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The magnetic properties of iron clusters (FeN , N = 9, 15, 27, 51, and 59 atoms) atT = 0 K with bcc-like structure and bulk parameters
are studied usingab initio methods. In these studies we consider the spin-orbit coupling and applied external magnetic fields. The basis set
includes wave functions of thes, p, d, andf valence electrons. An analysis of the spin and orbital magnetic moments for every shell of the
different cluster sizes is performed. The results obtained in the present work agree with other results reported in the literature and call for
additional experiments.
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Se estudian las propiedades magnéticas de ćumulos de hierro (FeN , N = 9, 15, 27, 51, y 59́atomos) aT = 0 K y con estructura bcc,
paŕametros de bulk y usando métodosab initio. En este estudio se considera el acoplamiento espı́n-orbita y se aplica un campo magnético
externo. La base incluye funciones de onda de los electrones de valencias, p, d, y f. Se lleva a cabo un análisis de los momentos magnéticos
de esṕın y orbital para cada capa de los diferentes cúmulos considerados. Los resultados obtenidos aquı́ est́an est́an en acuerdo con otros
resultados reportados en la literatura y provoca la realización de experimentos adicionales.

Descriptores:Nanoestructuras magnéticas; propiedades magnéticas; ćalculosab initio.

PACS: 75.50.-y; 75.50.Bb; 36.40.Cg

1. Introduction

It has long been observed that the effective magnetic moment
per atom in very small clusters is greater than the bulk value
and that they behave as superparamagnetic clusters at ther-
mal equilibrium conditions [1]. The magnetic moment of free
3d-transition-metal clusters has been measured by de Heeret
al. [2–4] and by Bloomfeldet al. [5–7] by means of Stern-
Gerlach experiments. They have observed that the magnitude
of the average magnetic moment per atom in small clusters is
close in magnitude to that of the isolated atom. As the clus-
ter size increases, the average magnetic moment decreases
and oscillates. Finally, the bulk value is achieved for clusters
with sizes of the order of 700 atoms. They have also shown
that the magnetic field- and the temperature-dependence of
the average magnetic moment are expressed by the Langevin
type function for non-interacting atoms.

In addition to the global features mentioned above, there
are other interesting features in the magnetism of clusters.
Billas et al.[3] suggested the existence of a geometrical mag-
netic shell, in which the local magnetic moment changes
shell, by shell from the surface to the inner region of the clus-
ters.

There have been various theoretical reports trying to ex-
plain the experimentally observed features. The problem is
complicated since there is no experimental information on
the geometrical characteristics of the small clusters. There is
also no information about the geometrical characteristics as a
function of the size. In view of this lack of information, one
generally assumes that the geometry adopted by the clusters
is the same as the bulk crystalline lattice. Thus, in the case of
Fe, one assumes that the clusters grow as small chunks of a
bcc lattice and that Ni clusters follow the fcc structure. Given
these assumptions, one must choose the theoretical model
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and approximations needed to calculate the electronic and
magnetic structure. The results obtained through this line of
reasoning are already a good starting point for learning about
the physicochemical properties of clusters as a function of
size.

However, the geometrical structure of free standing clus-
ters must be determined by the minimization of the total en-
ergy ruled by the electronic structure. To carry out this pro-
cedure, one must performab initio all electron calculations
and minimize the energy as a function of the geometrical ar-
rangement and interatomic distances. There have been some
reports on first principle studies for relaxed clusters [8–12].
For small clusters FeN , N ≤ 7, it has been found by means
of a density functional theory calculation that Jahn-Teller
distortions stabilize open structures that differ from the bcc
structure. The comparison of these results with photoelectron
spectroscopy studies [13] seems to validate these geometrical
arrangements.

For larger clusters, it has been reported that Fe13 could
take on the geometry of a distorted iscosahedron. One can
also obtain different magnetic orderings,i.e. ferromagnetic
or antiferromagnetic. This is understandable since, as the
cluster size grows, one must sample a manifold energy sur-
face where the minima are very shallow. That is why with,
the actual computational facilities and codes, the clusters that
can be calculated consist of a small number of atoms.

From bulk and surface studies one knows that the elec-
tronic and therefore the magnetic properties of transition
metal atoms depend strongly on the environment;i.e. the lo-
cal magnetic moment of a particular atom depends strongly
on its coordination number and on what kind of neighbours
it has. In CuNi alloys for example, the existence of magnetic
moments in the Ni atoms depends on the number of nearest
Ni neighbours, which in turn depends on nominal alloy con-
centration [14].

In the same way, one expects that the magnetic proper-
ties of transition metal clusters will depend strongly on the
geometrical structure and that each one of the atoms com-
posing the cluster will possess magnetic moments that de-
pend on the local environment. For example, in a cluster of
9 Fe atoms in a bcc geometry, the central atom, which has
its nearest neighbour a complete shell (8 atoms), will possess
a magnetic moment that is different from the other 8 which
are single-coordinated to the central atom. To build the next
shell, one needs 6 atoms. In this new cluster, the first shell
atoms now get three neighbours in the second shell and are
now 4-coordinated. The six atoms of the second shell also
have 4 nearest neighbours.

In view of these special cluster characteristics, several
authors have explained the oscillatory behaviour in the av-
erage magnetic moment as a function of size by means of
shell models [4,15–17]. These models give an oscillatory be-
haviour in the average magnetic moment but differ from the
experimentally observed behaviour. More recently, anab ini-
tio calculation of the magnetic structure of small iron clusters
has been reported [18]. They calculate the local spin and or-

bital magnetic moments and find a linear dependence on the
effective coordination number.

In the present work, taking into account the complexity
of the problem and being interested in the main trends of
the orbital magnetic moment and the effect of applied mag-
netic fields, we calculate at 0K the magnetic properties of iron
atom clusters made of 9, 15, 27, 51, and 59 atoms with a bcc
structure. The lattice parameters are set equal to the bulk val-
ues. We are aware that this assumption for the clusters with
9 and 15 atoms may not be the correct one, but we do it in
order to get the complete sequence of bcc clusters. There are
indications that clusters withN > 25 adopt the bcc struc-
ture [19].

The electronic calculations are done using the Cerius [20]
code, which is anab initio method; within this method we
calculate the spin and orbital magnetic moments. In addition,
the 59-atom cluster is immersed in a magnetic field, and the
induced magnetic moments are calculated.

In these calculations, we include the spin-orbital interac-
tion and analyze the spin and orbital magnetic moments for
every shell of the clusters. We also study the orbital angular
momentum projection of the electronic charge distribution
in each atom in different shells, particularly in the surface
shell and in the central atom. We calculated the total charge
at each site,i.e. the sum of spin-up and spin-down valence
electrons. Thus, we analyze the cooperative phenomenon and
local atomic structure.

This work is organized as follows: in Sec. 2, a brief de-
scription of the calculation is given. In Sec. 3, we present the
results and the discussion of the calculations of the orbital
and spin magnetic moments for the different shells and clus-
ters sizes. Later, we study the effect of applied fields on the
orbital and spin magnetic moments for the 59-atom cluster.
Finally, the conclusions are presented in Sec. 4.

2. Model and calculation

2.1. Geometrical Characteristics

As mentioned above, one key factor determining the physic-
ochemical properties of nanoclusters is their geometric ar-
rangement. In particular, the geometrical structure is of major
importance in determining the magnetic properties. There-
fore, we first describe the geometrical characteristics of the
clusters studied here. In Fig. 1a we show the 27-atom clus-
ter with bcc structure. The hatched circle is the central atom,
and is denoted as the zero site. Shell one consists of the first
eight neighbors beside the central atom and these are shown
as black circles. Shell two contains the next six neighbors,
shown as gray circles, which are four-fold coordinated with
the first shell atoms. Finally the outermost external shell, the
third one, consists of 12 atoms (in white), two-fold coordi-
nated with the second shell atoms.

Figure 1b shows the 59-atom cluster. The hatched circles
correspond to the 27 cluster, discussed above. The 24 atoms
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in the fourth shell are shown as gray circles, and the outer-
most shell, the fifth, which contains 8 atoms, is shown by
open circles. The full information on the geometrical charac-
teristics is contained in Table I, where the first column shows
the number of atoms in the various shells. The second col-
umn shows the shell number, and the matrix elementsaij are
the coordination numbers of an atom in shelli to atoms lo-
cated in shellj. This information is vital to understanding the
magnetic structure of clusters.

TABLE I. Geometrical structure of bcc clusters. The first column is
the total number of atoms in the various shells denoted in column 2.
The matrix elementsaij are the coordination numbers of an atom
in shelli to atoms located in shellj.

i\j 0 1 2 3 4 5

1 0 0 8 0 0 0 0

8 1 1 0 3 3 0 1

6 2 0 4 0 0 4 0

12 3 0 2 0 0 4 0

24 4 0 0 1 2 0 1

8 5 0 1 0 0 3 0

FIGURE 1. a) The 27 atom cluster with bcc structure. The hatched
circle is the central atom. Shell one consists of the first eight neigh-
bors beside the central atom and these are shown as black circles.
Shell two contains the next six neighbors, shown as gray circles.
The outermost shell consists of 12 atoms (in white). b) The 59-
atom cluster with bcc structure. The hatched circles correspond to
the 27 cluster. The 24 atoms in the fourth shell are shown as gray
circles, and the outermost shell, the fifth, that contains of 8 atoms
is shown by open circles.

2.2. Computational Procedure

The Cerius [20] code used in the present calculation consists
of several modules. The one implemented in this work was
the ESOCS [21–23] (Electronic Structure of Close-packed
Solids). It is a code that is based on first quantum mechanical
principles and has been used to calculate the electronic struc-
ture of the surfaces and bulk of a wide range of solid-state
systems, including metals and semiconductors. It is important
to mention that this code includes the spin-orbital coupling.

This code was developed to study systems with periodic
boundary conditions. Thus, one can study an infinite piece of
matter, at a calculation cost that is determined by the number
of atoms in the unit cell. Defect structures, surfaces, clus-
ters, and even molecules can be studied by imposing periodic
boundary conditions, by generating supercells that contain
the object of interest. ESOCS transforms the conventional
cell to the primitive calculation cell. The calculation time per
k-point in an ESOCS run ranges scales between the square
and the cube of the number of the atoms in the cell.

ESOCS is based on the spin functional density and the
atomic sphere approximation, ASA. The main characteristic
of this code is an expansion in spherical waves of the wave
functions, which are centered in each atomic site. Due to this
construction, the projection of the quantities such as elec-
tronic densities of states, charge, spin and orbital magnetic
moment onto atomic sites is easily calculated.

The basis wave-function set used by ESOCS is the solu-
tion of the Schr̈odinger equations for energies in the valence
region, which are automatically orthogonal to all the on-site
core orbitals. Thus, every basis wave-function is orthogonal
to all core orbitals of the system [23]. The Bloch functions
of the system are then expanded in this basis set. One vital
feature that greatly improves the calculation efficiency is that
each basis function, regardless of which atom it is centered
on, is orthogonal to all core levels of the entire crystal.

A second approximation that is imposed by ESOCS is
the use of a single basis function per atom per partial wave.
In this code, it is assumed that the crystal is a close-packed
metal, and under this assumption, it takes the next upper or-
bital from the valence states and it is added to the basis wave-
function set.

By taking into account these two approximations, for
the case of the Fe, Cerius uses the basis set4s4p3d. The
4s3d states result from the first approximation and the wave-
function corresponding to4p results from the second one.
This is named the polarization function. The principal quan-
tum number for this basis set isn = 4. Furthermore, the po-
larization function has an orbital angular moment higher than
the one for the atomic functions associated with the occupied
levels in the atom. Then the valuesL = 0, 1, 2, and 3 are the
values of the projection of the orbital angular moment.

To implement the ESOCS code for the study of the mag-
netic properties of the Fe aggregates, the cluster is located
inside a “primitive cell”, taking into account the initial con-
ditions previously indicated;i.e. the size the primitive cell
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FIGURE 2. The spin (a) and the orbital (b) magnetic moment for
atoms located at the various neighbor shells and for different clus-
ter sizes. Site zero is the central atom. In this calculation,H = 0
andT = 0.

will be determined under the following criteria: a) the total
energy has a minimum, b) the values of the spin and orbital
magnetic moments at the center of the cluster approach bulk
values and those on the cluster surface, values of a thin film,
and c) the primitive cell size is such that, when applying the
atomic sphere approximation, ASA, the overlap is minimum.

3. Results and discussion

The results obtained for the spin and orbital magnetic mo-
ment for atoms located in the various shells and for different
cluster sizes,H = 0 andT = 0 K, are shown in Figs. 2a
and 2b. As mentioned above, the numeration of the shells is
in increasing order with respect to the distance from the cen-
ter of the cluster.

The largest value for the average of the spin magnetic mo-
ment per atom is obtained for the smallest cluster, in which
the central atoms possess aµS = 2.73 Bohr magnetons and
the surface atomsµS = 2.78. In this cluster, the central atom
has eight neighbors and the surface atoms are only single
bonded to the central one. In the next cluster size, obtained

FIGURE 3. The average spin and orbital magnetic moments as: a) a
function of the number of the atoms in the cluster and b) a function
of the average coordination number in the cluster.

by adding 6 atoms, the number of bonds increases substan-
tially, since the central atoms has its 8 neighbors, the atoms
in the first shell are now four-fold coordinated (instead of
monocoordinated) and the outermost atoms are also four-
coordinated. This effect means that the central atom attains
a spin magnetic moment value very close to the bulk one,
the first shell atoms show a magnetic moment smaller that
the central atom, and the outermost atoms have a large spin
magnetic moment, similar to the surface atoms of the 9-atom
cluster. It is important to note that this kind of oscillation is
typically due to the charge oscillations near a surface. These
results make evident how sensitive the electronic structure is
on the geometrical structure.

The cluster with 27 atoms, whose geometrical structure
was discussed above, has a more open geometrical structure
in which 12 of the 27 atoms are only two-fold coordinated.
With slight oscillations, the spin magnetic moment shows
values similar to the 9-atom cluster. Adding 24 and 32 atoms,
the magnetic moment structure resembles more a core similar
to bulk iron and an enhanced magnetic moment at the surface
atoms.
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The results for the orbital magnetic moment are shown in
Fig. 2b. The trends are similar to the spin magnetic moments
with the observation that we obtain negative values for the
cases of the clusters with 15, 51 and 59 atoms. As expected,
the absolute values are very small compared to the spin mag-
netic moments.

As far as the calculations of magnetic moments is con-
cerned, an interesting and important aspect is the almost al-
ternation of the signs of the orbital magnetic moments as the
cluster size grows. This is due to the fact that spin and orbital
magnetic moments are combined to achieve the most stable
configuration of the cluster.

Table II shows the values of the contributions resulting
from the various electron orbital angular moments (s, p, d
andf ), to the total value of the spin moment, defined as the

difference between the spin-up and spin-down valence elec-
trons. This information is given for the central and outermost
atoms. The table also contains the values of the contributions
to the total electronic charge, which is the sum of the spin-up
and spin-down valence electrons. Table II also shows the to-
tal charge difference between the surface shell and the central
atom,∆Q.

As expected, from the numerical results, it can be seen
that the most important contribution to the spin magnetic mo-
ment arises from the projection of the orbital angular moment
with L = 2. The second important contribution comes from
p, and the smallest contribution is due to thes electrons. The
3d- and 4s valence electrons in atomic Fe redistribute them-
selves and partially occupy thep andf levels.

TABLE II. Contributions to the local spin magnetic moment and the local charge of atoms at the center and the surface, arising from different
orbitals (s, p, d, andf ), for the various cluster sizes. The last column gives the charge difference between the central and surface atoms.

Electronic

charge Local spin

Cluster projection magnetic moment Charge ∆Q

Center Surface Center Surface

d 2.59106 2.71676 6.52362 6.52132

Fe9 s -0.02214 -0.00145 0.81156 0.74001

p 0.07830 0.03275 0.71470 0.63969

f 0.05995 0.03456 0.10954 0.07906

total 2.70717 2.78262 8.15942 7.98008 0.17934

d 1.59370 2.07813 5.52913 4.41826

Fe15 s 0.02072 0.09940 0.98742 0.90959

p 0.30686 0.30432 2.15246 1.44678

f 0.30155 0.26989 2.52207 2.37377

total 2.22283 2.75174 11.19108 9.14840 2.04268

d 2.47841 2.53695 5.78612 6.21471

Fe27 s -0.02143 0.42145 0.71915 0.81029

p 0.02000 0.09741 0.88094 0.90363

f 0.07565 0.06338 0.32549 0.77069

total 2.55263 2.73035 7.71170 8.69932 -0.98762

d 1.76812 2.43788 5.42262 4.34758

Fe51 s -0.01660 0.03112 0.98421 0.74778

p 0.25618 0.16795 1.77086 0.94333

f 0.14538 0.12323 1.51722 1.51459

total 2.15308 2.76018 9.69491 7.55328 2.14163

d 1.93176 2.66666 5.35918 4.58928

Fe59 s -0.02673 0.01954 1.00515 0.73410

p 0.22200 0.12518 1.69356 0.83802

f 0.12350 0.12389 1.81756 1.34343

total 2.25053 2.93527 9.87545 7.50483 2.37062
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FIGURE 4. The local spin (a) and orbital (b) magnetic moments
for atoms at the various shells, for the 59-atom cluster, for several
values of the applied magnetic fieldH.

FIGURE 5. The average spin and orbital magnetic moments of the
59-atom cluster as a function of the applied magnetic field, referred
to the values forH = 0.

The average spin and orbital magnetic moments as a
function of the number of atoms in the cluster is shown in
Fig. 3a. Similar behavior was obtained by Franco [15] and
Guevara [24] using tight binding models. The trends are sim-

ilar to those observed experimentally [2–4], but it is difficult
to compare them with our results since the magnetic moment
reported from experiments are for larger clusters and there
are large error bars for the clusters 10 atoms. Furthermore,
the estimated temperature at which the clusters were mea-
sured is 120 K.

In Fig. 3b, the average spin and orbital magnetic moment
as are shown a function of the average coordination num-
ber in the various clusters. To explain the decrease in the
spin magnetic moment as a function of the average coordi-
nation number, several geometrical shell models have been
proposed [3, 16, 17], where the magnetic moments of a par-
ticular atom are determined by its coordination number.

We compared the electronic local density of states mea-
sured by photoelectron spectroscopy studies [13] with our re-
sults for the clusters with 9, 15 and 27 atoms. Athough a
direct comparison cannot be made, since the experimental
results are obtained for charged particles, the main features
for the 9-and 27-atom clusters are reproduced. This means
that the geometrical structure is not too different from the
bcc structure that was assumed in the calculation. That is not
the case for the 15-atom clusters where there are substancial
differences. A more detailed analysis on this issue will be
published elsewhere.

Finally, the 59-atom cluster is embedded in an external
magnetic field in the range between−40kG and+40kG at
temperature T=0 K. Fig. 4 shows some results of the spin and
orbital magnetic moments for several values of the applied
magnetic field. The behavior of the spin magnetic moment,
when applying the magnetic field in the positive direction
of z, shows an increment in each shell and the opposite oc-
curs when it is applied in the negative direction, as was to be
expected. The lines drawn through the various shells are not
parallel and show an effect that is produced by the interplay
of all the electrons. This effect is known as the Pauli param-
agnetism and the increase (or decrease for negative fields) is
proportional to the difference in population of electrons with
opposite spins.

The orbital magnetic moment has a peculiar behavior.
This is due to the fact that the orbital momentum reacts to the
application of an external field producing a diamagnetic ef-
fect that cancels the applied field. Therefore, the total change
produced by the applied field in this particular case has to
sum cero. This effect is more clearly shown in Fig. 5 where
the net increase in the average spin and orbital magnetic mo-
ments as a function of the applied field is shown.

4. Conclusion

In this contribution, a study of the magnetic properties of
small Fe clusters was reported. The calculation was per-
formed within anab initio method that includes spin-orbit
coupling. Our results for the spin and orbital magnetic mo-
ments in the different atomic environments, clearly show the
dependence of the cluster magnetic properties on the size and
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geometry. We also reported on the effect that applied external
magnetic fields produce.

With our method, a more realistic treatment of the vari-
ous electronic levels was possible. Nevertheless, a drawback
from our approximation must be noted, since it is necessary
to impose boundary conditions. This approximation usually
overestimates the role of the interaction between electrons in
different atomic states, producing finite bandwidths. In par-
ticular, the population of thep- andf -levels may be exagger-
ated.

A comparison of our results with photoelectron spec-
troscopy studies seems to validate the geometrical stucture

assumed, except for the 15-atom cluster, where important de-
viations from the bcc structure may be present.

We expect that our results may motivate further experi-
ments to characterize in a more detailed way the magnetic
properties and their crucial dependence on the local environ-
ment dependence.
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