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On the morse potential in liquid phase and at liquid-vapor interface
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Canonical Molecular Dynamics simulations have been performed to calculate thermodynamic properties in the liquid phase and at the liquid-
vapor interface for fluids interacting by Morse potential. Transport properties such as self diffusion and shear viscosity have been calculated
in one phase. Self diffusion shows an important dependence on particle number whereas shear viscosity does not show such dependence
At the liquid-vapor interface, properties such as orthobaric densities, vapor pressure, and surface tension were calculated. Equilibrium
densities were compared with results obtained by NpT plus test particle method, and an excellent agreement was found. The surface tension
and the vapor pressure are computed for the first time in this work. We also analyzed the cut-off distance dependence in both bulk and
interfacial properties. No significant difference was found in the data obtained when two different cut-off distances weRe us@dhyo

andR. = 4.00. This is a consequence of the short-range nature of the potential.

Keywords: Surface tension; Morse potential; molecular dynamics.

Se realizaron simulaciones daricas de Diamica Molecular para obtener propiedades termadinas en la faséduida y en la interfase
liquido-vapor para fluidos que interéah mediante el potencial de Morse. Se calcularon en una fase las propiedades de transporte tales como
la autodifusbn y la viscosidad de corte. La autodifoisimuestra una dependencia en @mero de partulas mientras que la viscosidad

de corte no mostrtal comportamiento. Las propiedades que se calcularon en la intdfag®ivapor fueron las densidades ortobaricas,

la presdn de vapor, y la ten8h superficial. Las densidades de equilibrio fueron comparadas con aquellas densidades que se obtuvieron
mediante la metodoldg NpT més paricula de prueba, y desto se hall un acuerdo excelente. La temisisuperficial y la preén de vapor

se calculan adgupor primera vez. TambBn hemos analizado la dependencia en el radio de corte por parte de las propiedades de bulto e
interfaciales. Los datos obtenidos con dos distintos radios de ¢rte, 2.50 y R. = 4.00, fueron comparados entre si, y como resultado

de ello, no hallamos diferencias significativas. Esto es una consecuencia de la naturaleza de corto alcance del potencial.

Descriptores: tensbn superficial; potencial de Morse; dimica molecular.

PACS: 31.15.Qg

1. Introduction systems, just to mention some examples. In the last decade,
several studies on the liquid-vapor phase coexistence have
The Morse potential has been widely used for studying meltbeen carried out by means of molecular simulation. In the
ing transition and laser ablation processes in computer sinease of the Morse potential, it is important to study its be-
ulation [1-3]. It has also exhibited advantages in the studyhavior in the bulk phase as well as in the liquid-vapor inter-
of the fcc metals [4,5]. Furthermore, there are several papeface, because this would help us to have a broader view of
in the literature devoted to studying the structural propertieshe capabilities of this potential. Another important reason
of the Morse and Lennard-Jones (L-J) clusters, as well age are interested in the study of the liquid-vapor interface of
the comparisons among them [3, 6-8]. In some cases, motkhe Morse potential is that in the near future, we would like
ifications on Morse function have been made [9-12] in or-to estimate interfacial properties of alkali metals using the
der to improve the numerical results. Although traditionally Morse potential with a slight modification.
the Morse potential has been employed to model covalent The Molecular Dynamics (MD) simulation technique is
bonded diatomic molecules [13-15], it has also been used successful tool for estimating thermodynamic properties in
for estimating non-bonded interactions [16, 17]. This potenthe bulk phase and at the liquid-vapor interface, mostly when
tial is qualitatively similar to that of L-J; however, they are the interface is physically present [21]. As is well known, an
quite different from a quantitative point of view. The L-J and accurate calculation of the forces is fundamental obtaining re-
Morse potentials can be compared in a direct manner by usingable results of the properties mentioned above. In that sense,
a mathematical relationship that makes it possible to locateo clarify whether a large cut-off distance is necessary to cal-
the minimum point of energy at the same position [18,19]. Inculate the full interaction for the Morse potential is one of the
addition, it has been shown that it is possible to derive eithegims of this paper, which is relevant because it is difficult to
one from the other [20]. include long-range corrections in transport properties during
It is important to analyze the liquid-vapor phase coexis-the simulations [22, 23]. Furthermore, the interfacial proper-
tence for simple or complex fluids, since it is closely relatedties have shown an important dependance on the cut-off dis-
to real systems such as environmental processes or biologici@nce [24, 25]. Concerning the liquid-vapor properties, we
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can see in the literature by using methods both with [24, 26Feparation in the original expression. In Eq. ¢li the depth

and without [27] interfaces, surface tension, vapor pressuraf energy well and- is the distance between each pair of par-
and coexisting densities in liquid-vapor interface have beeticles.

estimated accurately, as is the case of the L-J potential [24]. The Green-Kubo formulas have been used to calculate the
For Morse fluids, the orthobaric densities have already beetransport properties in one phase [21]. The diffusion coeffi-
calculated in a previous work [19], but to our knowledge, datecient is written as

for vapor pressure and surface tension are not available for 00
comparison. Besides, the dependence of the interfacial prop- D= 1/<Vi(0) vi(t))dt )
erties on the cut-off radius has not yet been analyzed. 3 ’

In this work we calculate bulk liquid transport properties 0

by MD simulations. We also perform interfacial simulations wherev; is the velocity of particle, and(. - -) denotes the
to estimate liquid-vapor properties for fluids interacting by average ensemble. The expression for shear viscosity is
Morse potential, the estimation of the surface tension being 00

our main objective. Thg rest of the paper is orgam;ed as fol- n= ( 14 > /(Pil(O)Pil(t»dt, 3)
lows: in Sec. 2 we define the employed expression for the KgT

Morse potential, together with some relevant definitions. In

Sec. 3 the simulation details are mentioned. The results aihere Kz is the Boltzmann's constany” and T represent
contained in Sec. 4. Finally, in Sec. 5 we include some cona given volume and temperature, respectively; éhdare
cluding remarks. the non-diagonal components of the pressure tensor. Indeed
the componentsn(3) of the pressure tensor are calculated by
means of the virial expression

2. Basic equations
N—-1 N

N
To analyze the capabilities of Morse potential for calculating P.gV = Z MiViaVig + Z Z(r,;j)a(fij)g, 4)
the interaction between two non-bonded particles, this poten- i=1 i=1 j>i

tial is written in such a way that the minimum point of energy wherem,
is in the same position as that of L-J potential [19, 20], which
traditionally has been used to estimate the interactions of th
Van der Waals type (see Fig. 1). The Morse potential is

andr; are the mass and position of partiélere-
spectively. Hence;; = r; — r;, f;; is the force between two
ﬁarticlesi andj.

The coexisting densities in the liquid-vapor equilibrium

are calculated by fitting the density profile&) to a hyper-

2
d=c¢ {1 —exp { \(V%HE? (g - \6/5) H —¢, (1) Dbolic tangent function
2(z—2z9)

1 1
where the relationship. = 21/ has been used, being the p(z) = 5(p+py) = 5(p,—py) tanh {5} , (5)
effective diameter of particles and the equilibrium pair

wherep, andp, are the liquid and vapor densities, respec-
1 . . tively. The thickness of the interfacedsandz is the Gibbs
dividing surface. In addition, to estimate the critical tempera-
tureT,. and critical density,.., we have used both the scaling
law and the law of rectilinear diameters [28-30], in the same
way as was done in Ref. 31. By using the equilibrium densi-
ties, the critical temperature is derived from the relation

PL—PV—A1(1—T> +A2<1—T) . (6)

(I)/S ot c c
whereA; and A, are the correlation coefficients,being the
critical parameter withs = 0.325 andA = 0.5. Once theT,
is known, the critical density is estimated by using the law of
rectilinear diameters,
1
§(PL+PV) =p.+A3(T-Te), (7)
9 L whereAj; is an adjustable parameter.
0 1 To calculate the surface tension we used the mechanical
rlo definition
FIGURE 1. Comparison between L-J and Morse potentials. The I 1
continuous line corresponds to the former and the dotted lines rep- v =" ((Po) — = (Pex + Py, (8)
resent the latter. 2 2 o
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whereL, is the side perpendicular to the interfacial area andsimulation boxes are employed. This oscillating behavior is
P;; are the diagonal components of the pressure tensor. Equexhibited for both polar and non-polar fluids when this prop-
tion (8) has been divided by 2 because there are two interfeerty is calculated through the pressure tensor components.
cial areas. Indeed, dissipative particle dynamics simulations have also
been performed to analyze the finite size effect on surface
tension [33]. In case of polar fluids, this same procedure for
estimating the surface tension could lead to unphysical re-

In all our simulations, the particles were placed in an fcc arsults [32]. As was mentioned in Ref. 34, it is necessary to
ray. These were moved using the leap-frog algorithm im-consider a large simulation box to avoid unreal results. Fol-
plementing the periodic boundary conditions and minimumlowing these considerations, in this work we used a cell with
image convention in the three spatial directions [21]. In ourL; = 10 = Lj. Actually, for Morse potential, by using such
simulations we employed two cut-off distancBs = 2.50  Systemsize, the oscillating behavior of this quantity vanishes.
and R, = 4.00. The temperature was maintained constant

by normalizing the velocities at each step. The neighbor list

was implemented in order to speed up the code. 4. Results

In the liquid, phase the reduced hydrostatic pressure i , )
p* =po®/e and reduced potential energy* = U/Ne In this section we show the results obtained for Morse fluids

were calculated for two different temperatures. We usedY Using molecular simulations. Figure 1 shows the com-
N = 500 particles changing the reduced density fromParison between L-J and Mor_se potentials; it is well-known
p* = po® = 0.1 up top* = 0.9. The reduced temperatures that the range of the formgr is greater than that of the lat-
wereT* = kpT/e = 1.5 andT* = 2. In these simula- tgr. By using Morsg potential, (a) the pressure and (b) con-
tions the time step employed was = 0.0055(me)/2. By flgurat|ongl energy in one phaselwere obtained; these results
doing6 x 10* cycles, equilibrium was reached and perform- &€ contained in Fig. 2. Comparing the data obtained by us-

ing 3.4 x 10° cycles more, we calculated the averages of th |

3. Computational details

dng two different cut-off distances, we can observe that the

pressure and energy. On the other hand, to calculate reduckfgest difference on these properties is abiogio and it is
self-diffusion D* = D./™ /o and reduced shear viscosity located in pressure at a reduced density.6fand a reduced
n* = no? /\/me coefficients, a cubic cell was used with sev- [€mperature o2.0. S
eral particle number&v = 256, 500, 864 and 2048. The Figure 3 shows (a) the reduced shear viscosity and (b) the
reduced time step used was* = 0.0025. We used a re- reduced diffusion coefficient for several particle numbers by
duced density op* = 0.81 and a reduced temperature of
T* = 0.65, that corresponds to the liquid phase. The trans-
port properties were estimated at the end of the simulations, 12
storing the particle velocities and non-diagonal pressure ten- 44 |
sor components every 10 time steps and every time step, re
spectively. In case of self diffusion, the number of parti- « 8
cle velocities stored wa®/,.; = 256 in all cases. In order 6
to obtain the numerical values of transport coefficients, the 4
2
0

14 T T T 1

time-dependent diffusion and time-dependent shear viscos-

ity were evaluated at* = 1.5125 andt* = 1.5012, respec-

tively. To reach equilibrium in the simulations, we performed

5 x 10° integration steps, and to obtain averages, we carried

out2 x 10° extra cycles. ¥
Concerning the liquid-vapor interface, for the initial con-

figuration a parallelepiped cell with a liquid slab surrounded

by vacuum was considered. The sile= L, /o is perpen- - =

dicular to the interface and it is larger thdry = L;. All

the simulations were carried out using = 1728 particles. -3

The adimensional time step was* = 0.005. 5 x 10* cy-

cles were performed to reach equilibrium, ahd5 x 108 4 , ! . ) , . , . :

cycles more were used to calculate the adimensional inter- 0 0.2 04 08 0.8 1

. . . *
facial properties such as surface tension vapor pressure P

Py, liquid densityp; and vapor densityy, . Itis important FIGURE 2. Reduced pressure (a) and reduced potential energy (b)

to clarify that in this work we are considering; , = Py.  are shown as a function of density. These results correspond to two
In order to estimate the reduced surface tension confidentlyjifferent temperatureg* = 1.5 and7T™* = 2. The filled circles and

we must pay attention to the oscillating behavior that showshe open diamonds were obtained with = 2.50 andR. = 4.00,
this property when periodic boundary conditions and smallrespectively. The line was included just to guide the eye.
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34 . . : . . . . T
40 _ a) TABLE |I. _Thermodynamic properties at liquid-vapor i_nterface for
r Morse fluids. The particle number and the cut-off distance used
2L 1 wereN = 1728 andR. = 2.50, respectively.
*g T v’ oL” Py ~* 0/20
2810 o A o . 0.45 0.0005 0.8770 0.00009 0:/8 0.51
a6 L o | 0.50 0.0009 0.8544 0.00040 068 0.64
[ 0.55 0.0025 0.8296 0.00140 0559 0.75
24 by ; : ; ; ; ‘ ! " 0.60 0.0056 0.8017 0.00350 049 0.84
35 1 0.65 0.0121 0.7712 0.00740 041 0.98
: o 0 0.70 0.0200 0.7400 0.01230 0:32 1.14
N gl 8 i 0.75 0.0341 0.7042 0.02110 024 1.44
1(2__ L o 0.80 0.0525 0.6600 0.03290 0016 1.68
*D I 0.85 0.0945 0.6063 0.04970 009 221
29 I 090 0.1503 05326 007210 003 4.15
| b) 0
26 —_— 1 - -
0 0.2 04 0.6 08 1
100/N

FIGURE 3. Reduced shear viscosity (a) and reduced self diffu-
sion (b) plotted with particle numbers. The open circles and open
squares correspond to results usiRg = 2.50c and R. = 4.00,
respectively.

using two different cut-off distances. We notice that the self-
diffusion depends on particle numbers while the shear vis-
cosity does not show this same dependence, as in the case (~ 4, |
the L-J fluid [24]. Added to this, these same transport prop-
erties do not show a clear dependence on cut-off distance
These data illustrate the short-range nature of Morse poten-
tial. Thus we can say that, by using a short cut-off distance,
it is possible to calculate bulk properties accurately, and so it
allows us to perform simulations with a small particle num-

ber for speeding up the process. For instance, the simulatior U J} ' ‘ '\L 5

. . 0 20 40
performance by using. = 2.50 is about75% faster than y i

that obtained withR. = 4.00. When the transport proper-
ties were _Calculated by using two different CUt'OfT diStrsmces’potential withR. = 2.50. Z/o is the reduced coordinate which
the resulting Iarges.t d|ﬁgrence was about’ and it corre- is normal to the interfacial area. The reduced temperatures@are
sponded to shear viscosity. 0.6, 0.7 and0.8 from top to bottom.

The results from this work for liquid-vapor interface are
contained in Table |. Figure 4 shows the density profileway as in Ref. 30. The obtained critical values for density
p*(Z /o) as afunction of the coordinaté/c which is normal  and temperature wer@334 and0.931, respectively. These
to the interfacial area. These density profiles were calculatetesults were compared with those reported in Ref. 19, and the
with R, = 2.50 and correspond to several reduced temperalargest difference found was aroufi®% and it was located
tures,0.5, 0.6, 0.7 and0.8 from top to bottom. The same kind in density.
of density profiles, not shown, are obtained for simulations  Figure 6 shows the logarithm of vapor pressure as a func-
by usingR. = 4.0c. Figure 5 shows the equilibrium den- tion of the inverse of the temperature. In Fig. 7, the surface
sities for Morse fluids. We compared our results with thosetension is plotted as a function of temperature; this property
obtained with NpT plus test particle method [19], and thebehaves well when the density and temperature approach the
agrement was excellent. In Fig. 5 are also plotted the dataritical point. In fact, the data obtained for both vapor pres-
calculated by taking the arithmetic averad¢2)(pv + pr.) sure and surface tension are presented here for the first time.
of those densities obtained wift. = 2.5. On the other hand, We want to emphasize that data for vapor pressure and sur-
by means of the equilibrium densities obtained, the criticaface tension were calculated by using two different cut-off
density and critical temperature were estimated in the sameradius, and as a result no significant difference was observed

p*(Z/c)

02

0

FIGURE 4. Reduced density profile for fluids interacting by Morse

Rev. Mex. 5. 52 (5) (2006) 422428
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L der to take into account the full interaction, it is necessary to
consider a large cut-off radius. In the same Fig. 7, there is a
comparison between the surface tension obtained from Morse
potential and that obtained from L-J potential. The difference
is attributed to the long-range scope of the last potential.

08 . As was pointed out by Gonzalez-Melchetral. [35], an
anisotropy is induced on pressure when the periodic bound-
ary conditions are used employing a parallelepiped simula-
tion box with considerably small interfacial area. As a direct
consequence of this result, the surface tension shows an oscil-
06l O a i lating behavior for small system sizé®,, when few particles

are used. This same behavior can be observed in polar fluids

09 .

07 1

T*

0 a as well [32]. In fact, for this kind of fluids the surface tension
0510 a exhibits an anomalous behavior. This is a consequence of
o o the estimation of this property through the pressure tensor by
. . . . using small cross sectional areas. Hence, in order to obtain
0'50_05 0.15 0.35 055 0.75 0.95 reliable results for surface tension here, we have considered
p* that the interfacial area must be large enough [34]. Actually

F 5 Reduced orthobaric densiti inst reduced t in Fig. 8 it the dependence of surface tension on interfacial
IGURE . educed orthobaric densities agains r.e UCea €MPEry ea is shown. It is observed that with short boxes the os-
ature. The filled squares were taken from Ref. 19; they were esti-

mated by using cut-off distances greater tHaiv. The open cir- C!”atorY behaV|c_)r _'S quite pronpunce_d a_nd, as _soon as the
cles and open squares are the results of this work Uing: 2.5 simulation box is increased, this oscillation vanishes. This

andR. = 4.0c, respectively. The filled circles correspond to the S@me bEhaV'O.r IS eXh'bne.d by tiie-.J fur.‘C“On as well [34];
arithmetic average /2(py + p1) of those densities obtained by When comparing the oscillatory behavior of the surface ten-
usingR. = 2.50. The open diamond corresponds to the result of Sion for both potentials, we can see that the oscillatory effect
the critical point taken from Ref. 19, and the open triangle was is greater for that potential with a greater range, as was men-
obtained from this work. The lines were included just to guide the tioned in Ref. 35. Thus based on these results, we can stress

eye. that a cell withL; = 10 = Lj is indeed large and appro-
priate. All our interfacial data were estimated by using two
-2 . T . T T cut-off distances as well, and no important differences were
found. This allows us to simulate interfacial properties such
3 J
-4 E 1k
5 F J
it 08 -
L-6r -
[
-
-r I 06 |
L.
8} J
04
-9} J
-10 I 1 I 1 ] 02 L
1 1.25 1.5 1.75 2 225 25 ’
1T
FIGURE 6. Logarithm of vapor pressure as a function of the inverse

0 n 1 i L i 1 L 1 n U. i 1 I
temperature. The symbols have the same meaning as in Fig. 5. The 04 05 06 07 08 09 1 11 12 13
line was included just to guide the eye. T
. . FIGURE 7. Reduced surface tension is plotted as a function of tem-
between them. This result was to be expected, since thgerature. The left opened triangles were taken from Ref. 24 and

Morse potential converges to zero at short distances. Thigere obtained using the full L-J potential. The other symbols have
kind of result is not observed with a L-J function because thighe same meaning as in Fig. 5. The line was included just to guide

potential converges to zero at greater distances; thus, in othe eye.
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2 T T ' ' T : : number and the shear viscosity does not present this depen-
dence. The transport properties were calculated by using two
. <+—IT=06 1 different cut-off distances; the obtained data were compared
’ V—VT=07 among them and no significant difference was found. About
0—oOT=08 this point, we can mention that both the velocity and pressure

1| i correlations decrease rapidly due to the short-range nature of
the Morse potential.

On the other hand, the coexisting densities obtained were
* 05 1 compared with those reported in Ref. 19, and good agrement
was found. In agreement with earlier results [19], we located
the critical point atp} = 0.334 andT = 0.931. A set
of points were obtained by finding the arithmetic average on
equilibrium densitieg1/2)(pv + pr); this same set shows a
05 [ ] linear behavior towards a critical point. In regard to the vapor
pressure and surface tension results, we mention that there
are no previous data to compare them with. We stress that
- L L ' ' L . . the surface tension and vapor pressure do not depend on cut-
off distance for fluids interacting by Morse potential; this fact
takes relevance since surface tension has frequently shown a
FIGURE 8. U.F. Galicia-Pimenteét al, Rev. Mex. 5. (2006). direct dependence on cut-off distance for both polar and non-

polar fluids. Comparing both potentials, the Morse function

as surface tension and equilibrium densities by using a sholtas a shorter range than that of the- .J function, this dif-
cut-off distance. As a matter of fact, the finite size effect onference directly affects the location of critical point and also
the liquid-vapor coexistence curve has already been analyzde dependence of surface tension on temperature. Accord-
for simple [35] and molecular fluids [36], where it was em- ing to Fig. 7, the difference on the critical point between both
phasized that it is not necessary to have a large number gfotentials is around0%.
molecules to obtain good results. This is convenient because Finally, in the near future, we shall estimate transport
it is possible to analyze Morse fluid mixtures accurately, in-properties in the liquid phase and interfacial properties in the

vesting only a short computation time. coexistence of liquid-vapor phases for alkali metals, mod-
eling them as simple structureless fluids, by modifying the
5. Concluding remarks Morse potential involving an extra adjustable parameter.

By means of Molecular Dynamics we have calculated trans-
port properties in one phase and thermodynamic properties &cknowledgments
the liquid-vapor interface.
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phase. Concerning these properties, it is important to emwould also like to thank Jorge Orozco-Velazco for his useful
phasize that self-diffusion depends noticeably on the particleomments.
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