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Optical conductivity the optical conductivity resonance from an exact description
of the electronic states around the Fermi energy
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In this paper we show that the optical conductivity can be calculated to agree with experiment if the details of the electronic states around the
Fermi level are taken into account with some care. More precisely, we present a calculation of the optical conductivity in YBa2Cu3O7 on
the basis of an exact (ab initio) three dimensional electronic band structure calculation from which we extract the information on the bands
near the Fermi energy that can be associated with the CuO2 plane-carrier states. To simulate the superconducting state, we superimpose a
gap on these bands alone. On these basis, from the known Kubo-Greenwood formula we calculate the optical conductivity in the normal and
in the superconducting state. Our calculation agrees with the experimental result even in the higher part of the frequency spectrum. Our way
of calculating the resonance suggests a model of evolution for the bands under the effect of doping consistent with the recent experimental
findings that the optical resonance can disappear while the sample remains superconducting. An important conclusion of this paper is that the
resonance depends mostly on the details of the electronic band structure. It is enough to take into account the effect of the superconducting
transition through a single parameter (the gap). No details on the mechanism are needed, so no mechanism can be tested on this basis. Our
calculation suggests a model of evolution for the bands around the Fermi energy under doping that gives some microscopic foundations to
the recent experiments that show unambiguously that the resonance cannot be the cause of superconductivity. Most importantly, it indicates
how the background is built up and depends on the electronic excitations accessible through values of the energy transfer on a wider interval
than the one contributing directly to the resonance. These electronic excitations are determined by the optical transitions allowed. From this
point of view, it is an obvious consequence that the background is with small differences, common to all the cuprates having a CuO2 plane.
But the most important conclusion is that the background contains essentially the same physics as the resonance does, and so it does not have
any detailed information on the superconducting mechanism as well, contrary to the conclusions of recent work.
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En esta carta mostramos que la conductividadóptica puede calcularse con base en el cálculo detallado de los estados electrónicos reales en
las cercańıas del nivel de Fermi. Ḿas exactamente, presentamos aquı́ el cálculo de la conductividad́optica para el material superconductor
YBa2Cu3O7 basado en un cálculo tridimensionalab initio en el cual hemos identificado las bandas que pueden asociarse al plano de CuO2.
Para simular el estado superconductor, imponemos a mano una brecha a esas bandas exclusivamente. Nuestro cálculo es pues bidimensional
pero usa información de un ćalculo tridimensional. Usamos la conocida fórmula de Kubo-Greenwood, sin hacer uso de la brecha para obtener
el cálculo en el estado normal e imponiendo la brecha en la forma descrita para el estado superconductor. Ambos resultados se ajustan muy
bien con los experimentos conocidos incluso en la parte alta del espectro. Nuestra forma de calcular sugiere un modelo para la evolución
de las bandas en función del contenido de oxı́geno que es consistente con el hallazgo reciente de que la resonancia desaparece antes de que
la muestra deje de ser superconductora. Una conclusión importante de este trabajo es que la resonancia depende en forma muy directa de
los detalles de la estructura de bandas y, por lo tanto, no incluir esos detalles, tiene un efecto quizás irremediable. Por otro lado, el modelo
muestra que la superconductividad misma, puede ser bastante simple. Fue suficiente incluir un solo parámetro, la brecha, sin hacer referencia
a ninǵun mecanismo, para obtener el resultado. Este cálculo sugiere un modelo para la evolución de las bandas con el contenido de oxı́geno
que le da un fundamento microscópico a los experimentos recientes y que muestra, por el contrario, que la resonancia no puede explicar
el mecanismo. Lo mismo vale para el ruido de fondo al cual se le atribuyó importancia, en este sentido, recientemente. Más importante
aun, este ćalculo muestra como el ruido de fondo está determinado por las transicionesópticas permitidas en las frecuencias aledañas a la
resonancia. Todas vienen del plano de CuO2 y, en ese sentido, es normal que el ruido de fondo sea, detalle más, detalle menos, coḿun a todos
los cupratos. Pero la conclusión más importante es que el ruido de fondo no contiene ninguna información sobre el mecanismo, conclusión
que es contraria a la de algunos trabajos recientes.

Descriptores:Superconductividad; mecanismo; YBa2Cu3O7; conductividad́optica; resonancia.

PACS: 74.20-z; 74.25.Gz; 74.72.Bk

1. Introduction

J. Hwang, T.Timusk, and G.D. Gu [1] have reported an in-
frared spectroscopy study of optical conductivity as a func-
tion of doping in various samples of Bi-2212. The effect of
doping into Bi-2212 is to lower both the critical temperature,

Tc, and the intensity of the resonance peak that appears in
the superconducting state. This fact represented a unique op-
portunity to separate the resonance from the mechanism of
superconductivity by means of a direct experiment. These
authors have reported the fabrication of several superconduct-
ing samples of Bi-2212 with different doping content up to a



302 F. PUCH AND R. BAQUERO

particular one with 0.23 holes per Cu atom that resonance.
Its high critical temperature (Tc=55K) demonstrates that su-
perconductivity in this sample is still robust. This experi-
mental fact leads to the important conclusion that resonance
cannot be taken as the cause of superconductivity. Neverthe-
less, since resonance appears in the superconducting and only
in the superconducting state, it should be somehow tightly
bound to the phase transition itself.

A resonance peak [2,3] also appears in the spin polarized
magnetic susceptibility,χs(ω), at a frequency,ωres, that is
characteristic of the specific sample. The magnetic resonance
peak appears as a common excitation to the superconducting
state of all high-Tc superconductors investigated by Inelastic
Neutron Scattering (INS) so far with a maximum Tc ≈ 90K.
The existence of the excitation does not depend on the num-
ber of CuO2 planes per unit cell: one for Tl2Ba2CuO6+δ, two
for YBa2Cu3O6+δ and Bi2Sr2CaCu2O8+δ. It has never been
observed in the monolayer system La2−xSrxCuO4 with max-
imum Tc≈ 40K [4]. Although there are several proposals in
the literature [4] to associate the origin of the resonance with
a mode of magnetic origin, we want to point to a direct and
simple relation between the effect that the superconducting
phase transition has on the electronic band structure, and the
resonance itself.

In their paper above quoted, J. Hwang, T. Timusk and
G.D. Gu present the optical single-particle self-energy which
is directly related to optical conductivity. They call the res-
onance that they find ”the resonance optical mode”. This
resonance optical mode in the optical conductivity,σopt(ω),
is produced at the same characteristic frequency,ωres, as in
the susceptibility. Both resonances differ on details, how-
ever. It is important to note that the two thermodynamic func-
tions can be considered mutually exclusive in the sense that,
while the non-zero contributions to the matrix elements in
the spin polarized susceptibility are intra-band, in the optical
conductivity these are inter-band transitions. In that sense it
might appear at first sight surprising that the two resonances
have the same origin. Carbotteet al. [5] assumed that the
resonance inχs(ω) can be related to the effective spectrum
of the spin fluctuations, and used it to construct the Eliash-
berg function of the conventional theory of superconductiv-
ity from which all the information on thermodynamics fol-
lows [6]. They have used this knowledge to calculate the
resonance in the optical conductivity,σopt(ω), in the super-
conducting state. Their result agrees with experiment. They
further used an inversion procedure [7] that allows them to
extract information about the Eliashberg function from op-
tical conductivity. In this way they got back their assumed
Eliashberg function (directly related toχs(ω) in their work).
The procedure used by Carbotteet al. establishes an essen-
tially common origin to the resonance in both thermodynamic
functions (not to the functions themselves). Since the exper-
iments by J. Hwanget al. [1] clearly show that the resonance
in the optical conductivity is not responsible for superconduc-
tivity, it is natural to expect that the resonance in the suscep-
tibility will not be responsible for superconductivity either,

and therefore cannot be directly related to the real Eliashberg
function. But an important point is that Carbotteet al. show
explicitly that the resonances in both functions have a com-
mon origin. Resonance has been the object of a substantial
amount of work in the last few years [5,8–19].

ARPES experiments by Lanzaraet al. [20] have shown
that a “kink” in the kinetic energy spectra of several cuprate
superconductors reveals a coupling of the carriers to the in-
termediate boson that causes the superconducting transition.
They have attributed it to phonons. Other researchers have at-
tributed it rather to a coupling to a magnetic mode [5,21–23].
A more recent paper by Lanzaraet al. [24] emphasizes
the same previous conclusion: the intermediate boson is a
phonon. It is clear [1] that the optical self-energy as mea-
sured by infrared is somehow related to the quasiparticle self-
energy as measured in ARPES experiments but they are not
identical, and there are important differences in the two quan-
tities [25].

To calculate the optical conductivity in YBa2Cu3O7, we
start from anab initio LAPW three dimensional (3D) cal-
culation of the electronic band structure [26–28]. When we
compared the band structure calculations in the literature, we
found that there is a certain disagreement on the exact de-
scription of the bands around the Fermi level, EF . To im-
prove our results according to experiments and to the ac-
cepted information on the bands around the Fermi level, we
found it useful to fit our 3Dab initio bands to a tight-binding
Hamiltonian. This allows us to slightly fine-tune our bands
around the Fermi level (see below).

We next calculate the optical conductivity,σopt(ω), in
the normal state for YBa2Cu3O7 from the known Kubo-
Greenwood formula [29] and compare the result with our ex-
periment [28]. For that purpose, we have identified the elec-
tronic bands of the carriers associated with the CuO2 plane.
We then perform the same calculation in the superconduct-
ing state. To simulate the superconducting state, we have
introduced into the electronic band structure a superconduct-
ing gap in the bands that describe the carriers on the CuO2

plane and only in them. We perform the calculation using the
same formula and our built up “superconducting band struc-
ture”. Resonance appears in the superconducting and only in
the superconducting state, atωres = 2∆ = 38meV (∆ is
the gap that we used for the CuO2-plane carrier-bands). So
we argue that the superconducting phase transition effectively
modifies the electronic bands around the Fermi level and that
this feature opens up several new channels for allowed tran-
sitions with energy transferωres = 2∆ and thus produces
the experimentally observed effect. We will show below how
both the intra- and inter-band transitions are projected by the
superconducting phase transition to the same energy2∆, a
fact that explains the common origin of the resonance in both
thermodynamic functions.

The model that we present here has the advantage that, on
exactly the same footing, it accounts for several experimen-
tal results of different characters [30]. We will comment on
this further below. We deal in this paper with YBa2Cu3O7.
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Our model sharply separates the cause of the resonance from
the cause of superconductivity as the infrared experiments [1]
indicate. The resonance arises from the effect that the su-
perconducting transition (the gap) has on the electronic band
structure, but superconductivity (the gap itself) can arise from
whatever mechanism. Further, to the extent to which we can
account for the resonance by taking only the gap value as the
information on the superconducting state, it is clear that no
information on the specific mechanism can be obtained from
it. It appears that the resonance does not contain enough in-
formation on the superconducting mechanism to be useful to
decide on it.

The background is built up from the allowed transitions
at energies different fromωres. The physics that it contains
is essentially the same. No information on the mechanism
can be extracted from the background either, since it appears
that the main contribution to the optical conductivity comes
from the optical allowed transitions determined by the elec-
tronic states around the Fermi energy and by the influence
that the superconducting phase transition (solely through the
gap value) has on them. The background as a source of in-
formation on the mechanism has been suggested by Hwang
et al. [1] solely on the basis that it is common to all HTSC.
It has been further emphasized by Norman [31]. As it ap-
pears to us, neither the resonance nor the background in the
optical conductivity can be used effectively to decide on the
mechanism of HTSC.

The situation seems not to be the same with the ”kink” in
the self-energy found in the ARPES experiments [20]. The
kink does reveal a coupling and most probably is the key to
the superconducting mechanism. Carbotteet al. [25] have
argued that the ARPES experiments can be interpreted as
supporting either spin-fluctuations or the phonon-mediated
mechanism. They eliminate the possibility of a phonon-
mediated mechanism on the basis of their own calculation
of the optical conductivity, assuming this mechanism gives
a wrong dependence of this function at high frequencies.
As we shall see below, our model gives the correct high-
frequency dependence of the optical conductivity. We do not
assume any mechanism; we only introduce a detailed descrip-
tion of the electronic bands. At this point it is worth quoting
the work by Phillips [32], who argues that the carrier life-
times are consistent with a phonon mechanism. Nevertheless,
we want to point that our work does not prove or favor any
mechanism whatsoever. We go backwards instead. We start
from the result (the gap) that, if taken from a theoretical for-
mulation, would make it consistent with the thermodynamics
of HTSC according to experiment. We deal here with a par-
ticular experiment and with a particular HTSC.

The rest of this letter is organized as follows. In Sec. 2,
we present our electronic band structure and compare it with
other work in the literature. We also include at this point our
description of the superconducting state. In Sec. 3, we cal-
culate the optical conductivity for YBa2Cu3O7 in the normal
and in the superconducting state, and analyze our result. In
Sec. 4, we show that our model leads directly to a sugges-

tion for the approximate way in which the electronic band
structure might develop around the Fermi Energy under dop-
ing for the observed property to emerge quite naturally (the
resonance disappears while superconductivity remains). In
the final Sec. 5, we put our model in perspective and draw
our conclusions. At this point we make some experimental
suggestions that might contribute to proving the usefulness
of our model. In particular, we suggest that there is no rea-
son for the two resonances to disappear at the same doping
concentration. The “kink” in the ARPES experiments should
remain as long as the sample remains superconducting re-
gardless of whether it presents one, two or no-resonance at
all; only then would it be the key experiment to revealing the
mechanism.

2. The Normal and the superconducting state
of YBa2Cu3O7

2.1. The Electronic Band Structure

The 3D-electronic band structure of YBa2Cu3O7 has been
calculated by differentab initio methods and by the tight-
binding method [26, 27, 33–41]. When we compare the dif-
ferent results in the literature, we find that there are differ-
ences. The exact position of the bands can differ by as much
as 100 meV. These are important differences on the scale
of meV which is the proper scale for describing the effect
of the superconducting gap.

We first made anab initio LAPW calculation of the
normal-state electronic band structure using the WIEN97
code and the parameters of reference [39]. We found it use-
ful to further fit our calculation to a tight-binding description
as well as to analyze some details of it [26, 27]. We have
paid special attention to the description of the bands near the
Fermi energy. For example, we took care that the extended
van Hove singularity around the high symmetry point Y [42]

FIGURE 1. 3D-electronic band structure of YBa2Cu3O7 near the
Fermi level. Bands 2 and 3 are in-CuO2-plane states; bands 1 and 4
belong to in-CuO-chain states. Notice that the dispersion in the in-
terval S-X is not very different from the one in the interval S-Y for
the bands labelled 2 and 3 (the in-CuO2-plane states). This is not
true for bands labelled 1 and 4 that are in-CuO-chain states. The
X-Y symmetry is not expected in this scenario.
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FIGURE 2. The total density of states (a) and the contribution of
each scenario (b).

should lie at 14 meV below the Fermi energy, in agreement
with experiment [43]. Also a van Hove singularity at about
-200 meV atk = (0.42π/a, 0.13π/b, 0), which has been re-
ported in Ref. 27, was accurately fitted. The overall features
of our calculation coincide well with the rest of the other
works in the literature. We reproduce our result for the bands
around the Fermi energy in Fig. 1. In this figure, the bands
labelled 1 and 4 belong to in-CuO-chain states, while those
labelled 2 and 3 describe in-CuO2-plane states. Notice that
bands 2 and 3, which belong to the planes, do not show a
significantly different dispersion fromS-X than they do from
S-Y, while bands 1 and 4, which belong to the chains, do
have a different dispersion. In the upper part of Fig. 2, we
present the total density of states (DOS) that we get from our
band structure. We have obtained a very similar result by
calculating it through the Green’s function [44] or using the
tetrahedral method of integration [45,46]. In the lower part of
the same figure, we present the DOS discriminated for each
scenario (planes, chains and c-axis). At the Fermi level, their
relative contribution is 74% (planes), 15% (chains) and 10%
(c-axis). The most important contribution by far comes from
the CuO2-plane states, as is well known.

2.2. Description of the superconducting state

By whatever mechanism, the superconducting transition has
the effect of introducing a gap at the Fermi energy, EF , on the
electronic states of the carriers affected by it. Since the actual
mechanism is still unknown, we do not try to introduce any.
So, to simulate the superconducting phase transition, we have
introduced by hand a constant gap,∆, into our normal-state
electronic band structure in the bands near EF that can be as-
sociated with electronic states that belong to the CuO2 plane.
It is important to mention at this point that this model allows
us to reproduce right away the optical conductivity and the
spin polarized susceptibility on exactly the same basis, both
in the superconducting and normal state (∆ = 0). This point
is important since, as we have already recalled, these thermo-
dynamic functions seem to exclude each other in the sense
that the transitions contributing to their corresponding matrix
elements are inter-band in the first case and intra-band in the
second. We present the calculation of the spin magnetic sus-
ceptibility in detail elsewhere [47], as well as the calculation
of the tunnelling characteristics [48]. Here we merely wish
to state that these two other results agree with the known ex-
periments.

We have introduced the gap into the electronic band struc-
ture in a way that is familiar in BCS theory [49]. Thus, we
have removed the states that can be associated wite the CuO2

plane from the energy interval (EF -∆, EF +∆) . The states
above EF accumulate at the upper edge of the interval and
the ones below at the bottom. Were we to introduce the gap
in another way (d-symmetry, for example), the result would
differ noticeably from the experimental result. We discuss
this point in detail elsewhere [50]. We emphasize that we in-
troduced a gap only to the bands formed by electronic states
that can be associated with the atoms belonging to the CuO2

plane. In this way we obtained what we call the “supercon-
ducting electronic band structure” for the CuO2 plane. In
what follows we make use of our tight-binding fit to our own
ab initio calculation to calculate the optical conductivity.

One more remark is useful. Any complete theory of high-
Tc superconductivity should offer an explanation for the two
resonances (in the optical conductivity and the spin polarized
susceptibility) to occur at the same frequency. Notice that
in our model both, intra-band and inter-band transitions are
heavily favoured by the phase transition atωres = 2∆plane.
But also notice that the events that contribute to the optical
conductivity differ from those contributing to spin suscepti-
bility. So the two resonances need neither be equal as a func-
tion of ω aroundωres nor disappear at the same oxygen con-
tent. We refer here to the experiment by J. Hwang, T.Timusk
and G.D. Gu [1], where the resonance in the optical suscep-
tibility has been proven to disappear while the sample is still
superconducting. That particular sample (Tc = 55K) could
either show a spin magnetic resonance or could have lost it
at higher oxygen content. This experiment has not yet been
performed to the best of our knowledge.
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3. Calculation of optical conductivity

The dielectric function,ε = ε1(ω) + iε2(ω) characterizes the
optical properties of a material. Experimentally, it can be ob-
tained from the reflectance spectrum. The real and imaginary
parts of it are related through the Krammers-Kronig relations.
The imaginary part of the dielectric function is directly re-
lated to the optical conductivity as

ε2(ω) =
4πσopt(ω)

ω
.

For inter-band transitions, we can calculate the optical con-
ductivity from theKubo-Greenwoodformula [29]

σ(ω) = − πe2h2

m2ωΩ

∑

l,n

∫
dkP i

lnP j
nlfn(k)[1− fl(k)]

×δ(El(k)− En(k)−hω), (1)

where

P i
ln = 〈Ψl(k)| ∂

∂xi
|Ψn(k)〉 (2)

is the optical transition matrix.|Ψn(k)〉 is the Bloch func-
tion for the n-band andk is the wave vector defined in the
first Brillouin zone (FBZ).En(k) is the corresponding band
energy,fn(k) is the Fermi-Dirac distribution function,ω is
the frequency of the radiation andΩ is the volume of the unit
cell. The rest are known constants. Now we expand the Bloch
function in term of orbital functions as

|Ψn(k)〉 =
1√
N

∑

α,j

un,αeik.rj |ϕα(r− rj)〉, (3)

where N is the number of unit cells,ϕα(r− rj) is the orbital
wave function with quantum numbersα, andrj is the ori-
gin of the j-th unit cell. Theun,α are the coefficients of the
expansion. Substituting Eq. 3 into Eq. 2, we get

P i
ln =

∑

α,β

ul,αun,β

∑

m,j

Mα,β
ijmeik.(rj−rm) (4)

with

Mα,β
ijm = 〈ϕα(r− rm)| ∂

∂xi
|ϕβ(r− rj)〉. (5)

The matrix element, Eq. 5, is zero except for in-site and the
first nearest neighbors’ transitions.Mα,β

ijm can be calculated
from our tight-binding fit if we use an approximation sug-
gested by Harrison [51]. Within this approximation, for inter-
site transitions (atom atrj with atom atri), M

α,β
ijm can be clast

proportional toxm/d2, wherexm is the m-component of the
vectorrj−ri andd = |rj−ri|. For intra-site transitions due
to symmetry considerations,Mα,β

ijm is zero whenever the dif-
ference between the angular momentum projectionslα − lβ
is even and different from zero otherwise.

3.1. The normal state

We have calculated Eq. 1 for 1/8 of the FBZ atT = 0K;
therefore, the Fermi functions were set equal to 1 for energies
below or equal to the Fermi energy,EF , and 0 otherwise. We
show in Fig. 3 below three components of the optical con-
ductivity tensor (Eq. 1), namelyσxx, σyy, andσzz so that we
can compare our results with those in the literature. Fig. 3
(top) shows our results for an energy interval from 1-10 eV.
Fig. 3 (bottom) gives low-energy details (0-0.5 eV) of the
three tensors. There is a clear anisotropy at low energies be-
tweenσxx andσyy. This is due to transitions that take place
on the chains (y-direction) that contribute toσyy but not to
σxx. Garrigaet al. [52] report measurements onε2(ω) which
show a maximum aroundω = 8eV , a peak at4 − 5eV and
a minimum around2− 3eV . Tajimaet al. [53] report similar
results at high energies and a minimum around 6 eV. Our cal-
culation agrees well with these experimental results and with
theoretical calculations at low energy [54] and at medium and
high energies [55,56].

FIGURE 3. In the upper part (a), we show the optical conductivity-
tensor componentsσxx, σyy, andσzz in the normal state in a scale
0-10 meV. In the lower part (b), we show the same functions in
more detail below 0.5 eV so that our results can be easily compared
with the ones in the literature (see text).
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FIGURE 4. The optical conductivity function,σ(ω), in the normal
(full line) and in the superconducting state (dots). Notice that at
higher energies,σ(ω) increases with energy in the superconduct-
ing state.

FIGURE 5. The dash-dot line is the Fermi energy and the dash-
lines above and below it are the gap edge in the superconducting
state. Let us consider transitions allowed in the normal state. In
the band (a) we have selected a possible initial state (i) and on band
(b) a possible final state. In normal state, this transition contributes
to the resonance at a frequency equal to the energy difference be-
tween (f) and (i). In the superconducting state, both (f) and (i) will
be projected to the gap edge so that this and several other low-lying
similar transitions will all contribute at the same energy 2∆ due
to the effect of the superconducting transition on the bands. Upon
doping, it is enough for the bands to evolve so that their energy
difference in the normal state gets higher than 2∆ at this pont of
the FBZ (dot-line) for this particular event to cease to contribute to
resonance (see text).

3.2. The superconducting state

We have calculated the optical conductivity from Eq. 1 for
1/8 of the FBZ with 64 points per axis. We have used our
electronic band structure where a gap was inserted in the
manner described above. We allow only inter-band transi-

tions in the in-CuO2-plane states. Our result forσ(ω) in the
normal and in the superconducting state appears in Fig. 4 be-
low. As we can see in this figure, the effect of the transition
is to shift the spectral weight of the almost featurelessσ(ω)
function to higher energies, namely above 30 meV, producing
the sharp resonance at 38 meV. This occurs because all the
allowed transitions within bands (one below and one above
the Fermi level) that differ in the normal state by less than
2∆ are projected in the superconducting state on to the gap
edges (above and below EF ), and the transition takes place
at 2∆ regardless of the energy at which it occurs in the nor-
mal state. We have used∆plane=19 meV for YBa2Cu3O7.
Both the calculation in the normal state and that in the su-
perconducting state reproduce the experimental results. Our
model does not assume any mechanism whatsoever. There-
fore, an interesting point that arises is that, on quite general
grounds, namely that the phase transition introduces a gapin
to the electronic band structure, the resonance can be repro-
duced. This fact casts some doubt on whether or not the op-
tical conductivity has enough information to permit a clear
decision as to the mechanism (neither in the resonance nor in
the background). This observation is actually consistent with
the experiment by J. Hwang, T.Timusk and G.D. Gu [1].

4. Superconductivity with and without the res-
onance

A suggestion based as to our model on how the effect of dop-
ing can cause the total disappearance of resonance while the
sample remains superconducting is sketched on Fig. 5. Let
band (a) contain a possible initial state (i) below the Fermi
energy, EF (dash-dot line). Let the energy difference be-
tween state (i) and EF be less than the gap associated with
the plane,∆plane (dashed line). As the contributing transi-
tions are inter-band, the final state has to lie on a different
band (b) above the Fermi level. The transitions are direct
(no momentum transfer). In the normal state, this transition
contributes to the optical conductivity at a frequency equal to
the energy difference between the final and the initial state.
Several similar transitions would also occur but - and this is
the key point - their contribution will cocur at different ener-
gies, in general. In the superconducting state, this and several
similar events will contribute as well, but all at the same en-
ergy, namely, 2∆ due to the effect that the superconducting
transition has on the bands. It is enough that, upon doping,
a particular band should evolve in such a way that its energy
(measured from the Fermi level) in the normal state becomes
higher than 2∆ at the particular point of the FBZ where the
allowed transition occurs, for this particular event to cease
to contribute to the resonance in the superconducting state
(see Fig. 5). It will contribute at a higher energy and, con-
sequently, the resonance will have one less event that con-
tributes, and its spectral weight diminishes. Eventually the
resonance disappears. It is obvious, on the other hand, that,
at a certain doping, bands that did not contribute at a previ-
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ous one can contribute; but the net effect can be a losts of
contributing events due to the doping. The exact issue de-
pends on the details of the bands, on the specific influence of
the doping on them and on the value of the gap for each fam-
ily of compounds. Only an exact and detailed calculation can
give an answer. We suggest that this is what happens in the
Bi-family [1] where experiment shows the disappearance of
the resonance with doping while superconductivity remains.
Whenever, under doping, the gap shrinks at a slower pace
than the number of events contributing to the resonance, the
resonance disappears but superconductivity will remain.

5. Further remarks and Conclusions

We have shown in this letter that the resonance in the op-
tical conductivity that appears in the superconducting and
only in the superconducting state can be obtained from an
ab initio three-dimensional calculation just by introducing in
to the electronic bands that can be associated with the CuO2

plane a gap,∆. The actual calculation of the optical con-
ductivity is two-dimensional (in-plane); nevertheless, it is
worth noting that the bands contain information on the three-
dimensional interactions. The model produces the resonance
at 2∆ and we have consequently introduced into the calcu-
lation ∆ = 19meV to reproduce the resonance at the right
experimental frequency. The curves agree very well with ex-
periment in the normal and the superconducting state. It is in-
teresting that we get the experimental trend of the function at
high frequency both in the normal and in the superconducting
state. We do not assume any mechanism in our calculation.
We have further suggested a way in which this model can ac-
count for the experimental results on the effect of doping on
the intensity of the resonance [1].

It is important to mention that, using exactly the same
model, we have calculated the spin polarized susceptibility in
the normal and in the superconducting states and reproduced
the experimental results. We find that the resonance in the
spin-polarized susceptibility could disappear as well, but that
there is no reason for it to do so at the same doping level as
the one in the optical conductivity [47]. The model does not
reproduce the experimental results for the tunneling experi-
ments unless it is extended to three dimensions. If we further
impose on the 3D bands obtained from ourab initio calcu-
lation, an additional gap to the states that can be associated
with the chains (∆chians = 7meV ) and keep∆ = 0 for the
bands that can be associated with the c-axis, we reproduce the
tunnelling characteristics of YBa2Cu3O7 in agreement with
experiment [48]. A somehow similar approach in the sense
that they used a different value for the gap in each scenario
(planes, chains and c-axis) has been used before [57] to suc-
cessfully simulate experimental results on tunnelling, specific
heat and ultrasonic attenuation. On that basis, we expect to
reproduce these two last results as well from our more de-
tailed model.

A more delicate point is to reproduce the temperature be-
havior of the resonance in the spin susceptibility. The reso-
nance frequency hardly changes in the range from zero to the
superconducting temperature but, on the contrary, its inten-
sity is very sensitive to it; it decreases with increasing temper-
ature and vanishes steeply at Tc [4]. We will suggest that this
is a combined effect of the behavior of the superconducting
gap with temperature and the separate effect of the increas-
ing temperature on the electronic band structure.itself. The
effect of temperature on the electronic bands itself has never
been considered before in this context but within the critical
temperature range (≈100 K≈ 10 meV); also, the tempera-
ture itself could have a non-negligible effect on the electronic
band structure on the meV scale. Calculations of this effect
in metals such as Cu and Ni have been made in the past by
Delgadillo et al. [58]. They find that the electronic bands
around the Fermi level do displace themselves as an effect of
temperature in the meV scale. This fact, and the known tem-
perature dependence of the superconducting gap itself, might
explain (always within the same model) the behavior of the
resonance with temperature. Notice that 10 meV is of the or-
der of∆/2, where∆ is the superconducting gap associated
with the CuO2 plane [59].

The goal of the work presented in this and some other pa-
pers is to show how far one can go in describing the experi-
mental results starting from what could be called “the result”
of a theory of superconductivity for high-Tc superconduc-
tors. One possible conclusion is that the detailed description
of the carriers plays the most important role in HTSC, a fact
that is in sharp contrast with conventional superconductiv-
ity where the electronic band structure characteristics enter
merely through the density of states at the Fermi energy.

A final question remains. Is this model a correct treat-
ment of the superconducting transition? The answer to this
is that the reproduction of many experimental results from
one single hypothesis is, to say the least, intriguing. The use
of Eliashberg gap equations assumes that, first, the mecha-
nism is known and, second, that the mean field approxima-
tion holds. The extensive use of the several formulations
based on the Hubbard Hamiltonian even beyond the mean
field approximation, in spite of the fact that it reproduces an
important number of experimental results, has not been con-
clusive since no ultimate explanation of the superconducting
state has yet been achieved. This model uses solely a general
property of the superconducting state avoiding any reference
to the mechanism. We just directly calculate its consequences
for thermodynamics. It turns out that we can reproduce im-
portant thermodynamic functions and give a panorama of the
experimental trends where there is not much work in the lit-
erature.

The main conslusion seems to be that an accurate treat-
ment of the electronic bands might play a role and that, for
certain thermodynamic functions as tunnelling, for example,
the problem can be formulated quite naturally and simply by
just taking into account the three known scenarios [47,48,57].
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