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On the scaling properties of the totalγ∗p cross section
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We perform a detailed analysis on the scaling properties of the totalγ∗p cross section,σγ∗p. We write the cross section as a product of two
functionsW andV representing, respectively, the dynamical degrees of freedom and the contribution from the valence partons. Analyzing
data from HERA and fixed target experiments, we find thatV is independent ofQ2 and concentrated at largex, while W carries all the
information on theQ2 evolution ofγ∗p. We define the reduced cross sectionσ̃γ∗p ≡ W = σγ∗p/V , and show that it is very close to a
generalized homogeneous function. This property gives rise to geometric scaling forσ̃γ∗p and it also explains the known geometric scaling of
σγ∗p at lowx. As a consequence of ourAnsatz, we also obtain a compact parameterization ofσγ∗p describing all data aboveQ2 = 1 GeV2.
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Hemos realizado un análisis detallado de las propiedades de escalamiento de la sección eficaz totalσγ∗p. Escribimos esta sección eficaz
como el producto de dos funciones,W y V , las cuales representan, respectivamente, los grados de libertad dinámicos y la contribución de los
partones de valencia. Usando datos de HERA y de experimentos de blanco fijo, encontramos queV es independiente deQ2 y se concentra ax
grandes, mientras queW contiene toda la información de la evolucíon conQ2. Definimos la sección eficaz reducidãσγ∗p ≡ W = σγ∗p/V ,
y demostramos que es muy similar a una función homogenea generalizada. Esta propiedad origina escalamiento geométrico paraσ̃γ∗p
y explica el escalamiento geométrico conocido deσγ∗p a x pequẽna. Como consecuencia de nuestroAnsatz, obtenemos también una
parametrizacíon compacta deσγ∗p, la cual describe todos los datos arriba deQ2 = 1 GeV2.

Descriptores: Dispersíon ineĺastica profunda; Escalamiento geométrico

PACS: 13.60.Hb

1. Introduction

It has been found that, for small values of the Bjorken
variable x, x ≤ 0.01, the total γ∗p cross section,
σγ∗p(x,Q2), extracted from lepton–hadron scattering exper-
iments, presents the property of geometric scaling [1,2]. This
property us permits to write the cross section as a function of
only one variable,τ , called the scaling variable, which is the
product of two functions, one depending only onQ2 and the
other only onx. It has been suggested that, forσγ∗p, τ is
given byQ2/Q2

s with Q2
s = Q2

s(x) known as the “satura-
tion scale”. Geometric scaling has also been observed ineA
reactions [3], including charm production [4] and nucleus–
nucleus collisions [5].

The observation thatσγ∗p grows quite rapidly at smallx
and that this behavior cannot continue indefinitely without vi-
olating the unitarity of the cross section led to the proposal of
nonlinear QCD equations containing saturation [6–11]. One
of the features of this type of equation is the introduction of
a scale,Q2

s, to signal the onset of saturation effects. Much of
the excitement and advance in the understanding of perturba-
tive QCD at smallx in recent years comes from the discovery
that some saturation equations imply geometric scaling at the
saturation scale [12–15].

Originally, from the point of view of these equations, ge-
ometric scaling was expected to be valid only at the saturation
scale. However since its discovery in data from deep inelastic
scattering, it has been suggested that geometric scaling was
more general than saturation. It is observed within a kine-
matic range extending far above the saturation scale, up to

values of photon virtuality ofQ2 = 450 GeV2 (x < 0.01).
This generality motivated theoretical work to find the region
where geometric scaling is expected, either in exact or ap-
proximate form. Studies [16–18] based on the BFKL Equa-
tion [19] supplemented with specific boundary conditions
have found that there is an extended region of phase space
aboveQ2

s and below aQ2
max in which approximated geomet-

ric scaling is still valid. It has been estimated that for HERA
energies,Q2

max is of the order of 100 GeV2 if Q2
s = 1 GeV2,

and around 400 GeV2 if Q2
s = 4 GeV2.

Above this new scale one expects a complete breakdown
of geometric scaling, so thatσγ∗p(x,Q2) cannot be written
as a product of two functions, one depending only onx and
the other only onQ2. Furthermore, as the concept of ge-
ometric scaling has been linked to saturation, none of these
investigations expect geometric scaling to be valid at medium
to largex andQ2 where the density of partons is very small.

Here, we study in detail the scaling properties of the total
γ∗p cross section and find that geometric scaling is related to
the fact that for smallx, σγ∗p is very close to a homogeneous
function, specifically a power law in bothx andQ2. We show
that it is possible to define a reduced cross section, hereafter
calledσ̃γ∗p, which isolates this power law behavior not only
for the small, but also for the largex region and thus shows
geometric scaling in the complete kinematic plane.

This document is organized as follows. In the next sec-
tion, we show that it is possible to isolate the power law be-
havior in x of σγ∗p for all values ofQ2 and define the re-
duced cross sectioñσγ∗p. In Sec. 3. we study the behavior of
σ̃γ∗p and show that it is very close to a generalized homoge-
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neous function. In Sec. 4. we discuss the implications of our
findings regarding saturation and geometric scaling. We also
present a compact parameterization ofσγ∗p which describes
all data aboveQ2 = 1 GeV2. Finally, in Sec. 5. we briefly
summarize our findings and present our conclusions.

2. Analysis of thex andQ2 dependence ofσγ∗p

First, we turn to the behavior ofσγ∗p for smallx. It is know
that the experimental data at smallx can be described at each
value ofQ2 by a power law inx [22]. From the point of
view of theory, this behavior is expected, forQ2 big enough
to justify the use of pQCD, from both the DLLA approxima-
tion [23], if the startingQ2 value for the QCD evolution is
taken sufficiently small (see for example [24]), and from the
BFKL [19] evolution.

In fact, this behavior is also seen in stud-
ies of geometric scaling above the saturation
scale. For concreteness we use the saturation scale
Q2

s(x) ∼ x−λGBW , with λGBW = 0.288, as defined by K.
Golec-Biernat and M. Ẅusthoff [21]. Stástoet al. [1] found
that, forτ = Q2/Q2

s(x) À 1, σγ∗p(τ) ∼ 1/τ , suggesting a
power law behavior ofσγ∗p as a function ofx for constant
values ofQ2.

In summary, it is expected both from theory and phe-
nomenology, and confirmed by experiment that, for smallx,
σγ∗p behaves like a power law for fixed values ofQ2. Fol-
lowing these results, we propose to write the totalγ∗p cross
section at eachQ2 value as the product of two functionsW
andV :

σγ∗p = WV (1)

where

W = Nx−λ. (2)

Note that in Equation (2), both the normalizationN and
the exponentλ may be different, for different values ofQ2;
i.e., N = N(Q2) andλ = λ(Q2).

As we are interested in isolating the scaling behavior of
the cross section, we requireV to be approximately constant
for small x, so that it does not alter the physics embodied
in W , and so that it describes the cross section for largex. It
turns out that these requirements are very close to those ex-
pected from a valence distribution. Thus, forV , we tried a
Gaussian functional form inspired by the model of Edin and
Ingelman [25,26].

In their model, the probe resolving the hadron has a much
higher resolution than the size of the hadron, so that it sees
free quarks and gluons in quantum fluctuations of the hadron.
The momentum distributions of the partons are assumed to
be Gaussian functions, to take into account the many small
momentum transfers affecting the parton through the non-
perturbative bound state interactions which cannot be calcu-
lated properly. Constraints are imposed to ensure kinemati-
cally allowed final states. Finally, they obtain a simple analyt-
ical expression in the approximation of small parton masses

and transverse momenta. Following their work, we propose

V = exp
(
− (x− x0)2

4σ2

)
erf

(
1− (x− x0)

2σ

)
, (3)

where the Gaussian distribution represents the average of
many random collisions that tie the valence parton to the
hadronic bound state, and the error function takes care of en-
forcing the different kinematic constraints.

We proceed now to test theAnsatz embodied in
Eqs. (1)-(3). We use data from fixed target [27] and
HERA [28, 29] experiments. We choseQ2 values such that
there are measurements from both fixed target and HERA ex-
periments, either at the same or at very similarQ2. The cho-
sen values cover the range from 10 to 100 GeV2.

Normally, theQ2 values from HERA and fixed target ex-
periments are slightly different. We correct the fixed target
data to the HERA values using the H1 PDF 2000 fit [28]. In
most cases the correction factors are at the per mil level with
a few cases at the one and two percent level. We then fit the
data to the functional form of Eq. (1) for eachQ2 value. As
an example, Fig. 1 shows data from HERA and fixed target
experiments atQ2=12 GeV2 andQ2=120 GeV2 along with
the result of the fit.

The data in Fig. 1 is very well described by Eq. (1). Fur-
thermore, the same can be said at each value ofQ2 where
there are measured points from both fixed target and HERA

FIGURE 1. The totalγ∗p cross section is shown as a function ofx

for Q2=12 GeV2 andQ2=120 GeV2 . The points are experimental
data from fixed target and HERA experiments and the solid line is
a fit to the form of Eqs. (1)–(3). A power law is clearly seen for
small values ofx, while the structure at largex corresponds to a
Gaussian–like distribution. The dashed line shows the contribution
of the functionV (x) given in Eq. (3). Note that it is basically con-
stant for smallx and defines the shape of the curves for largex.
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experiments. We find that all thex0 extracted from the fit to
Eq. (3) for the differentQ2 points available have numerical
values consistent with each other within the errors. The same
is true for the extracted values of the parameterσ. It follows
then thatV do not depend onQ2. We fit the different val-
ues ofx0 andσ each to a constant to obtain thex0 = 0.27
andσ2 = 0.036. We checked that using the extreme values
of x0 (0.26 and 0.28) and ofσ2 (0.032 and 0.04) does not
change the results of the analysis. The functionV with these
mean values of the parametersx0 andσ is also shown in Fig.
1. Note thatV is basically constant forx . 0.01 and only
contributes to the shape of the cross section above this value.

The fact thatV can be taken independently ofQ2 implies
that the QCD evolution inQ2 of the cross section is solely
contained inW . Thus, we define, in the complete kinematic
plane, the reduced cross sectionσ̃γ∗p as

σ̃γ∗p ≡ W (x,Q2) = σγ∗p/V (x). (4)

3. Analysis of the behavior of̃σγ∗p

We turn now to the study of the reduced cross section defined
in Eqs. (2) and (4). Specifically, we study the dependence
on Q2 of bothN andλ. We use all HERA data [28, 29] to
fit σ̃γ∗p for fixed values ofQ2. We do not use fixed target

data at this stage of the analysis, because those data points
are concentrated at largex and thus, they do not have a lever
arm long enough to determine accurately the power law pa-
rameters. Their influence has already been taken into account
throughV (x).

We use 40 different experimental valuesQ2, ranging
from 0.15 to 8000 GeV2, with enough data points inx to
perform the fit. The average number of points for each fit
was 8, ranging from 5 to 12. At each value ofQ2, Eq. (2)
provides an excellent description of data. The results forN
andλ for each individual fit are quite precise and provide a
clear picture of their dependence onQ2 as shown in Fig. 2.
Note that for the smallx region this behavior has been pre-
dicted in Ref. 30 and, also for the smallx region, has already
been observed [22].

We observe a dramatic change in the behavior of both
functions, N(Q2) and λ(Q2), when the virtuality of the
photon approaches from above the region below 1 GeV2.
Hereλ is, as expected, very similar to that found with the
Donnachie–Landshoff parameterization [31], while the nor-
malization appears to saturate. Furthermore, the values ofN
andλ for theQ2 data below 1 GeV2 are almost constant in
comparison to the steep dependence of these functions above
1 GeV2.

FIGURE 2. The dependence ofQ2 on the normalizationN and the exponentλ of σ̃γ∗p = Nx−λ, extracted from fits of HERA data to the
reduced cross sectioñσγ∗p at fixed values ofQ2. The solid lines are fits to Eqs. (5) and (6) in the intermediateQ2 range given by the empty
bullets in the figure. The horizontal dash lines show the value ofλ obtained by Golec-Biernat and Wuesthoff [21] as well as the highestQ2

value of their analysis.
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AboveQ2 ≈ 1 GeV2, λ(Q2) can be described with the
following functional form:

λ(Q2) = α log10(Q
2/Λ2), (5)

while N(Q2) behaves as the power law

N(Q2) = β

(
Q2

Q2
0

)−(1+ε)

, (6)

whereQ2
0 has been taken as 1 GeV2.

A fit in the intermediateQ2 region to the data plotted
in Fig. 2 yieldsβ = 41.0 ± 1.5 µb, ε = 0.103 ± 0.007,
α = 0.135±0.003 andΛ2 = 0.17±0.03 GeV2. The quality
of the fits isχ2/dof = 0.66 andχ2/dof = 0.32 for N(Q2)
andλ(Q2) respectively. Note that the points at the largestQ2

were not taken into account, because they have large fluctua-
tions due to the limited statistics of data.

In summary, forQ2 values below 1 GeV2 theQ2 depen-
dence onW is very weak and the function depends mainly
on one variable:x. Above 1 GeV2 W , is very well described
by the following functional form:

W (x, Q2) = β

(
Q2

Q2
0

)−(1+ε)

x−α log10(Q
2/Λ2). (7)

4. Discussion

Scaling. The dependence ofQ2 on λ is only logarithmic.
Consider first the case where the exponent ofx is a constant,
λ = λ0. NamingW0 the functionW with λ0, Eq. (7) would
be of the form

W0(x, Q2) = k(Q2)−(1+ε)x−λ0 , (8)

wherek is just the normalization.
In this caseW0 is a generalized homogeneous function,

which, as can easily be demonstrated, implies that for allt
real and greater than zero, the following equation is valid:

W0(t−1/λ0x, t1/(1+ε)Q2) = W0(x,Q2). (9)

In particular, it is also valid fort = xλ0 :

W0|t=xλ0 (1, xλ0/(1+ε)Q2) ≡ W0(τ0) = W0(x,Q2); (10)

i.e., W0 exhibitsexactgeometric scaling behavior with the
scaling variable given byτ0 = xλ0/(1+ε)(Q/Q0)2.

Now, we turn to the real case whereλ depends onQ2.
Here we find that

W (x,Q2) = W0(x, Q2)xδ, (11)

where

δ(Q2) ≡ λ0 − α log10(Q
2/Λ2). (12)

Note thatW (x, Q2) can be written as the product of
a generalized homogeneous function, for which geometric
scaling is exactly valid, and the factorxδ. This last factor
embodies the violations to geometric scaling. It turns out that
due to the limited phase space where data are currently avail-
able, the factorxδ for a fixedx does not change much and
thus the reduced cross sectionW (x, Q2) is suppressed by a
numerically similar factor for all values ofQ2 at a givenx.
Furthermore, the factorxδ varies smoothly as a function ofτ
so that the geometric scaling behavior is kept, albeit in an ap-
proximate fashion, for all values ofx andQ2 as shown in the
left panel of Fig. 3.

This reasoning is also valid for the kinematic region stud-
ied by Stásto et al., because, given that the functionV (x)
is basically a constant forx . 0.01, the total cross section
σγ∗p is proportional toW (x,Q2). Thus, for the lowx re-
gion, σγ∗p can also be written as a product of a generalized
homogeneous function and thexδ factor as in Eq. (11).

The left panel of Fig. 3 shows the measured reduced cross
section scaled by the factorx−δ as a function ofτ0 to demon-
strate that, when the violation of geometric scaling is taken
into account, the data show a power law behavior over the
entire available kinematic plane.

It is quite interesting to compare Fig. 3 with Fig. 4. The
latter figure contains all data points aboveQ2 = 1 GeV2 be-
fore the data collapse produced by the transformation to the
scaling variableτ . The comparison of both figures shows that
the collapse of all data in a single line is not a trivial fact.

Power laws, scaling and critical phenomena.It must
be emphasized that the origin of scaling within this approach
is the fact thatW is very close to a generalized homogeneous
function. This fact is valid even for very large values ofx,
where one would not necessarily expect saturation effects to
be present. But it does not exclude the possibility that the
mechanism which gives rise to the power law behavior ofW
is also linked to saturation.

In this context, it is interesting to note that scaling and
its relation to power laws has been widely discussed in re-
lation to critical phenomena. In particular it has been found
that under some conditions the presence of a renormaliza-
tion group equation helps to explain the appearance of power
laws, and of its associated scaling, and permits us also to ex-
plain and numerically estimate the appearance of scaling vi-
olations (see for example [32,33] and references therein).

It is interesting to note that the power law behavior of
the totalγ∗p cross section is generated by the branching pro-
cess embodied in QCD evolution equations which are in fact
a type of renormalization group equations. Also the case of
saturation has been cast, within the Color Glass Condensate
approach [9], in the form of renormalization group equations.
It is clear then, that the goal of finding a deeper understand-
ing of the relation between renormalization group equations
and the emergence of power laws in pQCD deserves further
study.
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FIGURE 3. The left panel shows the reducedγ∗p cross section,̃σγ∗p, as a function of the scaling variableτ = Q2/Q2
s [21] for all data

in Refs. 27 to 29. The geometric scaling behavior is clearly seen for all values ofτ . The right panel shows the data corresponding to the
reduced cross section, scaled by the factorxδ responsible for the violations of scaling according to the model of Eqs. (11) and (12) with
λ0 = λGBW. One observes a power law behavior over many orders of magnitude covering all the available phase space.

A parameterization of σγ∗p aboveQ2 = 1 GeV2. Note
that as a consequence of the description ofσγ∗p given by
Eq. (1) we also have a simple six parameter description of
the totalγ∗p cross section forall Q2 values above 1 GeV2:

σγ∗p(x,Q2) = β

(
Q2

Q2
0

)−(1+ε)

x−α log10(Q
2/Λ2)

× exp
(
− (x− x0)2

4σ2

)
erf

(
1− (x− x0)

2σ

)
. (13)

Equation (13) is compared to data in Fig. 4 using the pa-
rameters obtained from the fit to Fig. 3. For these parameters
theχ2/dof obtained forQ2 > 1 GeV2 is χ2/dof = 0.77.

5. Summary and conclusions

We have shown that, for anyQ2, σγ∗p can be factorized as a
product of a power law function,W (x,Q2), which dominates
at smallx and a Gaussian-like distribution,V (x), which is
important at largex. We have found thatW carries all the
information onQ2 evolution, whereasV depends only onx.
The dynamical power law behavior is isolated by defining a
reduced cross sectioñσγ∗p = σγ∗p/V = W .

In turn, we have shown thatW factorizes as the product
of a generalized homogeneous function,W0(x,Q2), with the
property of exact geometric scaling, and a factorxδ(Q2), re-
sponsible for the violations to geometric scaling. This prop-
erty, along with the limited phase space available in data, is

FIGURE 4. The total γ∗p cross section,σγ∗p, is shown as
a function of x for different fixed values ofQ2 going from
Q2=1.2 GeV2 to Q2=20000 GeV2. The bullets are the experi-
mental data points from HERA, while the triangles are from fixed
target experiments. The alternation of full and empty symbols is
just to get a clear display of data. The lines are the result of Eq. (13).

found to be responsible for the geometric scaling behavior of
σ̃γ∗p as well as ofσγ∗p, becauseσγ∗p ∼ σ̃γ∗p in the smallx
region.
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These results show that the emergence of geometric scal-
ing is not necessary related to the lowx region, nor to satura-
tion and open up interesting possibilities for further studies of
the relation between evolution equations and the appearance
of scaling behavior in QCD.

Finally, as a consequence of our studies we obtained a six
parameter description of allσγ∗p data aboveQ2 ≈ 1 GeV2,
where each parameter has a natural physical interpretation.
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