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On the scaling properties of the totaly*p cross section
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We perform a detailed analysis on the scaling properties of thedtatross sectiony,-,. We write the cross section as a product of two
functionsWW andV representing, respectively, the dynamical degrees of freedom and the contribution from the valence partons. Analyzing
data from HERA and fixed target experiments, we find t#as independent o) and concentrated at large while W carries all the
information on theR? evolution ofy*p. We define the reduced cross sectiop, = W = o,+,/V, and show that it is very close to a
generalized homogeneous function. This property gives rise to geometric scaling fand it also explains the known geometric scaling of

o4+p atlowz. As a consequence of oAnsatz we also obtain a compact parameterization.pf, describing all data abov@? = 1 Ge\~2.
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Hemos realizado un afisis detallado de las propiedades de escalamiento de lsegfitaz totab,~,. Escribimos esta sedni eficaz
como el producto de dos funcioné®,y V, las cuales representan, respectivamente, los grados de libedadabs y la contribuéin de los
partones de valencia. Usando datos de HERA y de experimentos de blanco fijo, encontraies quaependiente dg y se concentraa

grandes, mientras quU& contiene toda la informatn de la evoludn con@?. Definimos la secéin eficaz reducid&.,«, = W = ¢.,+,/V,

y demostramos que es muy similar a una fonchomogenea generalizada. Esta propiedad origina escalamientétgeomaras«p

y explica el escalamiento ge@tnico conocido der+, a  pequéia. Como consecuencia de nuestosatz obtenemos tamén una
parametrizadin compacta de+,,, la cual describe todos los datos arriba@fe= 1 GeV?.

Descriptores: Disperson inebstica profunda; Escalamiento geetnico

PACS: 13.60.Hb

1. Introduction values of photon virtuality 0€)?> = 450 GeV? (z < 0.01).
This generality motivated theoretical work to find the region

It has been found that, for small values of the Bjorkenwhere geometric scaling is expected, either in exact or ap-
variable z, = < 0.01, the total y*p cross section, proximate form. Studies [16-18] based on the BFKL Equa-
o,p(z,Q?), extracted from lepton-hadron scattering exper-tion [19] supplemented with specific boundary conditions
iments, presents the property of geometric scaling [1,2]. Thisiave found that there is an extended region of phase space
property us permits to write the cross section as a function chbove)? and below &2, . in which approximated geomet-
only one variabler, called the scaling variable, which is the ric scaling is still valid. It has been estimated that for HERA
product of two functions, one depending only@f and the  energies@?, _ is of the order of 100 GeVif Q2 = 1 Ge\?,
other only onz. It has been suggested that, fey-,, 7 is  and around 400 GeMf Q2 = 4 Ge\~.
given by Q?/Q? with Q2 = Q?(x) known as the “satura- Above this new scale one expects a complete breakdown
tion scale”. Geometric scaling has also been observediin  of geometric scaling, so that,-,(z, @*) cannot be written
reactions [3], including charm production [4] and nucleus—as a product of two functions, one depending onlyzcand
nucleus collisions [5]. the other only onQ?. Furthermore, as the concept of ge-

The observation that.-, grows quite rapidly at smalt ~ ometric scaling has been linked to saturation, none of these
and that this behavior cannot continue indefinitely without vi-investigations expect geometric scaling to be valid at medium
olating the unitarity of the cross section led to the proposal oto largez and@Q? where the density of partons is very small.
nonlinear QCD equations containing saturation [6-11]. One Here, we study in detail the scaling properties of the total
of the features of this type of equation is the introduction ofy*p cross section and find that geometric scaling is related to
a scale(9?, to signal the onset of saturation effects. Much ofthe fact that for smalt, o, is very close to a homogeneous
the excitement and advance in the understanding of perturbdunction, specifically a power law in bothandQ?. We show
tive QCD at small: in recent years comes from the discovery that it is possible to define a reduced cross section, hereafter
that some saturation equations imply geometric scaling at thealleds.,-,, which isolates this power law behavior not only
saturation scale [12-15]. for the small, but also for the largeregion and thus shows

Originally, from the point of view of these equations, ge- geometric scaling in the complete kinematic plane.
ometric scaling was expected to be valid only at the saturation This document is organized as follows. In the next sec-
scale. However since its discovery in data from deep inelastition, we show that it is possible to isolate the power law be-
scattering, it has been suggested that geometric scaling waswvior in z of o+, for all values of@Q? and define the re-
more general than saturation. It is observed within a kineduced cross sectiah,-,,. In Sec. 3. we study the behavior of
matic range extending far above the saturation scale, up .-, and show that it is very close to a generalized homoge-
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neous function. In Sec. 4. we discuss the implications of ouand transverse momenta. Following their work, we propose
findings regarding saturation and geometric scaling. We also

present a compact parameterizatiorrof, which describes V = exp (_ (z— x0)2> ot <1 —(z — xo)> 3)

all data above)? = 1 Ge\2. Finally, in Sec. 5. we briefly 402 20 ’
summarize our findings and present our conclusions.

where the Gaussian distribution represents the average of
many random collisions that tie the valence parton to the
hadronic bound state, and the error function takes care of en-

First, we turn to the behavior o -, for smallz. Itis know ~ [0'¢ing the different kinematic constraints. o

that the experimental data at smaltan be described ateach _ We proceed now to test thénsatz embodied in
value of Q2 by a power law inz [22]. From the point of EdS- (1)-(3). ~We use data from fixed target [27] and
view of theory, this behavior is expected, fg? big enough HERA [28,29] experiments. We chogg® values such that

to justify the use of pQCD, from both the DLLA approxima- there are measurements from both fixed target and HERA ex-
tion [23], if the startingQ? value for the QCD evolution is P€riments, either at the same or at very simijér The cho-
taken sufficiently small (see for example [24]), and from theSen values cover the range from 10 to 100 &eV

BFKL [19] evolution. Normally, the@? values from HERA and fixed target ex-

In fact, this behavior is also seen in stud- Periments are slightly different. We correct the fixed target
ies of geometric Sca”ng above the Saturationdata to the HERA values USing the H1 PDF 2000 fit [28] In
scale. For concreteness we use the saturation scafBOstcases the correction factors are at the per mil level with
Q2(z) ~ xz*eBW  with A\ggw = 0.288, as defined by K. a few cases at the one and two percent level. We then fit the
Golec-Biernat and M. \Wsthoff [21]. St&toet al.[1] found ~ data to the functional form of Eq. (1) for eaclt value. As
that, forr = Q2/Q2(x) > 1, 0,+p(7) ~ 1/7, suggestinga an example, Fig. 1 shows data from HERA and fixed target
power law behavior of..,, as a function of: for constant ~ €xperiments aQ*=12 Ge\* andQ*=120 GeV along with
values ofQ2. the result of the fit.

In summary, it is expected both from theory and phe- ~ The datain Fig. 1 is very well described by Eq. (1). Fur-
nomenology, and confirmed by experiment that, for small thermore, the same can be said at each valu@-ofvhere
o.+» behaves like a power law for fixed values@f. Fol-  there are measured points from both fixed target and HERA
lowing these results, we propose to write the tetgb cross
section at eacky? value as the product of two function®
andV:

2. Analysis of thex and Q? dependence ob.-,,

7yep = WV ® T
where I "
W =Nz~ 2)

Note that in Equation (2), both the normalizatidhand ;
the exponenf may be different, for different values 6j?; Lo ’
i.e, N = N(Q?) andX = \(Q?). ,‘

As we are interested in isolating the scaling behavior of i .
the cross section, we requitéto be approximately constant o .« Q' =12 GeV? 1
for small z, so that it does not alter the physics embodied E 4
in W, and so that it describes the cross section for largé © o QP=120 GeV? |
turns out that these requirements are very close to those ex i 3
pected from a valence distribution. Thus, fdr we tried a I
Gaussian functional form inspired by the model of Edin and 07
Ingelman [25, 26]. 0™ 107 107 10" 1

In their model, the probe resolving the hadron has a much
higher resolution than the size of the hadron, so that it sees . o )
free quarks and gluons in quantum fluctuations of the hadrorf,'GURE 1. The totaly"p cross section is shown as a functionof
The momentum distributions of the partons are assumed tﬁ”rQ =12 GeV andQ*=120 GeVF . The points are experimental
be Gaussian functions, to take into account the many smal aFa from fixed target and HERA experiments fand the solid line is

. a fit to the form of Eqgs. (1)—(3). A power law is clearly seen for
momentum transfers affecting the parton through the non

. - ) g small values ofr, while the structure at large corresponds to a
perturbative bound state interactions which cannot be calcugayssian—like distribution. The dashed line shows the contribution

lated properly. Constraints are imposed to ensure kinematif the functionV () given in Eq. (3). Note that it is basically con-

cally allowed final states. Finally, they obtain a simple analyt-stant for smallz and defines the shape of the curves for large
ical expression in the approximation of small parton masses

O, llb]

X
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experiments. We find that all the, extracted from the fitto data at this stage of the analysis, because those data points
Eqg. (3) for the differenty? points available have numerical are concentrated at largeand thus, they do not have a lever
values consistent with each other within the errors. The samarm long enough to determine accurately the power law pa-
is true for the extracted values of the parametelt follows  rameters. Their influence has already been taken into account
then thatV” do not depend o®?. We fit the different val-  throughV (z).

ues ofzy ando each to a constant to obtain thge = 0.27 We use 40 different experimental valu€®, ranging

ando? = 0.036. We checked that using the extreme valuesfrom 0.15 to 8000 Ge¥, with enough data points im to
2 ' !
of zo (0.26 and 0.28) and of* (0.032 and 0.04) does not oo the fit. The average number of points for each fit

change the results of the analysis. The funcliowith these was 8, ranging from 5 to 12. At each value @, Eq. (2)

mean values of the parametegsando is also shown in Fig. o ides an excellent description of data. The results\for

1. Note thatl” is basically constant for 5 0.01 and only 54y for each individual fit are quite precise and provide a
contributes to the shape of the cross section above this Valu@rear picture of their dependence @3 as shown in Fig. 2.

The fact tha” can be taken independently@F implies ot that for the smalk region this behavior has been pre-

that the QCD evolution ir)* of the cross section is solely icteq in Ref. 30 and, also for the smaltegion, has already
contained inl¥/. Thus, we define, in the complete kinematic been observed [22].

plane, the reduced cross sectiy,, as . ) )
We observe a dramatic change in the behavior of both

Gyrp = W(x, Q%) = 0yep/V (). (4)  functions, N(Q?) and \(Q?), when the virtuality of the
photon approaches from above the region below 1 GeV
3. Analysis of the behavior Of‘}v*p Here \ is, as expected, very similar to that found with the

Donnachie-Landshoff parameterization [31], while the nor-
We turn now to the study of the reduced cross section definethalization appears to saturate. Furthermore, the valuds of
in Egs. (2) and (4). Specifically, we study the dependencand \ for the Q2 data below 1 Ge¥ are almost constant in
on Q? of both N and . We use all HERA data [28,29] to comparison to the steep dependence of these functions above
fit 5.+, for fixed values of@?. We do not use fixed target 1 Ge\~.
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FIGURE 2. The dependence @@? on the normalizationV and the exponent of 5.,«, = Nz, extracted from fits of HERA data to the
reduced cross secti@h, -, at fixed values of)?. The solid lines are fits to Egs. (5) and (6) in the intermedigdeange given by the empty
bullets in the figure. The horizontal dash lines show the value atftained by Golec-Biernat and Wuesthoff [21] as well as the highést
value of their analysis.
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Above Q% ~ 1 GeV?, \(Q?) can be described with the Note thatW (z,Q?) can be written as the product of

following functional form: a generalized homogeneous function, for which geometric
) 5 s scaling is exactly valid, and the factef. This last factor
MQ7) = alog;o(Q7/A%), (5)  embodies the violations to geometric scaling. It turns out that

due to the limited phase space where data are currently avail-
able, the factor:® for a fixedz does not change much and
Q? —(1+€) thus the reduced cross sectiin(x, Q?) is suppressed by a
N(Q* =3 <2> , (6)  numerically similar factor for all values a@p? at a givenz.

@ Furthermore, the factar® varies smoothly as a function of
whereQ? has been taken as 1 G&V so that the geometric scaling behavior is kept, albeit in an ap-
A fitoin the intermediate(? region to the data plotted proximate fashion, for all values afand@? as shown in the

in Fig. 2 yieldsg = 41.0 + 1.5 ub, ¢ = 0.103 + 0.007, 'eftpanelofFig. 3. . . o
a = 0.135+0.003 andA2 = 0.17+0.03 GeV2. The quality . This rgasonlng is also valid fqr the kinematic region stud-
of the fits isy2/dof = 0.66 andy2/dof = 0.32 for N(Q2) ied by St&to et al., because, given that the functid(x)

andA(Q?) respectively. Note that the points at the largg&t is basically a constant for < 0.01, the total cross section

; : 5 i
were not taken into account, because they have large fluctug2+» is proportional tOW(_x’Q ). Thus, for the lows re .
tions due to the limited statistics of data. gion, 0., can also be written as a product of a generalized

In summary, forQ? values below 1 Ge¥the Q2 depen- homogeneous function and thé factor as in Eq. (11).

dence oV’ is very weak and the function depends mainly The left panel of Fig. 3 shows the mgasured reduced cross
on one variablexz. Above 1 GeV¥ W, is very well described section scaled by the factor * as a function ofy to demon-
by the following functional form: ' strate that, when the violation of geometric scaling is taken

into account, the data show a power law behavior over the
Q2 —(1+e¢) 5 o entire available kinematic plane.
W(z,Q%) =0 <Q2> g loB(@/AT o (7) It is quite interesting to compare Fig. 3 with Fig. 4. The
0 latter figure contains all data points abagé = 1 GeV? be-
fore the data collapse produced by the transformation to the
scaling variable-. The comparison of both figures shows that
the collapse of all data in a single line is not a trivial fact.
Power laws, scaling and critical phenomena.lt must
be emphasized that the origin of scaling within this approach
is the fact thalV is very close to a generalized homogeneous
function. This fact is valid even for very large valuesaof
Wolz, Q%) = k(Q?) (1t gz, (8)  Where one would not necessarily expect saturation effects to
be present. But it does not exclude the possibility that the
wherek is just the normalization. mechanism which gives rise to the power law behavidiof
In this caselV; is a generalized homogeneous function, is also linked to saturation.
which, as can easily be demonstrated, implies that fot all In this context, it is interesting to note that scaling and
real and greater than zero, the following equation is valid: its relation to power laws has been widely discussed in re-
lation to critical phenomena. In particular it has been found
Wo(t=/ 2oz, t/0HIQ2) = Wy (, Q). (9)  that under some conditions the presence of a renormaliza-
tion group equation helps to explain the appearance of power
laws, and of its associated scaling, and permits us also to ex-
plain and numerically estimate the appearance of scaling vi-
olations (see for example [32, 33] and references therein).

while N (Q?) behaves as the power law

4. Discussion

Scaling. The dependence @)? on X is only logarithmic.
Consider first the case where the exponent f a constant,
A = Ap. NamingW, the functionW with \q, Eqg. (7) would
be of the form

In particular, it is also valid fot = z*o:

Woli—aro (1, 22/ 0T9Q%) = Wy(19) = Wo(z, Q?); (10)

i.e., W, exhibits exactgeometric scaling behavior with the It S interesting to note that the power law behavior of

scaling variable given by, = 220/ (Q/Qy)?. the totah"p cross section is generated by the branching pro-

Now, we turn to the real case whekedepends or2.  €ess embodied in QCD evolution equations which are in fact
Here we find that a type of renormalization group equations. Also the case of
saturation has been cast, within the Color Glass Condensate

W(z, Q%) = Wy(x, Q2)x5, (11)  approach [9], in the form of renormalization group equations.

It is clear then, that the goal of finding a deeper understand-

where ing of the relation between renormalization group equations
and the emergence of power laws in pQCD deserves further

5(Q2) =X — O‘IOglO(QQ/AQ)- (12) study.
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FIGURE 3. The left panel shows the reducedp cross sectiong.,«;,, as a function of the scaling variabte= Q?/Q? [21] for all data

in Refs. 27 to 29. The geometric scaling behavior is clearly seen for all valuesTifie right panel shows the data corresponding to the
reduced cross section, scaled by the faatbresponsible for the violations of scaling according to the model of Egs. (11) and (12) with
Ao = AaBw. One observes a power law behavior over many orders of magnitude covering all the available phase space.

A parameterization of o.,-, aboveQ? = 1 GeV?. Note
that as a consequence of the descriptiorvof, given by
Eg. (1) we also have a simple six parameter description of
the totaly*p cross section faall Q2 values above 1 GeV 10 L

Q> 202
UW*D('I’Q2) = [7) <) xiO‘lng(Q /A7)

& R
_ 2 1— (2 — £
cow (<8 ar (T2 g gl

Equation (13) is compared to data in Fig. 4 using the pa- 2
rameters obtained from the fit to Fig. 3. For these parameters 10
the x?/dof obtained forQ? > 1 GeV? is x2 /dof = 0.77.

10

5. Summary and conclusions Q* =20000 GeV*

. '47
We have shown that, for ang?, .., can be factorized asa 10 gl gl e

- - 2 -1
product of a power law function}’ (z, @?), which dominates 10 10 10 X 10 10 1
at smallz and a Gaussian-like distributioi(x), which is
!mportan_t at Iar92ez:. We. have found thati” carvies all the a function of = for different fixed values of@? going from
information on@“ evolution, wherea¥ depends only om. 2_1.9 GeV to Q?=20000 Ge\2. The bullets are the experi-
The dynamical povye:r law behavior is isolated by defining 8mental data points from HERA, while the triangles are from fixed
reduced cross secti@n-, = o.-p/V = W. target experiments. The alternation of full and empty symbols is

In turn, we have shown that” factorizes as the product justto get a clear display of data. The lines are the result of Eq. (13).
of a generalized homogeneous functitify (z, Q?), with the

property of exact geometric scaling, and a fact¥?”), re-  found to be responsible for the geometric scaling behavior of
sponsible for the violations to geometric scaling. This prop-¢.-, as well as ob-,,, because .-, ~ 6~ in the smallz
erty, along with the limited phase space available in data, isregion.

FIGURE 4. The total v*p cross sectiong,+,, is shown as

Rev. Mex. 5. 52 (5) (2006) 438443
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These results show that the emergence of geometric scal- Finally, as a consequence of our studies we obtained a six

443

ing is not necessary related to the lewegion, nor to satura- parameter description of af, -, data above&)? ~ 1 Ge\?,

tion and open up interesting possibilities for further studies ofvhere each parameter has a natural physical interpretation.

the relation between evolution equations and the appearance
of scaling behavior in QCD.
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