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Optimization of an irreversible Carnot engine in finite time and finite size
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In this work, we consider the class of irreversible Carnot engines that results from combining the characteristics of two models found in the
literature: the model in finite time and the model in finite size. The performance of the resulting model, including three irreversibilities, was
doubly-optimized in finite time and finite size. The first optimization of power and efficiency, maintaining the thermal conductances fixed,
was performed in finite time. Since the optimum time ratio from the first optimization, is the same for both maximum power and maximum
efficiency, this means that the model can be newly optimized but now in finite size. Then, the second optimization, maintaining the overall
heat transfer coefficient constant, was performed. For both optimizations, analytical expressions for the efficiency that maximizes the power
and maximum efficiency were obtained. Changing the order in which partial optimizations were carried out, a remarkable optimal property
was obtained: the resources of total contact time and the total area of heat transfer are proportional.

Keywords:Internal and external irreversibilities; heat engines; finite time and size thermodynamics.

En este trabajo consideramos la clase de ciclos de Carnot irreversible que resultan de combinar las caracterı́sticas de dos modelos: Modelo en
tiempo finito y Modelo en dimensión finita. El desempẽno del modelo resultante fue optimizado dos veces en tiempo finito y dimensión finita.
Primero, optimizamos la potencia y la eficiencia en tiempo finito, manteniendo las conductancias térmicas fijas. Como el cociente de tiempos
óptimo de la primera optimización es el mismo para potencia máxima y eficiencia ḿaxima lo sustituimos, en las ecuaciones obtenidas, para
que el modelo sea nuevamente optimizado pero ahora en dimensión finita. Entonces, la segunda optimización fue realizada, manteniendo el
coeficiente global de transferencia de calor fijo. Obtuvimos, en ambas optimizaciones, expresiones analı́ticas para la eficiencia que maximiza
la potencia y la ḿaxima eficiencia. Al cambiar el orden en el cual las optimizaciones parciales fueron realizadas, se obtuvo una propiedad
optimal notable: los recursos de tiempo total yárea total de transferencia de calor resultan ser proporcionales.

Descriptores:Irreversibilidades internas y externas; máquinas t́ermicas; termodinamica de tiempo y dimensión finitas.

PACS: 01.40G; 05.70.-a; 64.70.F

1. Introduction

The first goal of classical thermodynamics was to evaluate
how well heat engines perform and how well they might per-
form within ideal limits. The ideal limit is the reversible
Carnot engine, with an efficiency given by:

ηC = 1− TL

TH
,

whereTL andTH are the temperatures of the hot and cold
reservoirs between which the heat engine operates. The
model with a reversible cycle is known as Carnot’s heat en-
gine. Since all processes in a Carnot engine are reversible the
thermal efficiency can only be approached by infinitely slow
process. As a result, it is not possible to obtain any amount
of power (power is zero).

In practice, all thermodynamic processes take place in
finite-size devices and in finite time. As a result, irreversibil-
ity conditions are present. Thus the Carnot cycle gives an
upper unreachable bound for thermal efficiency but when it
comes to obtaining maximum power, it is formally impossi-
ble. Recently, attention has turned to the study of bounds
for other quantities, such as power, efficiency and so on.
The seminal work for this broadening of scope was appar-
ently Curzon and Ahlborn’s paper [1]. Bejan [2] noted that

this result had previously been discovered independently, in
engineering, in 1957 by Novikov and Chambadal (CNCA-
engine). Thus, a more realistic bound could be placed on the
efficiency of a heat engine operating at its maximum power
point, the so-called CNCA-efficiency (Chambadal, Novikov,
Curzon and Ahlborn efficiency):

ηCNCA = 1−
√

TL

TH
. (1)

Here the sole source of irreversibility in the cycle is a linear
finite rate of heat transfer between the working fluid and its
two heat reservoirs. We can take as characteristic parame-
ters (variables) of a CNCA-engine: the internal temperature
ratio (x) - for Otto and Brayton engines this parameter cor-
responds to compression or pressure relations - and the time
ratio (y) - the contact time between the working fluid and
hot-side reservoir and total contact time ratio.

The CNCA-engine proposed a new approach to thermo-
dynamics: Finite Time Thermodynamics (FTT). This ap-
proach takes time into account of in the analysis of ther-
modynamic processes and emphasizes maximum power as
an interesting bound. Inspired by this approach, Rubin [3]
used it to study the endoreversible engine, which he defined
as:an engine such that during its operation its working fluid
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undergoes reversible thermodynamics.Endoreversible mod-
els have, as a subfield, become an important paradigm of
FTT [4]. In these models one can adopt the formalism of De
Vos [5], which is based on only one characteristic parameter,
for usx since, heat flows are considered.

The class of irreversible phenomena investigated in FTT
has expanded to include friction, diffusion and chemical reac-
tions. The models used have become increasingly complex,
by taking multiple reservoirs, with heat leaks, finite capaci-
ties and diverse heat transfer laws [4, 6, 7]. Contrary to these
research trends, our work goes back to combine the charac-
teristics of the CNCA-engine, including two additional irre-
versibilities, with other model of engine appeared in the en-
gineering field.

In the early stages of the field, Bejan [8] in 1982 pro-
posed as a problem in a textbook a steady-state plant model
(B-engine) where the irreversibility is due to three sources:
the hot-side exchanger, the cold-side exchanger and the heat
leaking through the plant to the ambient. Internally the plant
is reversible. By a double optimization of the power, first
with respect to the internal temperature ratio and afterwards
with respect to the allocation ratio of the heat exchangers (z)
- external conductances allocation ratio -, the internal tem-
perature optimum ratio is the same as that found in FTT. In
addition, an optimum balance between sizes of the hot-side
and cold-side exchangers were obtained by him. Remark-
able characteristics of the B-engine was: the fact that the ef-
ficiency at maximum power is less than the corresponding
efficiency of the CNCA-engine (Eq. (1)); the hot-side and
cold-side exchangers are worked as finite-size devices and
they have the same allocation ratio; and that, if there is a heat
leak through the plant or engine to the ambient, the behavior
of the power and efficiency results in a loop-type curve [9].

Most of the real engines, as the Brayton or gas Turbine
cycle, have the loop-shaped qualitative behavior illustrated
in Fig. 2 (below), when work or dimensionless power are
plotted against efficiency [10]. The differences between one
engine type and another are size and the sources of irre-
versibility, which give work-efficiency curves with a loop
shape [11, 12]. It is important to note that the difference be-
tween maximum efficiency and the efficiency that produces
maximum power is small but always positive [13].

In many applications, such as power plants, it is more
convenient to use the B-engine instead of a CNCA-engine.
While heat exchanges are sequential processes in the CNCA-
engine, they are simultaneous processes in the B-engine. The
differences arising due to this have been considered previ-
ously by Wuet al. [14]. In conclusion, there are two models:
the CNCA-engine and the B-engine.

In general, in additional to the irreversibilities described,
for the internal dissipations of the working fluid a factorI,
that makes the Claussius inequality an equality, can be in-
troduced [9,15] (this factorI can correspond, for example, to
the irreversibilities included in the adiabatic compression and
expansion efficiencies [16]).

In this work, we consider the class of irreversible Carnot
cycles that results from combining the characteristics of two
models found in the literature: the model in finite time and the
model in finite size. The performance of the resulting model,
including three irreversibilities, was doubly-optimized in fi-
nite time and finite size. The first optimization of power
and efficiency, maintaining the thermal conductances fixed,
was performed in finite time. Since the optimum time ra-
tio from the first optimization, being the same for both max-
imum power and maximum efficiency, this means that the
model can be newly optimized but now in finite size. Then,
the second optimization, maintaining the overall heat transfer
coefficient as a constant, was performed. For both optimiza-
tions, analytical expressions for the efficiency that maximizes
power and maximum efficiency were obtained. Changing the
order in which partial optimizations were carried out, a re-
markable optimal property was obtained: the resources of to-
tal contact time and the total area of heat transfer are propor-
tional. Similar models including these three irreversibilities
treated only in finite time can be found in Refs. 9, 15 and 17.

2. Irreversible Carnot engine

Considering the class of irreversible Carnot engines [4]
shown in Fig. 1, which satisfy the following four conditions:

(i) There is thermal resistance between the working fluid
and the heat reservoirs.

(ii) There is a heat lossQleak from the hot reservoir to the
cold reservoir.

(iii) All heat transfer is assumed to be linear in temperature
differences, that is, Newtonian.

(iv) Besides thermal resistance and heat loss, there are
other irreversibilities in the engine, the internal irre-
versibilities. Specifically, there is a parameter that
makes the Claussius an inequality equality:

Q2

T2
− I

Q1

T1
= 0, (2)

whereI = (∆S2/∆S1) ≥ 1 [9].

Thus, the irreversible Carnot engine operates with fixed
time t allowed for each cycle. The heat leakageQleak is [8]:

Qleak = K(TH − TL)t.

The heatsQH , QL transferred from the hot-cold reser-
voirs are given by:

QH=Q1+Qleak=α(TH−T1)tH+K(TH−TL)t (3)

QL=Q2+Qleak=β(T2−TL)tL+K(TH−TL)t (4)

whereα, β andK are the thermal conductances andtH , tL
are the times for the heat transfer in the isothermal branches,
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FIGURE 1. A Carnot cycle with heat leak, finite-rate heat transfer
and internal dissipations of the working fluid.

respectively. The connecting adiabatic branches are often as-
sumed to proceed in negligible time [10], so that the cycle
contact total timet is:

t = tH + tL (5)

By the first law, and combining Eqs. (3) and (2), we ob-
tain :

W = Q1(1− Ix) =
TH(1− Ix)

(
1− µ

x

)
1

αtH
+ I

βtL

, (6)

QH = Q1 + Qleak =
W

1− Ix
+ K(TH − TL)t, (7)

wherex = T2/T1; µ = TL/TH .

3. Maximum power and efficiency in finite
time

In this section as we analyze the CNCA operation the ther-
mal conductancesα, β are fixed. The Eq. (5) give us the total
time of the cycle, so it can be parametrized as:

tH = yt; tL = (1− y)t

Therefore, the dimensionless power output

p = W/(αtTH),

the dimensionless heat transfer per unit time

qH = QH/(αtTH)

and the efficiency of the engine are [by Eqs. (6), (7)]:

p=
(1−Ix)

(
1−µ

x

)
1
y + I

γ(1−y)

, qH=

(
1−µ

x

)
1
y + I

γ(1−y)

+L(1−µ) (8)

η=
yγ (1−Ix)

(
1−µ

x

)
(1−y)

y
(
1−µ

x

)
γ (1−y) +L (1−µ) (γ (1−y)+yI)

(9)

whereγ = β/α andL = K/α are fixed. Using the extremes
conditions:

∂p

∂x
|(xmp,ymp) = 0;

∂p

∂y
|(xmp,ymp) = 0,

when the power reaches its maximum,xmp andymp are given
by:

xmp =
√

µ

I
, ymp =

√
γ√

I +
√

γ
(10)

Now, the efficiency that maximizes the powerηmp and
the maximum power are given by [Eqs. (9) and (8)],

ηmp =

(
1−√Iµ

)2

(
1−√Iµ

)
+ L (1− µ)

(
1 +

√
I
γ

) < ηCNCA;

pmax =


1−√Iµ

1 +
√

I
γ




2

Figure 2 shows clearly that, forL = 0, very large differ-
ences exist betweenηmp and the maximum efficiencyηmax

and pmax andpme; when there is a heat leak (L > 0), this
difference decreases. If the efficiency is less thanηmp, the
power output decreases as the efficiency decreases and if the
power output is less thanpme, the efficiency also decreases
as the power output decreases. Obviously, the working states
p < pme andη < ηmp are not the optimal operating states of
the heat engine. In general, the heat engine should be oper-
ated betweenηmp andηmax or pmax andpme. However, the
difference betweenηmp andηmax is positive. We will obtain
an analytical expression forηmax which shows that operation
at maximum efficiency is better than operation at maximum
power output (see Ref. 11 and Fig. 3).

The efficiency reaches its maximum whenxme andyme

are given by:

xme =
√

Iγµ + B√
I (γ + Ω)

, yme =
√

γ√
I +

√
γ

, (11)

with

Ω = L (1− µ)
(√

I +
√

γ
)2

and

B =
√

µΩ(Ω + γ (1− Iµ)).

The power for maximum efficiencypme and the maxi-
mum efficiencyηmax are given by [Eqs. (9) and (8)]:

ηmax =
γ

(
B −√IµΩ

)(
γ + Ω− γIµ−√IB

)

B (γ + Ω)2
,

pme =
γL (1− µ)

(
B −√IµΩ

)(
γ + Ω− γIµ−√IB

)

Ω(γ + Ω)
(√

Iγµ + B
)
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FIGURE 2. Behavior of the dimensionless power versus efficiency
with respect to the parameterx, whenγ = I = 1, µ = 0.25; L = 0
and0.1, and withymp = 1/2.

FIGURE 3. Behavior of the efficienciesη∗maxandη∗mp versusµ for
valuesL∗ = 0.1 and0.3 and withI =1.235.

Equations (10) and (11) say that the optimum value for
the time ratio is the same for both maximum power and effi-
ciency. This means that

ymp = yme =
√

γ√
I +

√
γ

=
√

βα√
βα + α

√
I
, (12)

that is, when the engine operates at maximum power and
maximum efficiency.

Nevertheless, for the case of the B-engine, the heat trans-
fer process are not simultaneous but they also take the same

time. Equation (12) says that the times must be different.
However, we can suppose that the irreversible Carnot engine
is a B-engine, when the value of Eq. (12) is included in the
equations of work and heat transfer [Eqs. (6) and (7)]. So,
we can perform a second optimization now of finite size.

4. Maximum power and efficiency in finite size

As can be seen in the above section, the time ratio is the
same for both maximum power and maximum efficiency
[Eq. (12)]. Thus, this value could be included in the equa-
tions of work and heat transfer [Eqs. (6) and (7)] to proceed
to a second optimization, withx as the first variable, and the
second variable will be the allocation (sizes) of the heat ex-
changers. In so doing, it could be said that

α = UAH ; β = UAL,

whereU is the overall heat transfer coefficient andAH and
AL are the areas available for heat transfer. Then, an ap-
proach might be to suppose thatU is fixed, the same on the
hot side and the cold side exchangers, and that the total area
A = AH +AL can be allocated at will between both. The op-
timization problem is then to select, in addition to of the opti-
mum temperature ratio (x), the best allocation ratio. To take
UA as a fixed value can be justified in terms of the area pur-
chased, the fixed running costs and capital costs that together
determine the overall heat transfer coefficient (see Ref. 18).
Thus, for the optimization we can take:

α

U
+

β

U
= A

and parametrize it as:

α = zAU ; β = (1− z)UA

We obtain, from Eqs. (6) and (12), the dimensionless
power output (p = W/(AUtTH), ):

p∗ = p(x, z)

=

√
I (z − z2)3 (1− Ix)

(
1− µ

x

)
(√

I (z − z2) + Iz
) (

(1− z) +
√

I (z − z2)
) (13)

and the efficiency of the engine [Eqs. (6) and (7)] is:

η∗ =

√
I (z − z2)3 (1− Ix)

(
1− µ

x

)
√

I (z − z2)3
(
1− µ

x

)
+ L∗ (1− µ)

(√
I (z − z2) + Iz

)(
(1− z) +

√
I (z − z2)

) (14)

whereL∗ = K/AU is fixed.
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By proceeding as in the above section, powerp∗ reaches
its maximum when,xmp andzmp are given by:

xmp =
√

µ

I
, zmp =

1
3
√

I + 1
. (15)

And, the efficiency that maximizes the powerη∗mp and the
maximum power are given by:

η∗mp =

(
1−√Iµ

)2

(
1−√Iµ

)
+ L∗ (1− µ)

(
3
√

I + 1
)3 ,

p∗max =

(
1−√Iµ

)2

(
3
√

I + 1
)3 . (16)

The efficiency reaches its maximum ifxme andzme are given
by:

xme =
Iµ + 2Γ
I (C + 1)

, zme =
1

I + 1
,

with

C = 4L∗ (I + 1) (1− µ)

and

Γ =
√

IµC (C + (1− µI)).

The maximum efficiencyη∗max and the power for maxi-
mum efficiencyp∗me are given by [see Eq. (14)]

η∗max=
(C+1−Iµ−Γ) (Γ−IµC)

4L∗ (1−µ) (C+1) (I+1) (Iµ+Γ)+ (Γ−IµC)
(17)

p∗me=
(C + 1− Iµ− Γ) (Γ− IµC)
4 (I + 1) (C + 1) (Iµ + Γ)

(18)

5. Discussion

The optimum value (12) was used conduced to perform a sec-
ond optimization, in finite size, to obtain expressions for the
efficiency η∗mp and η∗max [Eqs. (16) and (17)]. Figure 3
shows the behavior of those efficiencies forI = 1.235 and
also that the maximum efficiencyη∗max is greater than the ef-
ficiency at maximum powerη∗mp.

Double optimization gives results that could be applied to
the design of power plants. For instance, if the plant operates
at maximum power, it was found that the relation from the
heat transfer areas for the cold side to the hot side, is:

AL = 3
√

IAH ≥ AH

when the plant operates at maximum power, but

AL = IAH ≥ AH

if the operation is at maximum efficiency. In both cases, a
greater surface for the heat transfer is required for the cold
side as compared with the hot side. SinceI ≥ 3

√
I, the area is

greater when the operation is at maximum efficiency; there-
fore, by satisfying this latter condition, one for the operation
at maximum power is immediately satisfied.

In accordance with the definitions adopted for thermal
conductance, the one for the cold side turns out be greater
than the one for the hot side; then this results in:

tL = 3
√

ItH ≥ tH

for maximum power, and

tL = tH

for maximum efficiency. Since3
√

I ≥ 1, the time of heat
transfer for the isothermal of the cold side is greater when the
operation is at maximum power; then, satisfying this latter
condition, the one for the operation at maximum efficiency is
immediately satisfied. WhenI = 1, the time is the same for
both operations.

Changing the order in which partial optimizations were
carried out, we obtain:

tL = 3
√

ItH ≥ tH

AL = 3
√

IAH ≥ AH

when the plant operates at maximum power, but

tL = ItH ≥ tH

AL = AH

for maximum efficiency.
Therefore, we have the following remarkable optimal

property: A

t
=

AL

tL
=

AH

tH
which is satisfied when the heat engine operates at maximum
power and efficiency. Physically, forI > 1, the irreversibil-
ity produces an inverse relationship between the total area
and the total contact time; that is, less time is needed to trans-
fer the heat that the engine processes. This is due to the fact
that less heat goes through the engine. Part of the heat is lost
because of internal irreversibility. ForI = 1, the relation-
ship between area and contact time is inversely proportional;
that is, if the area is augmented the time is reduced. This re-
sult does not depends explicitly onI and differs from one the
presented in Ref. 9.

Also, for these operation conditions, we have:

tL = 3
√

ItH ≥ tH

AL = 3
√

IAH ≥ AH ,

and as3
√

I ≥ 1, a greater surface and greater time for the heat
transfer are required for the cold side than for the hot side.

In general it has been supposed thatI ≥ 1; but some
times it has been considered thatI = 1. In this case, the in-
ternal irreversibilities can be physically interpreted as part of
the engine’s heat leak, which brings us to the engine modeled
in Ref. 8. Thus, the results of the B-engine and new results
given by Eqs. (16) and (17) are obtained (L∗ > 0). Now,
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if L∗ = 0, the results of the CNCA-engine are obtained and
Eqs. (16), (18) and (17) depend only on the temperatures of
the reservoirs.

Therefore, this is an indication that the methodology
herein presented can be applied to other models of engines,
for instance, those proposed by J. Chen [9] and Z. Yan and L.
Chen [17].

One of the contributions of this work is the use of a
methodology that could be extended to the double optimiza-
tion of power and efficiency for another models of engines

and to the field of thermoeconomics. Further work is under-
way.
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