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Hamiltonians and Lagrangians of non-autonomous
one-dimensional mechanical systems

G.F. Torres del Castillo
Departamento de F́ısica Mateḿatica, Instituto de Ciencias,
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I. Rubalcava Garćıa
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It is shown that a given non-autonomous system of two first-order ordinary differential equations can be expressed in Hamiltonian form. The
derivation presented here allows us to obtain previously known results such as the infinite number of Hamiltonians in the autonomous case
and the Helmholtz condition for the existence of a Lagrangian.
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Se muestra que un sistema dado, no autónomo, de ecuaciones diferenciales ordinarias de primer orden puede expresarse en forma hamil-
toniana. La deducción presentada aquı́ nos permite obtener resultados previamente conocidos tales como el número infinito de hamiltonianas
en el caso autónomo y la condicíon de Helmholtz para la existencia de una lagrangiana.
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1. Introduction

As is well known, it is very convenient to express a given sys-
tem of ordinary differential equations (not necessarily related
to classical mechanics) as the Euler–Lagrange equations as-
sociated with some Lagrangian,L, or as the Hamilton equa-
tions associated with some Hamiltonian,H (see,e.g., Ref. 1).
One of the advantages of such identifications is the possibility
of finding constants of motion, which are related to symme-
tries ofL or H. Also, the Hamiltonian of a classical system
is usually regarded as an essential element to find a quantum
version of the mechanical system.

In the simple case of a mechanical system with forces
derivable from a potential (that may depend on the veloci-
ties), there is a straightforward procedure for finding a La-
grangian or a Hamiltonian. However, in the case of non-
conservative mechanical systems or of systems not related to
mechanics, the problem of finding a Lagrangian or a Hamil-
tonian is more involved. A given system ofn second-order
ordinary differential equations is equivalent to the Euler–
Lagrange equations for some Lagrangian if and only if a set
of conditions (known as the Helmholtz conditions) are ful-
filled (see,e.g., Refs. 2, 3, and the references cited therein).

The aim of this paper is to give a straightforward pro-
cedure to find a Hamiltonian for a given system of two
first-order ordinary differential equations (which may not be
equivalent to a second-order ordinary differential equation)
that possibly involves the time in an explicit form. The re-
sults derived here contain the Helmholtz condition forn = 1
(in the case where the given system is equivalent to a second-
order equation). In Sec. 2 the main results of this paper are
established, demonstrating that a given system of first-order

ordinary differential equations can be expressed in Hamilto-
nian form looking for an integrating factor of a differential
form made out of the functions contained in the system and,
in Sec. 3, several examples are presented. In Sec. 4 we show
that, in the appropriate case, our results lead to the Helmholtz
condition for the existence of a Lagrangian.

2. Hamiltonians and canonical variables

We shall consider a system of first-order ordinary differential
equations of the form

ẋ = f(x, y, t), ẏ = g(x, y, t), (1)

wheref andg are two given functions. A system of this class
can be obtained from a second-order equation

ẍ = F (x, ẋ, t),

by introducing the variabley = ẋ. We are initially inter-
ested in finding a Hamiltonian function,H, and canonical
variables,q, p, such that the corresponding Hamilton’s equa-
tions be equivalent to the system (1).

Assuming that there is an invertible relation between
the variablesx, y and a set of canonical coordinatesq, p,
x = x(q, p, t), y = y(q, p, t), in such a way that Eqs. (1)
are equivalent to the Hamilton equations forq andp with a
HamiltonianH, making use of the chain rule, one finds that

−gdx + fdy =
∂(x, y)
∂(q, p)

dH − ∂y

∂t
dx +

∂x

∂t
dy

+ terms proportional to dt. (2)
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Therefore, given system (1), we start by considering the dif-
ferential form

−(g − φ)dx + (f − ψ)dy, (3)

where

φ(q, p, t) ≡ ∂y(q, p, t)
∂t

, ψ(q, p, t) ≡ ∂x(q, p, t)
∂t

are functions unspecified by now (see Eq. (10) below). For a
fixed value oft, the differential form (3) is always integrable
(see any standard text on ordinary differential equations,e.g.,
Ref. 4); that is, there exist (locally) functionsσ andH, which
may depend parametrically ont, such that

−(g − φ)dx + (f − ψ)dy = σdH. (4)

Now, for simplicity, without any loss of generality (since
once we have found a set of canonical coordinates, we have
the choice of making any canonical transformation after-
wards), we chooseq ≡ x (hence,ψ = 0) and, therefore,

∂(x, y)
∂(q, p)

=
∂p

∂y
.

Then, by comparing Eqs. (2) and (4), the canonical momen-
tum,p, must be such that

∂p(x, y, t)
∂y

=
1

σ(x, y, t)
. (5)

Hence
dp =

∂p

∂x
dx +

1
σ

dy +
∂p

∂t
dt (6)

or, equivalently,

dy = −σ
∂p

∂x
dx + σdp− σ

∂p

∂t
dt; (7)

thus, recalling thatx = q, this last expression shows that

φ = −σ
∂p(x, y, t)

∂t
(8)

and we can also write Eq. (6) in the form

dp =
∂p

∂x
dx +

1
σ

dy − φ

σ
dt. (9)

Since this is an exact differential, we have

∂σ−1

∂t
=

∂

∂y
(−σ−1φ) = −σ−1 ∂φ

∂y
− φ

∂σ−1

∂y
. (10)

This equation establishes a relation between the integrating
factor and the functionφ (see examples below).

From Eqs. (4), withψ = 0, and (9) we have

dH = − 1
σ

(g − φ)dx +
1
σ

fdy +
∂H

∂t
dt

= − 1
σ

(g − φ)dx + f

(
dp− ∂p

∂x
dx +

φ

σ
dt

)
+

∂H

∂t
dt

= −
(

g

σ
− φ

σ
+ f

∂p

∂x

)
dq + fdp +

(
∂H

∂t
+ f

φ

σ

)
dt.

Hence, consideringH as a function ofq, p, andt,

∂H

∂p
= f = q̇ (11)

[see Eqs. (1)] and

−∂H

∂q
=

g

σ
− φ

σ
+ f

∂p

∂x
= ṗ, (12)

since, according to Eqs. (9) and (1),

ṗ =
∂p

∂x
ẋ +

ẏ

σ
− φ

σ
=

∂p

∂x
f +

g

σ
− φ

σ
.

Equations (11) and (12) are equivalent to the original sys-
tem (1) and have the desired Hamiltonian form.

Summarizing, the system of equations (1) can be written
in the form of the Hamilton equations, with the Hamiltonian
determined by Eq. (4) and the canonical momentum defined
by Eq. (9).

The fact that the left-hand side of Eq. (4) multiplied
by σ−1 is an exact differential yields (whenψ = 0)

∂

∂y
[−σ−1(g − φ)] =

∂

∂x
(σ−1f),

which amounts to

(g−φ)
∂σ−1

∂y
+σ−1 ∂

∂y
(g−φ)+f

∂σ−1

∂x
+σ−1 ∂f

∂x
= 0. (13)

Hence, making use of Eqs. (1), (13), and (10), we obtain

d
dt

σ−1 =
∂σ−1

∂x
ẋ +

∂σ−1

∂y
ẏ +

∂σ−1

∂t

= f
∂σ−1

∂x
+ g

∂σ−1

∂y
+

∂σ−1

∂t

= φ
∂σ−1

∂y
− σ−1 ∂

∂y
(g − φ)− σ−1 ∂f

∂x
+

∂σ−1

∂t

= −σ−1

(
∂f

∂x
+

∂g

∂y

)
. (14)

(Note the cancelation ofφ.)

Equation (14) shows that the functionσ is determined up
to a factor that is a constant of motion and, therefore, there
exists an infinite number of Hamiltonians (and, correspond-
ingly, of expressions forp). It may be noticed that Eq. (14) is
just Liouville’s theorem.
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3. Examples

A first example is provided by the equation

ẍ + γẋ + ω2
0x = η(t),

where γ and ω0 are constants, andη(t) is an arbitrary
function, which corresponds to a forced damped harmonic
oscillator. Takingy=ẋ, we have ẏ = −γy − ω2

0x + η(t),
which is of the form (1) with f(x, y, t)=y, and
g(x, y, t) = −γy − ω2

0x + η(t). Then Eq. (14) reduces to

d
dt

σ−1 = γσ−1

and we can takeσ = e−γt (any other choice would require
the knowledge of the explicit form ofη) then from Eq. (10)
we see that

∂φ

∂y
= −γ,

which is satisfied withφ = −γy. Substituting all these ex-
pressions into Eq. (4) we have (witht treated as a constant)

(
ω2

0x− η(t)
)
dx + ydy = e−γtdH

and, therefore, we can takeH=eγt(y2/2+ω2
0x2/2−η(t)x).

Finally, from Eq. (9) we find thatp can be chosen as
p = eγty. The corresponding Lagrangian can be calculated
in the usual way, by means of the Legendre transformation.

The results of the previous section allow us to readily de-
rive those of Ref. 5, corresponding to the autonomous case.
In fact, when the functionsf andg, appearing in Eqs. (1), do
not depend explicitly on the time, from Eqs. (4) and (1), tak-
ing φ = 0 = ψ, we haveσḢ = −gẋ+fẏ = −gf +fg = 0.
This means thatH is someconstant of motion, which is not
unique; we can replace it byH ′ = G(H), with G being an
arbitrary function. H ′ is also a constant of motion andσ
will not depend explicitly ont [see Eq. (10)], no matter what
(time-independent) Hamiltonian we choose.

The expressions given above allow us to findH,
which need not be related to the total energy. In
the example considered in the appendix of Ref. 5,
f(x, y) = y, g(x, y) = −ky, where k is a constant (i.e.,
ẍ=−kẋ). Then,−gdx + fdy = kydx + ydy = yd(kx + y)
and, therefore, we can takeσ = y andH = kx + y.

We end this section by considering the problem studied
in Ref. 6 (which corresponds approximately to a relativistic
particle subjected to a constant force,λ, and a force of fric-
tion proportional to the square of the velocity), namely (with
the appropriate changes in notation)

mẏ = (λ− γy2)(1− α2y2),

wherem represents a mass,λ, γ, andα are constants. Thus,
f(x, y) = y, g(x, y) = (λ− γy2)(1− α2y2)/m, and

−gdx + fdy

= − 1
m

(λ− γy2)(1− α2y2)dx + ydy

= (λ− γy2)(1− α2y2)
[
−dx

m
+

ydy

(λ− γy2)(1− α2y2)

]
.

Comparing with Eq. (4) (withφ = 0 = ψ) we immediately
see that we can take

σ = (λ− γy2)(1− α2y2)

and

H = − x

m
+

∫
ydy

(λ− γy2)(1− α2y2)

= − x

m
+

1
2(λα2 − γ)

ln
∣∣∣∣

λ− γy2

1− α2y2

∣∣∣∣ .

According to Eq. (9), the canonical momentump can be taken
as

p =
∫

dy

(λ− γy2)(1− α2y2)
.

Despite the huge difference with the expressions given in
Ref. 6, one can show that the Hamiltonian obtained in
that reference is essentially the exponential of ourH. (See
Eqs. (23) and (26) of Ref. 6.)

4. The Helmholtz condition

The case in which one starts with a second-order equation of
the form

ẍ = F (x, ẋ, t) (15)

(considered in Refs. 2, 3) is a particular case of the treatment
above if one defines,e.g., y ≡ ẋ, which transforms Eq. (15)
into the system

ẋ = y, ẏ = F (x, y, t),

which is of the form (1) with f(x, y, t)=y and
g(x, y, t) = F (x, y, t). Then Eq. (14) reduces to

d
dt

σ−1 = −σ−1 ∂F

∂y
, (16)

which is the Helmholtz condition when there is one degree
of freedom (see,e.g., Ref. 2 and the references cited therein;
note thatσ−1 = ∂p/∂y = ∂p/∂ẋ = ∂2L/∂ẋ2 is the inte-
grating factorw11 employed in these references).

On the other hand, not every system of equations of the
form (1) comes from a second-order equationẍ = F (x, ẋ, t).
An example is given by

ẋ = f(x, t), ẏ = g(y, t),

where there is no coupling between the variablesx, y. Here
(choosingφ = 0 = ψ)

−gdx + fdy = fg

(
−dx

f
+

dy

g

)
.
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Therefore, if we assume thatσ = fg does not depend explic-
itly on t [see Eq. (10)], we can take

H = −
∫

dx

f
+

∫
dy

g

and, from Eq. (5),

p =
∫

dy

σ
=

1
f

∫
dy

g
.

Thus,H = pf − ∫
f−1dx and with the Hamiltonian being

a linear function ofp, the Legendre transformation is not de-
fined nor the Lagrangian.

5. Concluding remarks

As we have shown, at least in the case of a system of two first-
order ordinary differential equations, finding a Hamiltonian
is essentially equivalent to finding an integrating factor for a

linear differential form in two variables. The integrating fac-
tor also determines the expression for the canonical momen-
tum. Equation (14) is analogous to the Helmholtz condition,
but, in the present approach, it leads directly to the Hamil-
tonian (in the standard approach, finding a solution to the
Helmholtz conditions, only gives the second partial deriva-
tives ∂2L/∂ẋi∂ẋj). When the system is non-autonomous,
it is convenient to find the integrating factor using Eq. (14),
while in the autonomous case, it may be more simply ob-
tained from the linear differential form itself. Finally, as
shown in Sec. 4, there are systems of equations for which
a Lagrangian does not exist, but a Hamiltonian description
can be given.
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