angular displacement of the pendulum mea-
sured from the vertically downward position, the equation of 0.3 .
motion is L _
d*0 de
- e 1+b t)sinf = 8 -0.6 I 1 I I l
dt? Jradt + (L +beoswt)sin 0, ® 07 08 09 10 11 12 13 14 15
where O/n
R . . o
= Jig’ = FIGURE 2. Phase-space diagram of the period-2 “mariachi” solu-

) . tion 64 fora = 0.1, w = 17.5 andb = 181.
To compare the steady-state solutions yielded by our proce-

dure with those obtained by other authors, we take b <
200 (the driving amplitude) as the control parametes: 0.1
andw = 17.5. For values ob near zero, a good initial guess
is a vectorX, whose entries are a sinusoidal deviation from
7. Once we have found a solutiaf(p), we proceed to obtain
X(p + dp) by usingXy = X(p). We have takerV = 101
nodes of the form (3) in this case. / C,

As is known, this system presents period-doubling and —l: —l_
bifurcation. Figure 1 displays these phenomena for solutions L . >
of (8) close to the inverted state= 7. To make the draw-
ing more simple, we only plot the maximum and minimum
values of the angular displacemei{t) as functions of the
control parameteb. Other solutions, such as the hanging oth
state, are not considered here.

FIGURE 3. A typical commutation circuit.

The information displayed is in line with the findings of

er authors (see for example [7]), but in our case the prob-
lem of stability of the solution is not revised. In Fig. 4,

is the solution corresponding to the inverted stéteandfs
correspond in essence to the same period-1 solution (one can
get the second from the first by a reflection through the axis
f# = w), andd, andfs are period-2 solutions both of which
oscillate about the vertical. The asymmetrical way in which
05 oscillates is illustrated in Fig. 2.

b/m 1 4.2. Testcase 2: a commutation circuit
08 Figure 3 shows a rectifier-filter circuit and a resistive load,
06l excited by a squared wave pulse voltage source. This circuit
is a simplified model for a typical output stage of a switching
0.4 power supply.
o2 L The equations for the state variablés = x, Vo =
“0 20 40 60 8 100 120 140 160 180 200 andi;, = x3 can be simplified to the form
b
FIGURE 1. Maximum and minimum values of the angular dis- T = 1 [VS Y isRl(exp(@) _ 1)}7
placemen® of the vertically driven pendulum (8) vs. the driven CiRy nkT
amplitudeb for ¢ = 0.1 andw = 17.5. For any value ob, the . 1
solutiond; = = (the inverted pendulum) was always found. The 12 = m( — T2+ R45¢3)a
curves labeled by, k = 2,--- ,5 correspond to different solu-
tions.
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FIGURE 4. Steady-state solution for the diode current= x5 + C1z; and the voltagd, = C2R372 + 2 along two periods obtained
by the present method witV = 251 nodes (4a) and by a Spice simulation (4b). The left-hand and right-hand vertical axes are used for
different scales.

response values were computed at once. Since Spice uses an
adaptive strategy for the step size, it is not possible to com-
23 = — |V, pare both of the results on a point-by-point basis. However,
it turns out that they agree generally upl2. It is worth
ViR ( (YAl _ 1)} ) to notice that the present method is able to handle a discon-

d — lsft{ X nkT ’ tinuous driving voltage pretty well.

The outputs yielded by the present method and by the
where Spice simulation foty = 23+ C#; andVy = CoR3%s + 2

are displayed in Figs. 4a and 4b, respectively.

Vd = ‘/s — Cl(Rl —+ Rg)fl — X1 — R1x37

k is the Boltzmann constany, is the electron chargd, the 5. Final remarks

absolute temperature which is taken at the standard value . . )

T=300°K, ands, is the emission coefficient. The driving volt- AS the simple tests of the previous section show, the method
age is chosen & (t) = A,,sgn2xt/T), t € [-T/2,T/2], pres_en_ted in this paper gives a novel approach to obtaining
and the remaining parameters of this problem are taken 4pe limit cycles of nonautonomous systems and represents an
typical values: A,, = 5.6V, T = 10~%s, i, = 10-8A, alternative to the conventional methods of integration. Based

Ry = 0.0149Q, Ry = 0.15Q, Ry = 0.2Q, R, = 2.00,C, =  on a well-behaved differentiation matrix for periodic func-
470.0 x 107SF, Cy = 20.0 x 10~5F, L. = 20.0 x 10-6H, tions, itdeparts from standard procedures in the way in which
n = 0.8953. the limit cycle is found: the usual integration of the system

In order to compare the performance of the technique prefor long p_eriods of time is rep_laced by the problem _of finding
sented in this paper, we have simulated the circuit using an L§he solution to a set of nonlinear algebraic equations. This
version of the Spice program which is currently available forféature makes this method a tool for studying dynamical sys-
free from Linear Technology. For this circuit, the response oft€ms from a new point of view.
the system was computed by the Spice simulation over 150
cycles to achieve the steady-state. A maximum step size ghcknowledgment
0.04us was specified. In our case, we use 251 equispaced
time valuest; of the form (3) (yielding a constant step size RGC wishes to thank Dr. A. Medina and Dr. N. Giardor
approximately equal t0.04.s), and all of the steady-state very useful discussions and suggestions.

i. The same result is obtained for the set of points= 7 (25 — Computational Mathematics, Cambridge University Press,
N —1)/N. Cambridge, 1998).
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