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On the morse potential in liquid phase and at liquid-vapor interface
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Facultad de Ciencias,
Universidad Aut́onoma del Estado de Ḿexico, Av. Instituto

Literario 100, Toluca 50000, Ḿexico,
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Canonical Molecular Dynamics simulations have been performed to calculate thermodynamic properties in the liquid phase and at the liquid-
vapor interface for fluids interacting by Morse potential. Transport properties such as self diffusion and shear viscosity have been calculated
in one phase. Self diffusion shows an important dependence on particle number whereas shear viscosity does not show such dependence.
At the liquid-vapor interface, properties such as orthobaric densities, vapor pressure, and surface tension were calculated. Equilibrium
densities were compared with results obtained by NpT plus test particle method, and an excellent agreement was found. The surface tension
and the vapor pressure are computed for the first time in this work. We also analyzed the cut-off distance dependence in both bulk and
interfacial properties. No significant difference was found in the data obtained when two different cut-off distances were used,Rc = 2.5σ

andRc = 4.0σ. This is a consequence of the short-range nature of the potential.
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Se realizaron simulaciones canónicas de Dińamica Molecular para obtener propiedades termodinámicas en la fase lı́quida y en la interfase
lı́quido-vapor para fluidos que interactúan mediante el potencial de Morse. Se calcularon en una fase las propiedades de transporte tales como
la autodifusíon y la viscosidad de corte. La autodifusión muestra una dependencia en el número de partı́culas mientras que la viscosidad
de corte no mostró tal comportamiento. Las propiedades que se calcularon en la interfase lı́quido-vapor fueron las densidades ortobaricas,
la presíon de vapor, y la tensión superficial. Las densidades de equilibrio fueron comparadas con aquellas densidades que se obtuvieron
mediante la metodologı́a NpT ḿas part́ıcula de prueba, y déesto se halĺo un acuerdo excelente. La tensión superficial y la presión de vapor
se calculan aquı́ por primera vez. También hemos analizado la dependencia en el radio de corte por parte de las propiedades de bulto e
interfaciales. Los datos obtenidos con dos distintos radios de corte,Rc = 2.5σ y Rc = 4.0σ, fueron comparados entre si, y como resultado
de ello, no hallamos diferencias significativas. Esto es una consecuencia de la naturaleza de corto alcance del potencial.

Descriptores: tensíon superficial; potencial de Morse; dinámica molecular.

PACS: 31.15.Qg

1. Introduction

The Morse potential has been widely used for studying melt-
ing transition and laser ablation processes in computer sim-
ulation [1–3]. It has also exhibited advantages in the study
of the fcc metals [4,5]. Furthermore, there are several papers
in the literature devoted to studying the structural properties
of the Morse and Lennard-Jones (L-J) clusters, as well as
the comparisons among them [3, 6–8]. In some cases, mod-
ifications on Morse function have been made [9–12] in or-
der to improve the numerical results. Although traditionally
the Morse potential has been employed to model covalent
bonded diatomic molecules [13–15], it has also been used
for estimating non-bonded interactions [16, 17]. This poten-
tial is qualitatively similar to that of L-J; however, they are
quite different from a quantitative point of view. The L-J and
Morse potentials can be compared in a direct manner by using
a mathematical relationship that makes it possible to locate
the minimum point of energy at the same position [18,19]. In
addition, it has been shown that it is possible to derive either
one from the other [20].

It is important to analyze the liquid-vapor phase coexis-
tence for simple or complex fluids, since it is closely related
to real systems such as environmental processes or biological

systems, just to mention some examples. In the last decade,
several studies on the liquid-vapor phase coexistence have
been carried out by means of molecular simulation. In the
case of the Morse potential, it is important to study its be-
havior in the bulk phase as well as in the liquid-vapor inter-
face, because this would help us to have a broader view of
the capabilities of this potential. Another important reason
we are interested in the study of the liquid-vapor interface of
the Morse potential is that in the near future, we would like
to estimate interfacial properties of alkali metals using the
Morse potential with a slight modification.

The Molecular Dynamics (MD) simulation technique is
a successful tool for estimating thermodynamic properties in
the bulk phase and at the liquid-vapor interface, mostly when
the interface is physically present [21]. As is well known, an
accurate calculation of the forces is fundamental obtaining re-
liable results of the properties mentioned above. In that sense,
to clarify whether a large cut-off distance is necessary to cal-
culate the full interaction for the Morse potential is one of the
aims of this paper, which is relevant because it is difficult to
include long-range corrections in transport properties during
the simulations [22, 23]. Furthermore, the interfacial proper-
ties have shown an important dependance on the cut-off dis-
tance [24, 25]. Concerning the liquid-vapor properties, we
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can see in the literature by using methods both with [24, 26]
and without [27] interfaces, surface tension, vapor pressure,
and coexisting densities in liquid-vapor interface have been
estimated accurately, as is the case of the L-J potential [24].
For Morse fluids, the orthobaric densities have already been
calculated in a previous work [19], but to our knowledge, data
for vapor pressure and surface tension are not available for
comparison. Besides, the dependence of the interfacial prop-
erties on the cut-off radius has not yet been analyzed.

In this work we calculate bulk liquid transport properties
by MD simulations. We also perform interfacial simulations
to estimate liquid-vapor properties for fluids interacting by
Morse potential, the estimation of the surface tension being
our main objective. The rest of the paper is organized as fol-
lows: in Sec. 2 we define the employed expression for the
Morse potential, together with some relevant definitions. In
Sec. 3 the simulation details are mentioned. The results are
contained in Sec. 4. Finally, in Sec. 5 we include some con-
cluding remarks.

2. Basic equations

To analyze the capabilities of Morse potential for calculating
the interaction between two non-bonded particles, this poten-
tial is written in such a way that the minimum point of energy
is in the same position as that of L-J potential [19,20], which
traditionally has been used to estimate the interactions of the
Van der Waals type (see Fig. 1). The Morse potential is

Φ = ε

[
1− exp

{− ln(2)
6
√

2− 1

( r

σ
− 6
√

2
)}]2

− ε, (1)

where the relationshipre = 21/6σ has been used,σ being the
effective diameter of particles andre the equilibrium pair

FIGURE 1. Comparison between L-J and Morse potentials. The
continuous line corresponds to the former and the dotted lines rep-
resent the latter.

separation in the original expression. In Eq. (1),ε is the depth
of energy well andr is the distance between each pair of par-
ticles.

The Green-Kubo formulas have been used to calculate the
transport properties in one phase [21]. The diffusion coeffi-
cient is written as

D =
1
3

∞∫

0

〈vi(0) · vi(t)〉dt, (2)

wherevi is the velocity of particlei, and〈· · · 〉 denotes the
average ensemble. The expression for shear viscosity is

η =
(

V

KBT

) ∞∫

0

〈Pij(0)Pij(t)〉dt, (3)

whereKB is the Boltzmann’s constant;V andT represent
a given volume and temperature, respectively; andPij are
the non-diagonal components of the pressure tensor. Indeed
the components (αβ) of the pressure tensor are calculated by
means of the virial expression

PαβV =
N∑

i=1

miviαviβ +
N−1∑

i=1

N∑

j>i

(rij)α(fij)β , (4)

wheremi andri are the mass and position of particlei, re-
spectively. Hencerij = ri − rj , fij is the force between two
particlesi andj.

The coexisting densities in the liquid-vapor equilibrium
are calculated by fitting the density profilesρ(z) to a hyper-
bolic tangent function
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whereρ
L

andρ
V

are the liquid and vapor densities, respec-
tively. The thickness of the interface isδ, andz0 is the Gibbs
dividing surface. In addition, to estimate the critical tempera-
tureTc and critical densityρc, we have used both the scaling
law and the law of rectilinear diameters [28–30], in the same
way as was done in Ref. 31. By using the equilibrium densi-
ties, the critical temperature is derived from the relation

ρL − ρV = A1

(
1− T

Tc

)β

+ A2

(
1− T

Tc

)β+∆

, (6)

whereA1 andA2 are the correlation coefficients,β being the
critical parameter withβ = 0.325 and∆ = 0.5. Once theTc

is known, the critical density is estimated by using the law of
rectilinear diameters,

1
2
(ρL + ρV ) = ρc + A3 (T − Tc) , (7)

whereA3 is an adjustable parameter.
To calculate the surface tension we used the mechanical

definition

γ =
Lz

2

[
〈Pzz〉 − 1

2
〈Pxx + Pyy〉

]
, (8)
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whereLz is the side perpendicular to the interfacial area and
Pii are the diagonal components of the pressure tensor. Equa-
tion (8) has been divided by 2 because there are two interfa-
cial areas.

3. Computational details

In all our simulations, the particles were placed in an fcc ar-
ray. These were moved using the leap-frog algorithm im-
plementing the periodic boundary conditions and minimum
image convention in the three spatial directions [21]. In our
simulations we employed two cut-off distancesRc = 2.5σ
andRc = 4.0σ. The temperature was maintained constant
by normalizing the velocities at each step. The neighbor list
was implemented in order to speed up the code.

In the liquid, phase the reduced hydrostatic pressure
p∗ = pσ3/ε and reduced potential energyU∗ = U/Nε
were calculated for two different temperatures. We used
N = 500 particles changing the reduced density from
ρ∗ = ρσ3 = 0.1 up toρ∗ = 0.9. The reduced temperatures
wereT ∗ = kBT/ε = 1.5 andT ∗ = 2. In these simula-
tions the time step employed was∆t = 0.005σ(mε)1/2. By
doing6× 104 cycles, equilibrium was reached and perform-
ing 3.4× 105 cycles more, we calculated the averages of the
pressure and energy. On the other hand, to calculate reduced
self-diffusionD∗ = D

√
m
ε /σ and reduced shear viscosity

η∗ = ησ2/
√

mε coefficients, a cubic cell was used with sev-
eral particle numbersN = 256, 500, 864 and 2048. The
reduced time step used was∆t∗ = 0.0025. We used a re-
duced density ofρ∗ = 0.81 and a reduced temperature of
T ∗ = 0.65, that corresponds to the liquid phase. The trans-
port properties were estimated at the end of the simulations,
storing the particle velocities and non-diagonal pressure ten-
sor components every 10 time steps and every time step, re-
spectively. In case of self diffusion, the number of parti-
cle velocities stored wasNvel = 256 in all cases. In order
to obtain the numerical values of transport coefficients, the
time-dependent diffusion and time-dependent shear viscos-
ity were evaluated att∗ = 1.5125 andt∗ = 1.5012, respec-
tively. To reach equilibrium in the simulations, we performed
5 × 105 integration steps, and to obtain averages, we carried
out2× 106 extra cycles.

Concerning the liquid-vapor interface, for the initial con-
figuration a parallelepiped cell with a liquid slab surrounded
by vacuum was considered. The sideL∗z = Lz/σ is perpen-
dicular to the interface and it is larger thanL∗x = L∗y. All
the simulations were carried out usingN = 1728 particles.
The adimensional time step was∆t∗ = 0.005. 5 × 104 cy-
cles were performed to reach equilibrium, and1.45 × 106

cycles more were used to calculate the adimensional inter-
facial properties such as surface tensionγ∗, vapor pressure
P ∗V , liquid densityρ∗L and vapor densityρ∗V . It is important
to clarify that in this work we are consideringP ∗ZZ = P ∗V .
In order to estimate the reduced surface tension confidently,
we must pay attention to the oscillating behavior that shows
this property when periodic boundary conditions and small

simulation boxes are employed. This oscillating behavior is
exhibited for both polar and non-polar fluids when this prop-
erty is calculated through the pressure tensor components.
Indeed, dissipative particle dynamics simulations have also
been performed to analyze the finite size effect on surface
tension [33]. In case of polar fluids, this same procedure for
estimating the surface tension could lead to unphysical re-
sults [32]. As was mentioned in Ref. 34, it is necessary to
consider a large simulation box to avoid unreal results. Fol-
lowing these considerations, in this work we used a cell with
L∗x = 10 = L∗y. Actually, for Morse potential, by using such
system size, the oscillating behavior of this quantity vanishes.

4. Results

In this section we show the results obtained for Morse fluids
by using molecular simulations. Figure 1 shows the com-
parison between L-J and Morse potentials; it is well-known
that the range of the former is greater than that of the lat-
ter. By using Morse potential, (a) the pressure and (b) con-
figurational energy in one phase were obtained; these results
are contained in Fig. 2. Comparing the data obtained by us-
ing two different cut-off distances, we can observe that the
largest difference on these properties is about1.3% and it is
located in pressure at a reduced density of0.9 and a reduced
temperature of2.0.

Figure 3 shows (a) the reduced shear viscosity and (b) the
reduced diffusion coefficient for several particle numbers by

FIGURE 2. Reduced pressure (a) and reduced potential energy (b)
are shown as a function of density. These results correspond to two
different temperaturesT ∗ = 1.5 andT ∗ = 2. The filled circles and
the open diamonds were obtained withRc = 2.5σ andRc = 4.0σ,
respectively. The line was included just to guide the eye.
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FIGURE 3. Reduced shear viscosity (a) and reduced self diffu-
sion (b) plotted with particle numbers. The open circles and open
squares correspond to results usingRc = 2.5σ andRc = 4.0σ,
respectively.

using two different cut-off distances. We notice that the self-
diffusion depends on particle numbers while the shear vis-
cosity does not show this same dependence, as in the case of
the L-J fluid [24]. Added to this, these same transport prop-
erties do not show a clear dependence on cut-off distance.
These data illustrate the short-range nature of Morse poten-
tial. Thus we can say that, by using a short cut-off distance,
it is possible to calculate bulk properties accurately, and so it
allows us to perform simulations with a small particle num-
ber for speeding up the process. For instance, the simulation
performance by usingRc = 2.5σ is about75% faster than
that obtained withRc = 4.0σ. When the transport proper-
ties were calculated by using two different cut-off distances,
the resulting largest difference was about1.4% and it corre-
sponded to shear viscosity.

The results from this work for liquid-vapor interface are
contained in Table I. Figure 4 shows the density profile
ρ∗(Z/σ) as a function of the coordinateZ/σ which is normal
to the interfacial area. These density profiles were calculated
with Rc = 2.5σ and correspond to several reduced tempera-
tures,0.5, 0.6, 0.7 and0.8 from top to bottom. The same kind
of density profiles, not shown, are obtained for simulations
by usingRc = 4.0σ. Figure 5 shows the equilibrium den-
sities for Morse fluids. We compared our results with those
obtained with NpT plus test particle method [19], and the
agrement was excellent. In Fig. 5 are also plotted the data
calculated by taking the arithmetic average(1/2)(ρV + ρL)
of those densities obtained withRc = 2.5. On the other hand,
by means of the equilibrium densities obtained, the critical
density and critical temperature were estimated in the same

TABLE I. Thermodynamic properties at liquid-vapor interface for
Morse fluids. The particle number and the cut-off distance used
wereN = 1728 andRc = 2.5σ, respectively.

T ∗ ρV
∗ ρL

∗ PV
∗ γ∗ δ/2σ

0.45 0.0005 0.8770 0.00009 0.782 0.51

0.50 0.0009 0.8544 0.00040 0.682 0.64

0.55 0.0025 0.8296 0.00140 0.591 0.75

0.60 0.0056 0.8017 0.00350 0.491 0.84

0.65 0.0121 0.7712 0.00740 0.411 0.98

0.70 0.0200 0.7400 0.01230 0.321 1.14

0.75 0.0341 0.7042 0.02110 0.241 1.44

0.80 0.0525 0.6600 0.03290 0.162 1.68

0.85 0.0945 0.6063 0.04970 0.092 2.21

0.90 0.1503 0.5326 0.07210 0.032 4.15

FIGURE 4. Reduced density profile for fluids interacting by Morse
potential withRc = 2.5σ. Z/σ is the reduced coordinate which
is normal to the interfacial area. The reduced temperatures are0.5,
0.6, 0.7 and0.8 from top to bottom.

way as in Ref. 30. The obtained critical values for density
and temperature were0.334 and0.931, respectively. These
results were compared with those reported in Ref. 19, and the
largest difference found was around0.8% and it was located
in density.

Figure 6 shows the logarithm of vapor pressure as a func-
tion of the inverse of the temperature. In Fig. 7, the surface
tension is plotted as a function of temperature; this property
behaves well when the density and temperature approach the
critical point. In fact, the data obtained for both vapor pres-
sure and surface tension are presented here for the first time.
We want to emphasize that data for vapor pressure and sur-
face tension were calculated by using two different cut-off
radius, and as a result no significant difference was observed

Rev. Mex. F́ıs. 52 (5) (2006) 422–428
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FIGURE 5. Reduced orthobaric densities against reduced temper-
ature. The filled squares were taken from Ref. 19; they were esti-
mated by using cut-off distances greater than4.0σ. The open cir-
cles and open squares are the results of this work usingRc = 2.5σ
andRc = 4.0σ, respectively. The filled circles correspond to the
arithmetic average1/2(ρV + ρL) of those densities obtained by
usingRc = 2.5σ. The open diamond corresponds to the result of
the critical point taken from Ref. 19, and the open triangle was
obtained from this work. The lines were included just to guide the
eye.

FIGURE 6. Logarithm of vapor pressure as a function of the inverse
temperature. The symbols have the same meaning as in Fig. 5. The
line was included just to guide the eye.

between them. This result was to be expected, since the
Morse potential converges to zero at short distances. This
kind of result is not observed with a L-J function because this
potential converges to zero at greater distances; thus, in or-

der to take into account the full interaction, it is necessary to
consider a large cut-off radius. In the same Fig. 7, there is a
comparison between the surface tension obtained from Morse
potential and that obtained from L-J potential. The difference
is attributed to the long-range scope of the last potential.

As was pointed out by Gonzalez-Melchoret al. [35], an
anisotropy is induced on pressure when the periodic bound-
ary conditions are used employing a parallelepiped simula-
tion box with considerably small interfacial area. As a direct
consequence of this result, the surface tension shows an oscil-
lating behavior for small system sizes,i.e., when few particles
are used. This same behavior can be observed in polar fluids
as well [32]. In fact, for this kind of fluids the surface tension
exhibits an anomalous behavior. This is a consequence of
the estimation of this property through the pressure tensor by
using small cross sectional areas. Hence, in order to obtain
reliable results for surface tension here, we have considered
that the interfacial area must be large enough [34]. Actually
in Fig. 8 it the dependence of surface tension on interfacial
area is shown. It is observed that with short boxes the os-
cillatory behavior is quite pronounced and, as soon as the
simulation box is increased, this oscillation vanishes. This
same behavior is exhibited by theL−J function as well [34];
when comparing the oscillatory behavior of the surface ten-
sion for both potentials, we can see that the oscillatory effect
is greater for that potential with a greater range, as was men-
tioned in Ref. 35. Thus based on these results, we can stress
that a cell withL∗x = 10 = L∗y is indeed large and appro-
priate. All our interfacial data were estimated by using two
cut-off distances as well, and no important differences were
found. This allows us to simulate interfacial properties such

FIGURE 7. Reduced surface tension is plotted as a function of tem-
perature. The left opened triangles were taken from Ref. 24 and
were obtained using the full L-J potential. The other symbols have
the same meaning as in Fig. 5. The line was included just to guide
the eye.
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FIGURE 8. U.F. Galicia-Pimentelet al, Rev. Mex. F́ıs. (2006).

as surface tension and equilibrium densities by using a short
cut-off distance. As a matter of fact, the finite size effect on
the liquid-vapor coexistence curve has already been analyzed
for simple [35] and molecular fluids [36], where it was em-
phasized that it is not necessary to have a large number of
molecules to obtain good results. This is convenient because
it is possible to analyze Morse fluid mixtures accurately, in-
vesting only a short computation time.

5. Concluding remarks

By means of Molecular Dynamics we have calculated trans-
port properties in one phase and thermodynamic properties at
the liquid-vapor interface.

As an important result in one phase, the shear viscos-
ity and the self-diffusion are shown. They were estimated
for a density and a temperature that correspond to the liquid
phase. Concerning these properties, it is important to em-
phasize that self-diffusion depends noticeably on the particle

number and the shear viscosity does not present this depen-
dence. The transport properties were calculated by using two
different cut-off distances; the obtained data were compared
among them and no significant difference was found. About
this point, we can mention that both the velocity and pressure
correlations decrease rapidly due to the short-range nature of
the Morse potential.

On the other hand, the coexisting densities obtained were
compared with those reported in Ref. 19, and good agrement
was found. In agreement with earlier results [19], we located
the critical point atρ∗c = 0.334 and T ∗c = 0.931. A set
of points were obtained by finding the arithmetic average on
equilibrium densities(1/2)(ρV + ρL); this same set shows a
linear behavior towards a critical point. In regard to the vapor
pressure and surface tension results, we mention that there
are no previous data to compare them with. We stress that
the surface tension and vapor pressure do not depend on cut-
off distance for fluids interacting by Morse potential; this fact
takes relevance since surface tension has frequently shown a
direct dependence on cut-off distance for both polar and non-
polar fluids. Comparing both potentials, the Morse function
has a shorter range than that of theL − J function; this dif-
ference directly affects the location of critical point and also
the dependence of surface tension on temperature. Accord-
ing to Fig. 7, the difference on the critical point between both
potentials is around30%.

Finally, in the near future, we shall estimate transport
properties in the liquid phase and interfacial properties in the
coexistence of liquid-vapor phases for alkali metals, mod-
eling them as simple structureless fluids, by modifying the
Morse potential involving an extra adjustable parameter.
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17. D. Osorio-Gonźalez, M. Mayorga, J. Orozco, and L. Romero-
Salazar,J. Chem. Phys.118(2003) 6989.

18. P. Shah and C. Chakravarty,J. Che.m Phys.116(2002) 10825.

19. H. Okumura and F. Yonezawa,J. Chem. Phys.113(2000) 9162.

20. T.C. Lim, Z. Naturforsch58a(2003) 615.

21. M.P. Allen and D.J. Tildesley,Computer Simulation of Liquids,
(Clarendon Press, Oxford, 1987).

22. D.M. Heyes,Mol. Phys.71 (1990) 781.

23. M. Schoen and C. Hoheisel,Mol. Phy.56 (1985) 653.
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Melchor, M. Neria and J. Alejandre,J. Chem. Phys.124(2006)
084104.
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