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This work develops expressions to calculate failure probabilities associated with failure regions containing the expected value of ranc
variables in the standard space (origin). These expressions are an extension based on the classical case that calculates failure probe
associated with non-origin-containing failure regions. A simple form is established to know whether the failure region is origin- o nol
origin-containing and to calculate the failure probability associated with the region in question. It is shown through an example of corroc
pressurized pipelines that such an extension may be necessary to calculate failure probabilities in practical conditions. Reliability metf
analyzed are FORM and directional simulation.
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En este trabajo se desarrollan expresiones para calcular probabilidades de falla asociadas con regiones de falla que contienen al valor
ado de las variables aleatorias en el espacianésir (origen). Estas expresiones son una exierizsada en el casaasico que calcula
probabilidades de falla asociadas con regiones de falla que no contienen al origen. Se establece una forma simple para cononetesi la reg
falla contiened no al origen y para calcular la probabilidad de falla asociada con larregi cuestin. Se muestra por medio de un ejemplo

de ductos presurizados cormdos que tal extensh puede ser necesaria paraatalo de probabilidades de falla en condicionéxficas. Se
analiza la confiabilidad del sistema con logtodos FORM y de simula@n direccionada.

Descriptores:Origen; confiabilidad; probabilidad de falla; régide falla; funcbn de estaddinite; preson de falla; corrogin.

PACS: 89.20.Bb; 02.50.-r

1. Introduction abilities associated with origin-containing failure regions. A
simple form is established to know whether the failure region
The failure probability of structural systems is estimatedis origin- o non-origin-containing and to calculate the failure
by well-known methods, such as FORM (First Order Re-probability associated with the region in question. For this
liability Method) and SORM (Second Order Reliability purpose, three cases are analyzed. The first deals with the
Method) [1,2], which are based on the ideas of Cornell [3]Jcase when the origin is in the safe region, the second, when
and Hasofer and Lind [4]; they developed their approachett is completely contained in the failure region and the third,
keeping in mind a design scheme with failure probabilitieswhen the origin is in the limit-state function. The ideas devel-
associated with non-origin-containing failure regiomg,,  oped herein are applied to a problem of corroded pressurized
when the origin belongs to the safe region. Subsequent worksipelines, which requires calculating failure probabilities as-
have continued along the same line [1,2,5,6]. However, somsgociated with origin-containing failure regions.
applications require the calculation of failure probabilities as-
squgted with origin-containing failure regions. For instance, Failure probability estimated by geometri-
this is the case with applications where conditional failure R
probabilities need to be calculated in relation to a random cal reliability index
variable or_paramt_ater Of mtc_argst, as_r_nay_be th? Ievel_of da_n]-t is known that failure probability of a structural system can
age associated with seismic intensities in a given site, W'“E)e expressed as:
long recurrence periods, that may mean that the structure IS
in near-to-collapse condltlons_ [7,8]._Th|_s can also happen to Pp = / fx (z) da, )
corrosion degraded, pressurized pipelines, whose degraded
ligament approaches zero.
This work develops expressions that can be used imhereW (X) < 0 is the event denoting the failure region
FORM and directional simulation to calculate failure prob-andX is a vector of basic random variables of orademith

W(X)<0
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U, Uz

joint probability density functiorfx (). The failure region

is limited by safety margin or limit state surfagg (z) = 0, ‘

which defines the boundary between the failure and safe e e

regions. For convenience, the limit state surface is trans- U,

formed toG (U) = T [W (X)), a function wherdJ is a vec- safe egion /

tor of independent random variables with a standard normal

probability distribution function and joint probability density

functionfy (u). Thus, the failure probability is expressed as: FIGURE 2. Failure region: the origin belongs to the failure region.
Two equivalent figures are shown.

failure
region failure

region
-G(u)

Pr = d 2
F / fu (u) du 2) ever, when the limit state function corresponds to a hy-
G(U)=0 perplane, the relation betwegh and Pr is not given by
In the theory of reliability the index is defined: Pp = ®[~f], as in the case mentioned above, but by:
Pp=1-2[-p]= @[a], (5)
= = min |u|, 3 _ o )
G(u)=0 obtained by defining? (u) = —G(u) and relatings to the

failure regiorf (u) < 0. If FORM is applied to a nonlinear
known as the geometrical reliability index [5] (Fig. 1). In the limit state function® 5] can be considered to be an approx-
case in which the limit state surface corresponds to a hypeimation of Py.
plane, the relationship betwegrand P is given by: When the origin belongs to the limit state surface, that
is G(U=0) = 0, it turns out that3 = 0, and when
Pr=2[-4], 4)  the limit state surface is a hyperplane, it turns out that

where® [-] is the standard normal distribution function. In Pp=2[0]=1/2.

the FORM method, the limit state surface is substituted byd,ﬁIfthe I"E't state sErfa;pe coresponds o a hyp(farplane., the
a first-order approximation in Taylor's series (hyperplane) ifference between the first two cases consists of associating

around the point*satisfying||u*|| = 4, and® [ ] is con- '3 with failure probability through the Eq. (4) or (5), respec-
sidered to be an approximation B-. ’ tively. These two cases are complementary.

The relationPr = ® [—(] is valid when the origin is lo-
cated in the safe region, that is to say, this relation is valid3  Egjlure probability estimated by directional
whenG (U = 0) > 0 is satisfied. Reliability methods re- simulation
ported in the literature have been developed taking into ac-

count th!s condmgn. i . In most practical applications the FORM method gives good
_ The indexj will here be related td@r, associated with egyjts in reliability estimations when the structural system
origin-containing failure regions. These regions satisfy thé, 55 one failure mode and the radius of curvature of the limit
conditionG; (U = 0) < 0. L . state surface is not large. In the case of many failure modes,
_In the case where the origin is completely containedze FORM method is not directly applicable. Below, gen-
within the failure regionj.e, G (U = 0) < 0, as is shown  grajized mathematical expressions to estimate failure proba-
inFig. 2,3 is defined, as in the above case, by Eq. (3). Howyjjities by directional simulation are developed. These ex-

pressions are applicable to limit state surfaces of structural

Uz systems with one or more failure modes, and are independent
s of the radius of curvature. In addition, the limit state surfaces
/ fa{iﬁre can have folds. The expressions can be used to perform mul-

tiple integrals of irregular functions with several variables.

region

/ ) % According to Bjerager [9], the failure probability of a sys-
// tem can be expressed as:
/ Pr = / fu (u)du
U
hyperplane_/ e G(U)<0
\ oA - [Plera) <0lA=a] fa@da @
/

where the operatoP [-] denotes the probability of the event
within square brackets and = R A, in which R is a
FiGURE 1. Failure region: the origin belongs to the safe region. ~ random variable that describes the distance from the origin
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to the limit state surfac& (u) = 0, and A is a vector of
directions of dimensiom — 1 that describes a unit hyper-
sphere. To calculate (6), the directional simulation technique
is used [2,10,11].

It is here assumed thél = a) # 0 and that the straight
linel, = {ra: r > 0} intercepts the limit state function in
one point at most. If the origin is in the safe regiom,,

G (0) > 0, the failure probability for any directiod = a is
given by [9] as:

hypersphere

P[G(RA)<0|A=a] =P[R >4
safe region

:17)(2(7’2), re >0 (7)

a

where x?2 (-) is the Chi-Square probability function with

n degrees of freedom ang, satisfies the conditions that FIGURE 3. Failure region: the origin belongs to the limit state sur-
G (rqa) = 0. In the case when the straight lihgand the ~ face. Itis shown that some directions are outside or inside of the
limit state surface do not intercept, the following expressionfailure region.

follows from Eq. (7):
a- (7) If for a given direction

P[G(RA)<0|A=a] =0 (8)
If the origin is inside the failure region.e., G (0) < 0, 1. G(ra) >0, forall0 < r < r,, then Eq. (7) or (8) is
the failure probability for any directiod = « is given by: applied.
P|G(RA)<0|A=a]=P[R<r, 2. G (ra) <0,forall0 <r < r,, then Eq. (9) or (10) is
applied.

=2 (ri) , Ta>0. (9

If the line I, and the limit state surface do not intercept, 3. G (ra) =0, forallr>0, thenP [G (RA) <0|A=a] =0;
the following expression follows from Eq. (9): this occurs when the limit state surface in a given di-

rection coincides with a hyperplane.
P[G(RA)<0[A=a] =1. (10) YPerp

For the case when the origin belongs to the limit state  On the other hand, if the ling intercepts the limit state
surface, as shown in Fig. 3e., G (0) = 0 there are di- surface at the points,a, 72a,..., rya, whereN > 1 de-
rectionsA = a in which G (r,a) < 0 and others, in which notes the number of roots with, < r, and if G (0) > 0,

G (rqa) > 0. then the failure probability for any directiod = a, is given
| by:
N/2
z X2 (r3) = x* (r3,-1) N even
P[G(RA)<0|A=a] = (11)
(N-1)/2

(1—x%(r%)) + kgl X* (r3) = X (r3 1) N odd

This equation corresponds to the case where the limit
state surface has folds and the interception points of the fai
ure surface with the liné, areria, rsa,..., rya, as is
shown in Fig. 4. WheN = 1, the above equation corre-
sponds to Eq. (7). In Eq. (11), faf > 1, and odd, from
origin to the first point of intersection, the lirig belongs to
the safe region_. From the first point to the second pb_jr’ﬂe- (1- XQ(rgk_l)) —(1- XQ(Tgk)) = XQ(Tgk) — XQ(Tgk_J
longs to the failure region, and from the second point to the
third point, I, belongs to the safe region, and this behavior A similar approach can be made, to obtain Eq. (11) when
continues pointy_;. The region from the last point to in- V> 1, and even.
finity corresponds to the failure region. From this we havethe If G(0) < 0, then the failure probability for any direc-
result that the failure region intersects the ling M — 1)/2  tion A = a is given by Eq. (12) which is complementary to
segments and the last segméni : ~ > ry} isgiven by the  Ed. (11).

irst term of Eq. (11). For the others terms we have the re-
sult that the intervals;, 5], [r3,74], ..., [rN—2,7N—1] COI-
respond to the failure region, and the contribution to failure
probability of each one is given by:
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X2 () + (1 =2 (rk)) + = X2 (13e41) = X2 (13)

P[G(RA)<0|A=a] =
(N-1)/2

X2 (rf) + 1;1 X (r3p1) — X7 (r3k)

Similar expressions can be found for the case when

G(0) = 0.

(N—2)/2
N even

(12)
N odd

This same expression serves to calculate the failure

On the other hand, the failure of a series system can bgrobability for a given direction of parallel systems, when
expressed as the union of all events that may cause its failure;(0) > 0.

i.e, U (Gr(U) <0). The failure probability of the system

k
can be expressed as:

Pr = fu (u) du
U (G (U)<0)

k

and for a parallel system, the event within the operd&t¢i
in Eq. (13) is defined a8) (G, (RrA) <0|A =a).

k
For a given direction in series systems(if0) > 0, then
the failure probability is calculated as [9,10]:

1-— X2 (min (ri)) (14)

U (Gr(RrA) <0[ A=a)| fa(a) da (13)
k

This last expression also allows us to calculate the failur
probability for a given direction of parallel systems, when

G(0) < 0.

For series systems, whe#(0) < 0 and the number of
limit state surface is finite, the failure probability in any di-

rection is given by:

X2 (max (1"2)) (15)

safe region

failure

/it X
“ region

ak%

hypersphere

U,

FIGURE 4. Failure region has folds and the interceptions with the
straight line occur in several points. The origin belongs to the limit

Equations (14) and (15) are valid when the straightline
intercepts at least one limit state surface. Otherwise, Eq. (8)
or (10) is used, as applicable.

4. Failure probabilities obtained from relia-
bility functions and conditional probability
functions

This section develops expressions that allow us calculating
failure probabilities as a function of a fixed variable (here:
time). These probabilities are obtained here from a reliability
function defined in the space of random variables that control
the system failure or deterioration, and from the probabil-
ity distribution of random variables, conditioned by a fixed
variable. The reliability function is represented by reliability
indices for given values of random variables.

WhenW (Z) = 0 is the limit state surface for given val-
ues ofZ = z, the failure probability? [W (Z) < 0|Z = z]
for given values of this variable can be represented in terms
of the reliability function:

e

B(z) = -0~ [P[W(Z) <0]Z = 2]] (16)

On the other hand, failure probability for given values of
the variablet, can be obtained from the probability density
function fz, (-) as:

o0

Pe(t)= [ PIW(2) <012 =2 fz (= |1) ds
0

oo

— [¢[-50)] fac 1) a

0

(17)

Integrating by parts and making proper changes of the vari-
able, the following is obtained:

o0

Pp(t) =1~ / Fy. (5‘1(—11) | t) ¢ (y) dy (18)
-B(0)

state surface. It is shown that some directions are outside or insidavherey (+) is the derivative ofp, while 5~ (-) denotes the

of the failure region.

inverse function of3, which leads to the assumption that
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this function is injective (one to one). In problems where  Practically, if the geometry of a corrosion defect is rep-

3 (0) — oo, EqQ. (18) can be represented as: resented by a parabolic geometry with maximum depth of
~ dmax and lengthl = b — a, the resistant pressure of the
Pp(t)=1- 2 {an (»5’71 (*Z))} (19)  system will be associated with the point of maximum depth

Tmax = (b— a)/2, and hence the above safety margin can be
The approximations made by point estimates [12] givesexpressed in extended form as:

us:
W =e [P}
LongGroove

+ (PlglainPipe - PgongGroove) 9gd (:Cmax)] - PD' (23)

5. Application example Piainpipednd P o oo, are random variables

Th ts d ived in th . . i strongly correlated by the random vector with geometrical
€ concepts described In e previous Section are appli€f,y mechanical properties = (Z,, Z,,,). These variables

to the_reliability gnalysis of a pipeling Wi_th a corrosion de_— can be related through the independent random variéible
fect with parabolic geometry. The pipeline performance is

. . ) adsfollows:

measured in terms of the resistant pressure of the pipe an

estimated by the mechanical model proposed by Cronin and Pl . = U Pl pives (24)
Pick [13], and modified by Oliverost al. [14]. In this onagmroone e

model, the resistant pressure at a paigtwith corrosion  where¥ = ¥(d,,.,) depends upon the maximum depth of

depthd(xy)is estimated using the expression: corrosion andP4 = szampipe(z)- Based on nu-

Pe(t) =13 [Fae (57 (-1) +F2, (57 ()] 20)

) _PlainPipe AN :
d g merical tests, it was found that the variability @fis small
PR(T0) = PLongGroove and can be considered independent from the steel strength;
d .
+ (p%lainPipe - p%ongGroo’ue) gd(x0)7 (21) PLongGroove can thereby be represented by

where xo is in an appropriate Cartesian system that, in Pgongvae ~ Pﬁlampipe, (25)
the longitudinal direction of the pipe, defines the position

of 2o, and in the perpendicular direction, the correspondWherey = E[¥]. Hence,W is expressed as:

ing depthd(zo). PpiainPipe = PPlainPipe (2) 1S the re-

sistant pres(su)re of a pipzz-:‘ without a cgrr(os)ion defect and"V =¢ W’P gzampipe + 94 (P ngainPipe — P, gzampipe)]

z = (2gs Zm,) is_ a vector i_ntegrated by a vector of geo- _Pp=—¢ PglainPipe [+ gq (1 — )] — Pp, (26)
metrical properties of the pipg, and mechanical properties

of Steelzma Wherea$LongGroove = PLongGroove (Zvdmax) where the random variable is obtained from eXperimen-
is the resistant pressure of a pipe with a corrosion defedial tests and from the mechanical model represented by
whose geometry corresponds to a groove of infinite lengtheq. (21), in which the defect geometry is parabolic. Accord-
and depthiy,. = max {d(z)}, where[a, b] is the interval i to thise = ¢ (1) has Lognormal distribution with mean
within which the corroded material exists. The functign € = exp (—0.21+0.34 1 /) and variancer? = 0.12 &2,
takes on values in the intervif, 1] and takes into account Where 7y is the mean radius of the pipe. The function
the influence of the corrosion defect geometry. The resistarit (4max) i obtained from Monte Carlo simulations.
pressure of the pipe is given Ipf, .. = min { P (o) } Here we obtain, a pipeline reliability function (steel X52)

zola,b] for a single defect. In the case of multiple defects in a given

This resistant pressure is a function of the reduction of th%ipe segment the failure probability should be calculated us-

V\{aII thickness, and this reduction is attributed to the Co”o"mg Eq. (13). The pipeline under study has a mean radius
sion process.

. . . of 7y = 254 mm, a mean wall thickness af = 8.38 mm,
In operating conditions, the resistant pressure of & nd a mean yield stress of, = 422 MPa. The joint distri-

pr:pellne VY'” .be ;Jncertaln,fprlnc:pally dgg, FO va::abmty "N pution function of variables that describe the behavior of the
the constitutive function of steel. In addition, the geome-gqo| gtress-strain curve is given in detail in Ref. 15. For sim-

try of the corrosion effect is also uncertain and changes ov licity, it is assumed that the defect length= 0.6 7, does

time, whereas the operating pressure is variable. Based t change with the defect depth or time. Here, the safety

the above facts, the limit state fL_Jr_lctlon associated with fa”'margin W — W (H) is expressed as a function of corro-
ure due to pressure can be specified as:

sion depthsH = 5, wheren = dnax/to- Hence, the fail-
(W=¢ Pl Pp) <0, (22) ure probability Pr (_77) = P[W (H_) <0|H = n] for gi_ver_w_

) values of H = 7 is expressed in terms of the reliability
wherePg . (-) is a random variable that denotes resistantfunction3 (n) = ®~* [Pr (n)], as shown in Fig. 5. There it
pressure associated with corrosion defdet, is a random  can be seen that the system without degradation corresponds
variable of operating pressure and a random variable that to»n = 0 and to a reliability index off = 4.1. The reliability
considers the error in the prediction of the mechanical modefunction decreases nonlinearly with the corrosion depth, and
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as the degradation due to corrosion approximates the thiclcontaining failure regions; however, in order to obt&n(t),
ness of the pipe, the reliability decreases asymptotically. It it was necessary to calculate the reliability function for both
important to note that reliabilities associated with corrosionorigin-containing and non-origin-containing failure regions.
depths abovey = 0.87 correspond to the origin-containing
failure regions.

According to the above, the failure of the system esseng
tially depends on the level of degradation due to corrosion

and, consequently, on the rate of pipe degradation. This ratl% this work, expressions for calculating failure probabilities

depends on environmental conditions and, principally, on the . : . o . )
. . . . associated with origin-containing failure regions were ob-
type and concentration of the chemical species of the fluuf. . . o
L o ained, expanding the ideas of the case where the origin is
transported by pipelines. Here, the deterioration due to corra the safe reqion. The oridin belonding to the failure region
sion is expressed by the Type Il Extreme distribution function region. 9 ging 9
. o 7 .~ was established in terms of the value that the funcfioas-
with meanH (t) ¢y = vp t~7 (mm) [16] and standard devia- sumes at zero. Explicitly:
tion oty = o¢ t (mm), whereoy = 1/2 (mmlyr),vp =1 is - EXplicitly:
an empirical value. This value changes with the type and con-
centration of the chemical species of the fluid transported by 1. If G(0) > 0, the failure region does not contain the ori-

Conclusions

pipelines, andy ~ 1/2 is a parameter that characterizes the gin, i.e, the origin is in the safe region. Equation (4)
form of the process over time [16]. Figure 6 shows the relia- is applied for FORM and Egs. (7)-(8) for directional
bility function 3 (t) = —®~! [Pr(t)] obtained from Eq. (17). simulation.

The behavior of this function is observed to be exponential.
Note that for the time periods of interest (between O and 5 ,, ¢ G(0) < 0 the failure region contains the origin.

years), the reliability function is associated with non-origin- Equation (5) is applied for FORM and Egs. (9)-(10)
for directional simulation.

4

s 3. If G(0) = 0, the origin belongs to the failure region.

, In this case, the failure probability is 1/2 for FORM
= and for directional simulation there are three possible
o cases. If for a certain direction:

[
, a. G(ra) > 0,forall0 < r < r, then Eq. (7) or
(8) is applied.

-3

4 b. G(ra) <0, forall0 < r < r,then Eqg. (9) or

0.0 0.1 0.2 0.3 0.4 0.5 _0.6 0.7 0.8 0.9 1.0 (10) iS applled

n=d_ It
FIGURE 5. Reliability function: reliability indices vs corrosion c. G (ra) =0, for all r>0, then
depthsy. P |G (RA)<0|A=a]=0; this occurs when the
limit state surface coincides with a hyperplane.
3.5
According to the above, it is a simple matter to establish
whether the failure region contains the origin or not, as well
_ as to evaluate the failure probability associated with the fail-
i—l ure region in question.
? The reliability analysis applied to a corroded pressure
= pipeline showed that, unlike typical applications to struc-
tural reliability problems, in the study of corroded pressur-
ized pipelines it is not unusual to find cases where the origin
of the U vectors lies in the failure region. Also in professional
practice, after a pipeline inspection, it is common to find cor-
rosion defects whose failure regions containing the origin. In
Himeigi(yeass) those cases, the expression presented in this article should be
FIGURE 6. Reliability function: reliability indices vs time. applied.
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