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Stochastic dynamics of a Brownian motor based on morphological changes
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We introduce a simplified model for a microscopic system that performs directed Brownian motion due to coordinated morphological adap-
tations. This system consists of two spherical particles with adaptable size, that interact through elastic and repulsive forces. We propose an
algorithm to control the time dependence of the system’s shape that turns it into a Brownian motor, whose stochastic dynamics is analyzed
by means of a Langevin model. We restrict ourselves to the simplified case of motors with small shape asymmetries and slow morphological
changes, and calculate the average speed at which they should move. We compare the theoretical predictions with the results from Brownian
Dynamics simulations and find that they are in very good quantitative agreement. We carry out a comparison of the proposed rectifying
algorithm with a classical one based on a ratchet potential and show that in some cases morphological adaptations could produce larger
velocities. We thus propose the locomotion mechanism based on controlled structural changes as a novel alternative method from which
Brownian motors could operate autonomoust, requiring neither a substrate nor a ratchet field.
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1. Introduction case, detailed balance is lost as a consequence of temperature

variations and directed motion is achieved having no other
In accordance with the second law of thermodynamics, isource than thermal fluctuations [18]. In a very similar fash-
is not possible to obtain a net current of Brownian parti-ion, Brownian motion can be rectified by producing cyclic
cles when they are subjected only to equilibrium thermalvariations of the amplitude of the substrate potential [6]. The
forces [1-3]. However, in the presence of ratchets or intelso-called Stokes’ drift, a deterministic mechanism that drags
ligent control systemse.g, a Maxwell's demon, Brownian along particles suspended in a viscous medium traversed by a
motion can be rectified and a current of Brownian particledongitudinal wave [19], can be also used together with time-
can be generated which is maintained by the unbiased fluctutependent unbiased forces to achieve the Brownian motor be-
ating forces exerted by the thermal bath [4]. Understandinghavior [20]. In addition to these examples, a great variety of
the precise mechanisms that allow a microscopic system taon-equilibrium perturbations exist that can be used for pro-
perform directed Brownian motion in an isotropic noisy en-pelling a Brownian motor, in which a ratchet potential is not
vironment, is a problem that has received considerable atteavolved. This is the case discussed in the excellent review
tion during the last decades [5-7]. The interest on this subin Ref. 7, of using stochastic non-equilibrium perturbations
ject has increased since the discovery that life processes afgth vanishing mean but higher order odd moments different
conducted by Brownian motors amolecular machineghat  from zero.

perform multiple specialized tasks in the cells of living or- Thanks to the th tical vsis of th hani it
ganisms [8]. Examples of such molecular motors include: ki- anxs to the theoretical analysis ot these mechanisms, |

nesins [9, 10], ATP synthases [11-13], and helicases [14, 15}:?5 been possible to formulate a general definition of a Brow-
Itis now known that these machines are sophisticated mole nan mo(’j[c;lr bi‘set‘?' on thle rqle_:hat the tprealgd(;wnAof sy(rjr?me—
ular structures that use the spontaneous fluctuations OCCLﬁr—'es and fluctuations play in its operation [6, 7]. According

ring in their surroundings together with ratchet mechanism EO this definition, a genuine Brownian motor is any physi-

in order to break the spatial symmetry of their dynamics [16]_cal system supplemented with a rectification mechanism that

From the theoretical point of view, many models have's critically affected by the spatio-temporal periodicity, on

been formulated through the years that predict the emergené%hmh all the forces and gradients average zero, and which

of directed Brownian motion from unbiased noise, most ofIS kept away from thermodynamic equilibrium by the rupture

X - of the detailed balance symmetry. Most importantly, in order
which are based on the use ofachet potentigli.e., a pe- : ; ;
I . . . to constitute an authentic Brownian motor, the random forces
riodic potential that lacks reflection symmetry. Even in ab-

! . . . acting on the system, having thermal or non-thermal origin,
sence of spatial symmetry, a net drift of a Brownian particle N
must assume a principal role.

is forbidden by the second law. However, if the particle is in
the presence of an additional force having time correlations, Models of directed Brownian motion could lead in the fu-
detailed balance is broken and a non-vanishing drift is proture to the fabrication of micro and nanomachines aimed at
duced [3]. A resembling situation occurs when a Brownianfunctions such as: targeted drug delivery [21,22]; stirring and
particle in a ratchet potential is immersed in a bath with apumping in microfluidic devices and biological systems [22];
temperature that changes in time periodically [17]. In thisand separation of colloids, macromolecules, chromosomes or



STOCHASTIC DYNAMICS OF A BROWNIAN MOTOR BASED ON MORPHOLOGICAL CHANGES 315

viruses [23-25]. Although, up to now, diverse artificial au- responding quantities of the second one. The particles inter-
tonomous micromotors have been realized, some of whichct through the elastic potentidl, = & (x5 — 21 — 1)* /2,

are powered by catalytic reactions [26], Janus patrticles [27)wherek is the restitution coefficient andis an equilibrium

or micro-electromechanical technologies [28], the operatiordistance, representing the average elongation of the complete
of these nanoscale devices is controlled mainly by determinsystem. As it is usual, the dynamics of the system is de-

istic mechanical or chemical forces, and thermal noise doescribed using the low Reynolds number approximation, since

not necessarily play a major role [7]. The case is the sameiscous forces are expected to be much larger than inertial
for some theoretical models of microsystems that perform efeontributions. Under such conditions, the mass is not rel-

ficient locomotion in viscous fluids [29—-31]. What is worse, evant on the dynamics of the particles and their stochastic

thermal fluctuations are even considered as problematic whegguations of motion can be cast in the form

such microdevices are designed, since molecular collisions

might alter their desired trajectories [22]. We will show here dxem. k(1 1 ( —l)+1 LA ta )

that, in contrast to this point of view, thermal forces couldbe dt 2\ 3, & o 2\ 4 ! B 2

used as a source to propel a theoretical elastic motor that ad-

vances by adapting its shape according to the configuration da, 1 1 1 1

that the same thermal forces produce. 5 = < + ) (or =)+ A2 — —A1. (2
fr o B B2 B

Specifically, in this paper we will analyze in detail the

fluctuating dynamics of a theoretical Brownian motor that,  |n the first place, notice that the previous equations have
as far as we can tell, has only been studied by ourselves igeen written in terms of the the center of mass position,
terms of a very basic formulation [32]. This model consists;,. . — (z; + x,) /2, and the current extension of the motor,
of an elastic system with adaptable shape that can be prg- — ,, — 4. In addition, 38, = 6mnR,,, (throughout this
pelled by thermal noise and coordinated unbiased morphqsaper Greek indices will run over the valuesnd2), rep-
logical changes, without needing for a ratchet potential. Weesent the drag coefficients on the spheres assuming no-slip
will study the statistical properties of the system in terms of &youndary conditions at their surfaces. Moreover, in Egs. (1)
Langevin model in Sec. 2 restricting ourselves to the case oinq (2), A, denotes the stochastic force acting on thie

motors with purely elastic interactions and having small antharticle, which satisfieg4,,) = 0, and the usual fluctuation-
slow morphological modifications. From this model we will gjssipation relation

be able to obtain an explicit expression for the average speed
of the motor. In Sec. 3 we will implement Brownian Dynam- (A, (t") Ay (1)) = 2kpT B8 (t' — ) 5. ©)
ics simulations that corroborate the theoretical predictions ! ! "

within the limit corresponding to the approximations of the \,herer , is the Boltzmann constant: and no summation over
model. Afterwards in Sec. 4, we will extend our model andrepeated indices is implied.

simulation procedure to supplement them with features that In the model described in Ref. 32, it is assumed that the

are commonly found in microscopic systems, namely: inter-, .. . . o
ytound ) pic syst AMely . configuration of the motor is maintained constant over an en-
molecular repulsive interactions and finite nonlinear elasti

: . o > 33UGr6 interval of time, say from timé to timet. In this interval,
forces. This has the purpose of showing that it is plausible t?he formal solution of Egs. (1) and (2) is given by

think on an actual physical realization of our proposal. For
this extended case, we will be able to give again an expres-

__ .0 ~ _ ,—at o _
sion for the average motor’s velocity, which is found to be in Tem. = Tom + 1) (1 € ) (zr =)

very good quantitative agreement with the results of the nu- t
merical implementation. Finally, in Sec. 6 we will summarize + /dg {wgln)q (t— &) Ay (€)
our main conclusions. o

2. Directed Brownian motion from morpho- + o8 (=€) As (5)}7 4)
logical adaptations

t
2.1. Basic algorithm for directed motion oy =1+ (20 —1)e "+ /df {wr(l) (t - §> Ay (€)
0

We will review first the basic idea for the operation of our

Brownlan m'otor based on morphologilcal chapges, as it was + ¢r(2) (t—€) Ay (5)}7 (5)
introduced in Ref. 32. The model is constituted by two

spherical particles, with identical mass that perform one-

dimensional Brownian motion along thadirection, inaflud ~Where acy and zP are the initial values ofzcm
with viscosity 7 and temperaturd’. The symbolss; and ~ and zr, respectively; a=k (6;'+4;'), and 7 =
R, denote, respectively, the position of the center and théRa — Ry) /2 (Ry + Ry); and the auxiliary functiong,

radius of the first sphere, while, and R, indicate the cor- wr(“), are given by
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DU () = Lat l—e with the temperature, the differenéeR = Ryax— Rmin, and
cm- 28, B+ 62|’ the elastic coefficient of the motor, while it decreases with the
—at viscosity of the surrounding medium, see Eq. (9) in Ref. 32.
and " (1) = (=1)* < (6) In addition it is found that the standard deviation of the dis-
B tribution function for the position of an ensemble of motors

Observe from Eq. (4) that an average displacement of'creases linearly with time.
ze.m. Will occur whenever; # 0 andz? # [. That is, when
the particles have different sizes, the bigger one experienc&z'
a larger viscous drag and plays the role of anchor for the mo-

tc])cr,hwhllle the _smaller_ one Is gble to r:no(;/_e e}nd, by the eﬁeCtI'he model discussed so far, is not completely satisfactory
ofthe e astic mteractlpn, produces t € disp gcemeagg{. rom the physical point of view for two principal reasons.
Such displacement will tend to occur in the direction dictate irst, it requires for instantaneous changes in the shape of the

by the sign off) (x; —1). This result suggests that thermal motor. Second, it does not take into account the flow pro-

fofrces dan_d m((j).rpholggmall cha_lr]ﬁes can _kée cpmbmed 'r? f?vocfuced around the spheres as a consequence of these changes.
of producing directed motion. The main ideais to use the fact, ¢, or of analyzing a more consistent situation, we will as-

that stochastic forces will drive, away from! persistently, sume now that the update of the raflj, between the values

and trc: s%pplekmznt thle dn;)otlor W'tg an mtelllgent dcont(;ol SyS'Rmm andRmay, Occurs at finite time intervals of characteristic
tem that breaks detailed balance by measurirgnd produc- durationtr. An appealing way to model such changes is to

ing a velmat!ltl)r;] ofR, andeg IndSth SV\{ay t?]at thhe lprodulct assume that, when the condition for a modification in shape
7 (ar — 1) will have a preferred sign during the whole evolu- s ot p and B, go from their current values t&min or

tion of the system. ; :
. Rmax exponentially. Accordingly, we propose to update the
In Ref. 32, it was assumed thd?; and R, can be Sirzngxs ofrihe spher)(/as 1 and ngxz‘ollowz: P P

switched between two prescribed valuBsax, and Rmin
(Rmax > Rmin), according to the rule if x >1 then

Morphological changes at finite times and hydrody-
namic effects

R1 = Rmax and Ry = Rmin, if xr <l;

@) R = Bu(ty) e b Ry (1 - <))
Ri=Rmn, and  Rp=Rmax If zr>1

—C¢(t—t —¢(t—t
which guarantees that the tendencyzgf,, will be to move Ry () = R (ty) <" + Rinax (1 —e ¢l p)) ’
along the positive direction, as itis illustrated in Fig. 1. if

One of the main results in Ref. 1 is that the basic rectifi-
cation algorithm described by Eq. (1) makes the motor able R, (t) = R, (t,) e Ct=te) 4 R (1 — efﬁ(t*tp)) ,
to move at a constant average speed. Such speed increases

Ra () = Rz () =<0~ + Ry (1 - =<0 (8)
R] :Rmin k RZ :Rmax

—>

rr <l then

in which ¢ = 73!, t,, denotes the instant at which tipeh
structural change takes place, apd< ¢ < t,,1.
On the other hand, hydrodynamic effects can be incorpo-
rated in a similar way as it is done in the case of microswim-
mer models [30, 31]. More precisely, if we limit ourselves
Xr > l to study very elongated motors with geometric features sat-
isfying the inequalityR,, /I < 1, then the flow around the

R — R R — R ' system of two spheres can be obtained, by the linearity of the
1 max 2 min Stokes equations, as the superposition of the flow around the

> individual spheres [31]. By noticing that the flow produced
by an expanding sphere increases with the time derivative of
its volume and decreases with the square of the distance from
its center [33], we find, under the previous assumption, that

xXr < l Zem. a_nda:r obey the following system of coupled Langevin

equations

FIGURE 1. Basic algorithm for a Brownian motor based on mor- p v /1 . )
phological changes. The sphere with radigax acts as anchor, c.m. ( ) (zr — 1) + o (V1 _ V2>
r

while the one with radiugnin moves as a consequence of the elas- dt  2\fB

tic interaction represented by the spring. Thermal forces produce

the changes in the elongation of the system and coordinated shape 4 1 (lAl 4 1A2> , 9)
adaptations produce the center of mass displacement in the direc- 2\ B B2

tion indicated by the broader arrows.
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due (1 + 1) (e — 1) Brownian motion even when it does not have a strong geo-
dt B Ba) metrical asymmetry.
1 ) ) 1 1 In addition, when configuration changes occur at finite
t i (V1 + Vg) + ﬁfAz - FAL (10)  times,R; and R, will spend time far from their limiting val-
' 2 ! ues Rmin and Rmax. The departure o2, and Ry from Rpin

Here,V; andV, represent the rates of change of the vol-and Rmax, Will depend onrg, as well as on the characteristic
umes of spheres 1 and 2, respectively. The terms containirigme for which the conditions in Eq. (8) subsist, Notice
these quantities in Egs. (9) and (10) represent the influenddat, physically7 is determined by the strength of the elastic
that the expanding and contracting spheres have on each othigteraction and the viscosity of the fluid, whilg is a pa-
through the fluid that surrounds them. When those terms arameter that depends on the motor’s structure and that, con-
neglected, Egs. (9) and (10) reduce to Egs. (1) and (2). Moresequently, can be theorized. In the present paper, we will an-
over, if morphological changes were such that the total vol-alyze the case of motors that adapt their morphology slowly,
ume of the motor is conserved, theh = —V5, and Eq. (9) in such a way that < 7r. Thus, the time-scale for mor-
would take a form resembling Eq. (1.1) in Ref. 31, but sup-phological adaptations can be considered as a fast scale, and
plemented with the contribution of the stochastic forces orEgs. (9) and (10) can be simplified by averaging over these
the spheres. Another important attribute of Egs. (9) and (10fast processes. In this situation and assuming that the system
is that they are non-linear, in contrast with Egs. (1) and (2)starts in a condition such that > I, we have
as a consequence of the hydrodynamic interaction. Further-
more, notice that in Egs. (9) and (16) andf/,“ depend on oo
time implicitly through their depgndence @), @). N Ro (1) — Ry (1) ~ /drP (7) [Rs (1) — Ry (7)]

It is worth stressing that during the operation of efficient
Brownian motors, detailed balance symmetry, which governs 0
the dynamics around equilibrium, must be broken by forcing ~ (-1)P AR (1 —2(7), (12)
these motors to operate away from thermal equilibrium [7].
In the case of our motor based on morphological change&”d
departure from equilibrium is promoted by the adaptations in oo
shape themselves. Put differently, if such adaptations were Vs (t) — Vi (t) ~ /dTp (1) {Vz ()= (T)}
not performed, the coefficients andg. in Egs. (9) and (10) )
would take constant values, whil§ andV; would vanish.
In that casex, andz¢ . would relax from their initial val- ~ (-
ues towards thermodynamic equilibrium where all dynamics

would be governed by detailed balance. There, as it can be ir\{yhereP (r) is the probability distribution function (PDF) for

ferred from Egs. (4) and (5), no net average displacement O?bservmg that the conditions in Eq. (8) last a time interyal

; to be specified at the end of this section. In order to obtain
Zem, Would occur. In contrast, morphological changes take

o . . the previous results, we have used the explicit formRef
the motor away from equilibrium persistently thus braking dR.. o by Eq. (8). neglected quadratic and higher or-
detailed balance. They also provide the combination of asym"Em 2, glven by £q. (o), 9 q g
metry and non-equilibrium forces, necessary for the produc(—jer cqntnbuﬂons mAR af“?'CT’ and assumed tha, andZ
tion of constructive transport. remain close to their limiting valueBn, and Rmax.

The appearance of the stochastic forces in Egs. (9) and Another simplifying assumption will consist in consider-
(10) deserves a special comment, since wlﬁanand.R ing that the thermal fluctuations iry are small as compared
y 2 . . .
are time-dependent, the system is not in equilibrium and thé’ |t(r;)tie to(t;a)l SI(l)nrgeat:ggecr)‘ftstrlﬁes:sgenrgnér(;lj);hcehra\;]votradii, tlrfme
usual fluctuation-dissipation theorem, Eq. (3), is not suitable’" \*/ = 1 , Tep P 9

We will assume, thak; and R, exhibit significant variations fength of the ”.‘0‘0“ then we will suppose thﬁﬂ <1 .
. ; . . By expanding Egs. (9) and (10) up to the first order in the
over a time-scale that is large compared with the time-scale

of thermal noise. Accordingly, it could be expected that thepre\./lously defined small quantities, it can be verified that in
: o ; . L the intervalt, <t < t,.:, they reduce to
fluctuation-dissipation relation will be valid instantaneously,

1)P 87CAR Rpyio, (13)

and we propose to write it in the form
brop Brem. _ (i AR(1 - 27) g
Bu (') B (1) By (t) .

— (=1)Pe?CAR + 1 <Al + AQ) . (14
In this paper we will restrict ourselves to analyze the dy- 2\B - B
namics resulting from Eqgs. (9) and (10) in the limiting caseand ~
of small morphological changes, determined by the condition dz = —ay ¥ + Az _ Ar
AR/Rmin = A < 1. Apart from being very convenient from dt B2 Bi]
the mathematical point of view, this case could be interestingespectively, where we have introduced the definitions

since it will exhibit that our motor is able to perform directed 7=k /127nR2,,, e=Rmin/l, anda; = k (2 — A) /67nRmin.

(15)

Rev. Mex. Fis63(2017) 314-327



318 F. AMBIA AND H. HiJAR

First, we notice that within the range of applicability of and
the performed approximations; follows the usual stochas- 1 A
tic process for a harmonically bound Brownian particle in - W, (t;a1) = = + (—=1)7 (1 — 2¢7) — (1 —e~*'") . (20)
an equilibrium environment in the overdamped regime [34]. 2 4

Therefore, the PDF for observing (') at timet’, given that From Egs. (18)-(20) we find the PDF for observing
it was found to ber; (¢) at timet is xzem. (¢') at timet’, given the initial conditions:c m (t') and
1 xr (t), which is
W (@ (¢) |0 (1)) = ————
rorlt = Wz () [0 (8) 0 (1) = ——
Le.m. Ze.m. 5 Ly =
/ 2 V2mo?
06—t = 03, 0] o
— 16 N — — —
X exp 20_r2 (t/ — t) 9 ( ) X exp {_ [-rc.m. (t ) xcr;(zt) h |xr ZH } , (21)
(o

with o2 (' —t) = kpT (1 - 6_2“1“’_”2 /k.Inthe asymp- where b is a function of 7 and ¢ — ¢, defined ash =
totic limit, this distribution reduces to the stationary distribu- h(7;¢ —t) = (1 — 2¢7)(1 — e >’ =D)A /4,

tion In order to give an approximated description of the
2 k(2 — l)2 stochastic process follqued by . over a long .time inter-
W (xr) = 1/2 TSP T T (- (17)  val, [0,t], we subdivide it intaV smaller regular intervals of
B B sizeT = t/N, and identify the intermediate times#igs= ¢,
Notice that the fluctuations af, according to this distri- With¢ =0,1,..., N. We assume that we perforii obser-
bution are responsible for promoting the advance of the motoyations of the state of the system at tintgs/,, ... , i1, at

when they are coupled with morphological changes thoughvhich |z; — [| takes values sampled from its equilibrium dis-
Eq. (14). For the sake of quantifying this effect, we will con- tribution, Eq. (17). Then, we calculate the conditional prob-
sider the evolution of:c m over a long period of time. ability for observing the motor at positiar m. (t441) before

It should be remarked, that under such circumstancedhe beginning of the next interval, given the initial center of
the hydrodynamic forces do not produce a net displacemerffi@ss position at time;,
of xcm, because they are symmetric and act along oppo-
site directions for the two possible configurations of the W (zem. (tg11) |zem. (t4)) = /dxr
motor (elongated or contracted). More precisely, hydrody-
namic forces always point in the direction of the contracting X W (zem. (tg+1) [Tem. (tq) s 20 (Eg)) W (21 (tg)) - (22)
sphere [31]. Now in this simplyfied version of Eq. (14), over
a long evolution time, equal number of symmetric contrac- By using Egs. (17), and (18)-(22) we find that in the limit
tions and expansions contribute with hydrodynamic forcesA < 1, this probability can be approximated by a Gaussian
and the average of these forces will vanish. This will notthat explicitly reads as
be the case in the extended model for a molecular Brownian

. . . 1
motor to b'e considered in Sec. 4. By the moment, in favor W (wem. (tge1) |zem (tg)) = ——
of simplifying the subsequent analysis, the term in Eq. (14) 2108 m. (7)
containing the factoe? will be neglected. In this case, the : p _\12
formal solution of Eq. (14) is, up to first order in the small X exp {_ [Tem. (tg11) — ;Uc.m._( g) — X (7)] } . (23)
quantity A, 208m.(7)
AR
e () = gem (0 + (1P (1= 2¢7) (14 ) where T (A
2Rmin 2 =) — B _ =\ = 24
ozm (T) 1 T, (24)
A , o 671 Rmin 2
= (1 g J)) e (£) — 1] and
v x(7) = \F’“BTMT,T). (25)
+/d§\11(t'—§'a)Al(£) mk
! o B1 (&) Finally, we assume that process describedchy. is of
¢ the Markov type and using the Chapman-Kolmogorov equa-
Ay (€) tion,
+ Wy (' = &aq) 52|, 18
2 ( 5 1) 52 (f) ( ) N_1
where W (zem. (t) [zem. (0)) = /de—lde—T"dxl 11
1 A =
Vi(tian) = 5 — (=1)P(1 = 207) (1~ e”™h),  (19) X W (@em (ter1) [Zem. (tg) (26)
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we find the conditional PDF to observe the motor at a posi- This result is valid only forr > 7in, Wheremyy is a
tion z.m (t) at the end of the process, given that it was atquantity introduced to guarantee tha{r) is correctly nor-

Ze.m. (0) at the beginning. Such PDF is malized. Physically, it could be expected that such a mini-
mum time for the validity of Eq. (31) must exist, since the
W (zem.(t) |zem. (0) = 1 analysis that conducted to this result is valid only in a time-
2108 m. (1) scale that is larger than the one corresponding to the rapidly
9 fluctuating force of the solvent [36].
X exp {_ [zem. (t) — zem. (0) — Nx (7)] } (@) It is well known that for the power law distribution func-
208 m. (t) tion given by Eg. (31), it is not possible to find an analytical

expression for its mean value [37]. Therefore, we will esti-

It will be discussed |n1the subsequent Sec. 3 that, in 9eNyate following a numerical procedure based on the results

eral, Ehe relaxation time; " takes values.that'argmuch Igrger of BD simulations. To be specific, we will show in the subse-
than7 and, consequently, the approximationr < 1 is quent section 3. that the PDF forcan be very well adjusted

valid, from which we can writéVy (7) = vemt, that defines by Eq. (31), and use the time series of values;ofo deter-
the average velocity of the motor mine both 7, and~.

1- 27 AR VkkpT
vem = a2 RZ (28) 3. Brownian Dynamics Simulations

In order to finish the analysis of the present model,With the purpose of analyzing the validity of the model de-
we will discuss how the characteristic tire appearing in  scribed in Sec. 2, we implemented a BD simulation scheme
Egs. (27) and (28), can be estimated. It can be seen froithat allowed us to solve Egs. (9) and (10) numerically.
Eg. (8), thatr can be interpreted as the average of the timeOur implementation consisted of a temporal discretization
elapsed between two successive observations of the valueethod in which we fixeRmin = 1, m = 1, andkpT = 1,

z; = [. Under the approximations leading to Eq. (17), as the units of length, mass, and energy, respectively. No-
is also the mean time needed by a harmonically constrainetice that under such conditions, units of time, are not in-
Brownian particle for consecutively crossing over the poten-dependent but given by; = Ruiny/m/kgT. The numeri-
tial's minimum. According to general theory for first exit cal integration of Egs. (9) and (10) was carried out using a
times in harmonic potentials [35], the PDF for observing twotime-step with sizeAt = 10~3u;. In the numerical scheme,
consecutive values, = [, occurring in a time intervat is  stochastic forces were sampled from a Gaussian distribution
given by and actualized every two simulation steps. We performed nu-

Pr) = ~08(1) (29) merical experiments varyin@max from Rmax = 1.0 Rmin,

or ' to 1.25 Rmin, With the purpose of showing that the coupled

where S (7) is thesurvival probability i.e., the probability ~Brownian system depicted in Fig. 1 acquires directed mo-
for observing the confined particle at = I, at timet = 0,  tion even for small configuration changes. On the other hand,
and at the same position at a subsequent time , un- the values of the restitution coefficient and the viscosity were

der the condition that it has not passed over this point at anfjx€d atk = 5kpT/Rp,,, andn = 5/mKpT/ Ry, respec-
intermediate time. If we restrict ourselves to consider shortively. Notice that this selection of parameters gives charac-
times, i.e, times satisfying the condition;r < 1, the  teristic relaxation timea; ' ~ 10u >> At, which guarantee
function S (7) can be obtained from the transition probabil- that the usual separation of time-scales of Brownian motion
ity W (Z (t') | (t)), as it is given by Eq. (16). Specifically, i properly approximated. In addition, the characteristic time
we have for radii adaptations was chosen tohe= 2u; > At.
Let us show first, that directed Brownian motion indeed

appears in motors simulated under such conditions. This is

S(7) :/de;W (e (1) = Uy (m1)) W (a(m1) |2 (0) = 1) done in Fig. 2, in which we present six trajectories for Brow-

oo

0 nian motors with morphological adaptations with different
) ) —1/2 magnitude, reported in terms of the dimensionless parameter
[27T< (r—m)+e 20 g (Tl))} . (30)  A. The noisy curves in Fig. 2 represent the numerical re-

sults. They prove that morphological changes in fact induce
where0 < 7; < 7. By expanding Eq. (30) in terms of the (jrected motion.

small quantitye; 7, and retaining only the leading contribu-  On the other hand, the straight lines in Fig. 2 were drawn
tion, we find that$ (r) = (k/dmksTa;7)"/?, and conse-  using the average velocityem, calculated from Eq. (28). It
quently, P> () turns out to be is worth noticing that in order to obtain an estimatevgf,,
1 it is necessary to provide the average time for configurational
P(r) = 27%,?7‘3/2 (31) changes7. As it was explained at the end of Sec.72was

calculated using the numerical results. More precisely, dur-
which is a special case of the so-called Pareto distribution. ing the simulations that yielded the results depicted in Fig. 2,
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. . . ) . FIGURE 3. Probability distribution function for the duration of
FIGURE 2. Directed Brownian motion experienced by simulated morphological configurations? (7). Noisy black curves repre-
motors with different asymmetry degrees represented by the pagent the results of numerical experiments for the indicated values
rameterA. Straight lines correspond with the theoretical velocity of A while the red straight lines are fits obtained from the power
calculated from Eq. (28), while noise curves are the actual traject0-|aw P(r) +—3/2_ The numerical distributions are used to esti-
ries of the motors. mater.

we stored the values of the time intervals of elongated or con= — - - -
tracted configurationr, from which we calculated numeri- TABLE |. Average timer obtained from numerical experiments of
cally the PDFP (r). For the experiments conducted over the motors with different morphological asymmetry factdxs The es-
] T . timation of the mean center of mass velocitym, obtained from
time interval shown in Fig. 2, the available data for calculat- ;

) Eq. (28) is also presented.

ing P (7) ranged fron818, 342 for A = 0.00, to 776, 089 for

the case\ = 0.25. We found thatP () actually follows the A 7 (£0.002uy) vem. (10~ ut/ Rimin)

power law behavior predicted in Eq. (31). This fact is illus- 0.00 0.306 0.0

trated in Fig. 3 in which we present the numerical evaluation  0.05 0.305 3.29 +£0.01

of P (7) obtained for the simulation casés = 0.00, 0.05 0.10 0.315 6.58 4 0.02

and0.25 (black noisy curves). 0.15 0.317 9.69 + 0.03
The straight lines shown in Fig. 3 correspond to a non-  0.20 0.319 12.90 £0.04

linear fitting of the numerical data in which Eq. (31) was 0.25 0.322 16.04 +0.05

used by consideringmin as an adjustable parameter. The | ] ] ] .
specific values ofmi, were found to be independent dx using the estimations af presc_ant_ed in Table I_. In.add.|t|on,
within the range of the numerical uncertaintiesg, they we calculated the standard dewattm“,of the dls.trlbutlpns.
were (1.85 + 0.03) x 1073, (1.84 + 0.03) x 103, and observed for the ensemples as functhn of the simulation time
(1.86£0.03) x 10~ wy, respectively, for the three cases illus- f';md compare the numerical results with the expecte_d b_ehav-
trated in Fig. 3. On the other hand, we summarize in Table [°F @S given by Eq. (24). Ourresults are summarized in Fig. 4,
the set of numerical values afobtained from the numerical Where & very good agreement between the numerical and ex-
distributionsP (7), where it can be appreciated that, for the PeTimental results can be observed.

selected range of simulation parameteréncreases withA

but exhibits small percental variations lower th&h. The 4. Extended model for a molecular Brownian
values ofF shown in table | were used to calculatg,, from ¢

Eqg. (28). The resulting values are shown in the third column motor
of Table I. These were used to plot the straight lines appeay

o n Sec. 3, we considered a numerical method that allowed
ing in Fig. 2.

us to solve the system of stochastic Egs. (9) and (10), and
Finally, we will show that the stochastic process describ-to verify the predictions of the theoretical model introduced
ing the spatial advance of an set of simulated motors exin Sec. 2. Here, we will extend our analysis to make it
hibits the properties predicted in Sec. 2. With this purposeable to describe the Brownian dynamics of a microscopic
we conducted additional simulations for two ensembles ofystem which is more realistic from the physical point of
10* independent motors with characteristic size asymmetriesiew. Specifically, we will consider a model consisting of
A = 0.05, andA = 0.25. For such ensembles, we calcu- two spherical colloidal particles with radi; (¢) andR; (1),
lated, at different simulation times, the PDF for the centerattached by a molecular chain with finite extensign.. We
of mass positionV (zcm. (t) | zem. (0) = 0), and compared will suppose that the elastic potential energy stored in the
the results with those expected from Egs. (24), (27) and (28%kystem when these particles are located at positigrsnd
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xo > x1, IS given by the finite extension non-linear elastic ~ We will assume that the colloidal particles do not in-
formula teract at large distances but strongly repel each other when

1 o — 2 they get in contact. Mathematically, such interaction can be
2 2 — 21 .
Qe (12 —21) = *gklmaxln 1+ ( ] > (32)  represented in terms of the Weeks-Chandler-Andersen poten-
max H
tial [38],

- 12n - 6n 1 i 1/6n
(I)C(x2_x1): 4e |:(rc2—rc1) — (r2—fc1) +4:| s if To — I <2 g; (33)
0, otherwise

wheree denotes the interaction strengthis the diameter of
the interaction, and is a positive integer that determines the'  An estimation of the center of mass velocity of the molec-
hardness of the colloidal particles. Notice that when(t) ular motors defined by Egs. (8) and (32)-(33) can be obtained
and R (t) change in time symmetrically, as it is the case es-by generalizing the theory presented in Sec. 2. The main dif-
tablished by the exponential algorithm Eq. (8)¢an be con- ferences to be taken into account with respect to our previ-
sidered to be a constant with= Rmax + Rmin. We consid-  ous situation are that, in the presence of the potendhals
ered that the radik; andR; tend towarddmin Or Rmax€Xpo-  and &, the elongation of the system is distributed over an
nentially as prescribed by Eq. (8), with a fixed characteristicasymmetric probability function aroun@), and that the
time 7. Notice that in Eq. (8) the parametkeindicated the average time intervals that the motor spends in the contracted
length at which the morphological changes of the harmonidz, < ()) or elongated«, > (x)) configurations will be
motor were activated. For the case of a motor that operatedifferent. These facts have two major consequences in the
under the internal potentials given by Egs. (32) and (33), thiglynamics of the motor. First, the morphological changes,
parameter is absent. Therefore, we will consider that for thi?, (t) — R, (t), have not the same average magnitude dur-
case a particular elongation exidtg,that signals the config- ing the time lapses for contraction and elongation. Second,
uration of the motor at which structural adaptations are prothe hydrodynamic forces occurring in such time intervals are
moted. no longer balanced, as it happens in the symmetric case, and

We observed that the selectionigfaffects the efficiency ~they have a contribution to the center of mass velocity.
of the motor, since when it is selected to be far from the av-  In order to quantify these effects, we will introduce a se-
erage elongation(z,), a smaller number of morphological 'es of practical simplifications that are analogous to those

changes takes place and the velocity of the motor is reduceégading to Egs. (27) and (28). First, we will assume that the
Accordingly, we propose to s&f ~ (z). instantaneous morphological differences of the motor can be

approximated by their average values. Using the same ap-
proximations that yielded Eqgs. (12) and (13), we find in the
—— — present case

oo

~ / drPy (1) [Ry (1) — Ry (7)]

0
~ +AR(1 - 207), (34)

(R () — R (1)]

cm.

and

Standard deviation, ¢

Ve (6) = V2 (1)

T+

~ /dTPj: (1) [Vg () = Vi (7)

] ~ +87RACPART, (35)

T o - T . L o where P, (7) and P_ () represent, respectively, the PDF’s
Center of mass position, x__ - oo 510 for observing the elongated and contracted configurations ex-
tending over a period of time,

FIGURE 4. Probability distribution function for the center of mass

position of an ensemble of harmonic Brownian motors at different T+ = /dT TPy (7)),

times. Symbols correspond with the numerical results, while con-

tinuous lines were obtained from Egs. (24), (27), and (28). Theare the corresponding mean times, andis used to indicate
standard deviation of the distribution as function of the advancethe evolution of a time-dependent function over the periods
time is also shown. of contracted{_) or elongated+, ) configuration.
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—
(=]

As it was the case before, we will assume that the elon-

- « A=0.00 gation of the system does not possess strong fluctuations. In

S0 0.8 ] ﬁfg'% = this case, the contribution of the hydrodynamic forces to the

g s A=01% dynamics ofr¢ ,, can be approximated by

= ; A=020

<06 * A=025] 7

;‘::’ . .

S oal . . ad

e RAVEACIN. i

‘g 8ma? (t) 8m(x?)+

= 02 T+

B R2, CCART

5 ~ M =) (36)

Z 0.01 g —————— (x?) 1

0 20 40 . 60 80 100
Time, ¢

FIGURE 5. Normalized correlations for the extension of Brownian Another restriction to be incorporated will consist in ana-
motors simulated with different asymmetry degre&s(symbols).  lyzing motors with strong repulsive interactions only, which
The continuous curve represents a numerical fit obtained assumingould be realized using large values ofin Eq. (33),i.e.
an exponential decay. n > 1[39]. Inthis case, most of the time the colloidal spheres

) are separated and the dynamics is dominated by the nonlin-
~ Now, let W (1) andW_ () represent the partial sta- o5y elastic potential. It could be expected that, in this limit,
tionary PDF's for findinger atz; > (zr) andz, < (zr),and . il evolve by following a similar relaxation behavior to
(z7)+ the mean square elongation of the motor calculatedhe one exhibited in the simple harmonic case. However, the
over such distributions.e., effective characteristic relaxation time for elongated and con-

(22)y = /dxr 22 Wy (a) . trgcted configurationsgy, coul_d bg anticipateq to .be slightly
different. Under such approximation and taking into account
|  Edg. (36), an estimate for the formal solution:fy, is

’ _ A —ag (t'—
Zem, (1) > xem (t) £ (1 — 2(7%) i (1 — oot t)) [0 (t) — (xe)x] + A (H — 1)
t/
A (§) A (5)}
+ [ |V (' - & a + Wy (' — & aef) =2 |, 37
/5{ LG aen) gy VR Seen BT 47
where we have introduced the effective relaxation parame-
ter, cier, UNder the assumption that, and«_ are propor-
tional to the corresponding inverse average timesind7_, A
in such a way thaty, = aeg (74 +7_) /74, anda_ = Vem. = et [(1—2¢7 ) &rq — (1 —2¢7y) Tr ]
Qeff (T +7-) /T—.
_ , R2, . CPART_ T4 I 39
If we assume, as it was done in Sec. 2.2, that we ob- t ) ) (39)
serve the dynamics of the motor over regular time intervals -t o re
at whichz; is sampled from the stationary PDR%E; (x), In the previous expression, we have defined the averages
that an expansion in terms of small quantiteginday 7+ is 7, . as
valid, and thatr. . is @ Markov process, we arrive at the fol- 7
lowing expression for the PDF for the advance of the motor oo
operating over asymmetric morphological changes Fra = (_1)3F1 / de Wy (zr) [xr — (z)] . (40)
(r)
W (zem. (t) |zem. (0) = 1 In Eq. (39), the first term on the right hand side is the ve-
o o 2nod . (t) locity achieved by the motor due to the unbalanced viscous

5 drag and elastic effects, while the second term represents the
X exp { — [zem.(t) — zem. (0) — vem.1] . (38) contribution of the asymmetric hydrodynamic forces experi-
208 (1) enced by the spheres over the time intervalandr_. Equa-
tion (39) reduces to Eq. (28) for symmetric morphological
adaptationsi.e., in the casery = 7_, &y = —%,;_, and
where the average center of mass velocity is given by (2), = (z2)_.
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2.5 — ‘
- - g
TABLE |l. Parametel, that indicates the length at which struc- w9 — A=0.00
tural adaptations are activated in simulated motors. Values were  2.0- e ?&:8%
obtained from Eq. (41), and are expected to be close{o - A=015
= A =020
A lo (Rmin) g 15- A=0.25
0.00 2.3732 a
[
0.05 2.4176 g 10
i
0.10 2.4621 8
0.15 2.5067 2 05
0.20 2.5515 3 v
0.0 . =
0.25 2.5964 0 200 400 600 800 1000

We conducted a series of numerical experiments in order
to assess the validity of Eq. (39). We used the same numer-
ical integration method described in Sec. 3, where the sysFIGURE 6. Average motion of Brownian motors based on morpho-
tematic forces acting the Brownian particles were obtainedogical changes and asymmetric molecular potentials. Noisy con-
from F; = —9 (®e + D¢) /Oz;. Our new simulations were tinuous curves represent the average displacement of an ensemble
carried out with parameters = 2kpT, lmax = 10Rmin, on 10% independent motors. Straight interrupted lines are theoreti-

L= 1kBT/R2 n = 5\/77TBT/R2mm, andn = 4, which cal estimations obtained from Eq. (39).

min?
makes the interaction between the colloids steep [39]. We

simulated motors with the same asymmetry factors used beféined from a nonlinear fitting procedure. Our numerical

fore, A = _0'0070'05’ -~ -, 0.25. With the purpose of_glvmg evidence revealed thai.; does not change systematically
an approximated value for the paramefigrwe considered with the simulation parametef\, e.g, it took the values

that the elongation of the motor is restricted to small valueso.l?)84 url for A = 0.00, and0.1386 u; ! for A — 0.25.

2r < Imax. Thus, we assumedk to be harmonic. In addition, Thus, we decided to use the average value of this inverse

g)c Ivr\]/a:ﬁ arssui;ned o req_rﬁse;}roivzgrgsv,\['atggl;?;tﬁ"gtrﬁ characteristic time, calculated over the six performed simu-
N € regiotyy. > o. 1his al o cal . |ations, which turned out to by = (0.138 + 0.008) u; .
the canonical distribution, using the approximated potentia

energies, as
o o In our numerical experiments we verified that the molec-
[ da; zrexp {*%Z’T} ular motors based on the use of molecular potentials exhibit
lo = 2 directed motion at constant average speeds. This is illus-
_ ka? trated in Fig. 6 where we present the resulting average tra-
J dzr exp k5T . .
o jectories taken over ensembles16f molecular motors. In

o the same Fig. 6, the straight interrupted lines were drawn us-
_ [2kpT &P {_W} (41) ing the velocities estimated from Eq. (39) and the parame-
o Tk _ erf{ ko? } tersAxz, +, (z2)1 and7y, presented in Table Ill, as well as

2ksT et = 0.138 . ', Our estimations of . are presented in

Table IV where they are compared with the values resulting
from the simulation experiments, which were obtained from
a simple application of the least squares method to the noisy
i . . , L curves in Fig. 6. We found a very good agreement between
Firstly, we obtained the time series of (¢) for six in- ;

Y () the calculations based on Eq. (39) and the observed average

dividual motors simulated over a time interval with size . i
5 : ; speed of the simulated motors. It can be noticed from the
5 x 10° ut. From these time series we calculated the parame-

tersAay 4., (x2), andr.., appearing in Eq. (39). The result- data in Table IV that velocities derived from Eq. (39) coin-

ing values of these quantities are summarized in Table I11. OnClde with the experimental velocities, within the uncertainty

the other handy.s was obtained from the examination of the ranges, for all the used parameteXs although deviations

decay of the autocorrelation functions of the variahl€t), bAetv_vegr:);haengeAntril gaQIl;eSNC:VZr?ﬁeEgggggfﬁ ' dze;;g!}é at

((zr (t) — (@) (27 (0) = (2))) are lower thar6%, and could be considered small. In this _

((2r (0) — <xr>)2> ) case our results would allow us to propose Eq. (39) as a suffi-

ciently good expression for making estimations of the speed

which can be well approximated by a decaying exponean molecular motors Operating at asymmetric small morpho-
tial function, whose inverse characteristic timggz, was ob-  logical changesA < 0.25.

The corresponding values féy used in the adaptation algo-
rithm, Eq. (8), were obtained from Eq. (41) and are explicitly
shown in Table II.

g(t)=
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TaBLE Ill. Parameters used to estimatg, from Eq. (39). These gquantities were obtained from simulations of individual motors as it is
described through the text. Values are reported in simulation units. Statistical uncertainties were foufidig be= +3 x 10™* Rmin,
SAzr,— = 42 x 10™* Rmin, 6(x?)+ = £2 x 107* R%,, andd(z?)- = +1 x 107* RZ,.

A AV T Ay (x?)+ (zf)— Ty T
0.00 0.3035 0.1691 7.1774 4.8097 0.187 0.303
0.05 0.2983 0.1614 7.3542 5.0174 0.187 0.310
0.10 0.2929 0.1567 7.5584 5.2364 0.183 0.303
0.15 0.2990 0.1577 7.8940 5.4766 0.183 0.306
0.20 0.2895 0.1571 8.0919 5.7002 0.177 0.307
0.25 0.2827 0.1498 8.2682 5.9270 0.181 0.303

the spatial asymmetry of the ratchet, in such a way that for
TABLE IV. Center of mass velocity of molecular motors with dif- arat < Lrat/2, it will rectify the Brownian motion to the pos-
ferent morphological asymmetries. Theoretical estimations wereitive direction, while forar, > Lrat/2, the mean stream in-
carried out using Eq. (39) and the values of the parameters preduced by the ratchet will be negative. Finally, the parameter

sented in Table III. trat is Used to indicate the time interval in which the ratchet
A vem. (simulations, vem. (estimated, remains turned off. This classical operation of the ratchet
10~ R/ 1) 10~ R /1) mechanism is illustrated in Fig. 7.
0.00 0 0.00 A first group of simulations was conducted in molecular
0.05 5.200 & 0.003 4.9+0.3 motors that do not perform morphological changes, this with
0.10 10.410 + 0.004 98407 the purpose of assessing the flow velocity induced by the
0.15 14.690 £+ 0.003 150+ 1.0
0.20 19.298 £ 0.004 199+1.3
0.25 22.711 £ 0.003 24.04+1.6 "x,) 4
rat
on
.-, . - - hl'(’l‘
5. Competition against a ratchet potential
Finally, w rri mparison between the rectifyin J ' '
ally, we carried out a comparison between the rectifying M) L. 2L 3L

mechanism based on morphological changes and a classic:
ratchet potential, in order to show that the former could ex-
hibit larger velocities, even for small values A&f We per- off
formed the comparison in such a way that our motor will try
to overcome the backwards stream of particles created by the T | T

ratchet potential. This means that in order to overcome the at 2L, 3L,

ratchet’s stream, our Brownian motor needs to create a largel )

net displacement in the opposite direction. on

The ratchet potential acting on each of the constituent

parts of the molecular motoV] (z,,;t) = ® (t) V (z,), will

be modeled as spatially asymmetric and intermittent. Specif- I I I

ically, it will be defined as in Ref. 46 through L, 2L, 3L
Roa i .

V(x,) = {w;bxf“ ff 0 <y < arag (42)  FIGURE 7. The ratchet potentiall’ (x,;1), used for competi-
Toam (Lrat— zp),  if arat < 2 < Liag tion with morphological changes. It has two possible states, on

and off, determined by the parametéxs andTr4 in Eq. (43). In

and . the on-state, particles are driven to the minimum energy position,

O (t) = {07 if 0<t<tuag (43) while particle diffusg freely in the off-state. This mechanism to-
1, if ta<t<Ta gether with the spatial asymmetry &f controlled byarar and Lyat

) in Eg. (42), induce the rectified motion, which for the presented
In Egs. (42) and (43)hra represents the maximum en- case points to the left. Smooth curves aboveatheis illustrate
ergy of the ratchet, whild..o; and Ti5 are, respectively, its schematically the PDF for finding the particles at given positions at
spatial and temporal periods. The parametgt controls  different times.
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FIGURE 8. Drift velocity induced by the ratchet mechanism with FIGURE 9. Average trajectories of molecular motors under external
parametersiay = 10kpT, Liat = 10Rmin, Grat = 9Rmin, and ratchet forces and antagonistic morphological adaptations charac-

Trat = 100wy, for different values of 4. terized by the asymmetry parameter

ratchet mechanism. In these simulations the ratchet’s energy

barrier was chosen to g, = 10k T, which is highly un- .
likely to be overcome by particles in a thermal bath at temper-6' Conclusions
atureT’. On the other hand, the spatial parameters were fixe
at the valued.;yt = 10 Rmin, andarae = 9Rmin. The time pe-
riod was selected to BB, = 100w, for which we performed
ten different experiments varyingy from 0 to 100w, in reg-
ular intervals. The resulting stream velocities were obtaine
from averages over ensembles ©f* inactivated motors.
They are shown in Fig. 8 from which it can be observed tha

the drift velocity is minimized fott,5; ~ 60u. Thus, in order -~ . .
X : trol system to indicate that morphological adaptations must
to perform a comparison against the motor based on morph%- ) o
e activated. In turn, the structural modifications of the mo-

logical changes, we selected this latter value for all our subse-" . .
; i, : or induce unbalanced drag forces that favor the displacement

guent experiments. Under such conditions, we activated the : . L
. . . . of the motor’s center of mass in one direction.
morphological changes in molecular motors with repulsive

and non-linear interactions, simulated with the same set of We have used the classical theory of Brownian motion

parameters described in Sec. 4. As it was the case before, WR give an expression for.the mean velocity reached by a
varied the asymmetry ratias from 0.00 to 0.25 with incre- motor with simple harmonic restitution forces that performs

ments o0f0.05. Figure 9 illustrates the mean trajectories ob-SIOW mo_rphological adaptations. _We expresse_d this velocity
tained from averages ab® motors. It can be noticed that for as functlon. of the magnitude of its morphologmal changes.
no morphological adaptationd, = 0.00, the center of mass Our analysis was based on thg assumption that these changes
position moves at a constant speed to the left. Howeygr, are sma_ll when co_mpared with the length of the motor it
increases as\ does. Morphological changes finally over- self. Thls.assumptlon .turned out to reduce enormously the
come the ratchet mechanism for = 0.25. The specific mathematical complexity of the problem and allowed us to

velocities obtained in the experiments described above ar?rrive at closed expressions for the probability distribution
shown in Table V. unctions describing the state of the motor. We verified the

applicability of our theoretical treatment using BD simula-
tions. Afterwards, we conducted simulations of more real-
TABLE V. Center of mass velocity of molecular motors with differ- istic molecular motors conceived as two colloidal particles
ent morphological asymmetries in the presence of a ratchet potenef controllable size attached by a finite extension chain. We
tial. showed by means of BD simulations that they also exhibit di-
A Ve, (Simulations,10~* Ruin/u1) rected Brownian motion. In the same manner, we were able
to give an expression for the velocity of the molecular motors

e\le have analyzed the dynamics of a simple intuitive Brow-
nian motor that acquires directed motion from thermal un-
biased forces by coordinated morphological modifications.
his motor needs to be elastic and to possess adaptable shape.
hermal fluctuations of the surrounding medium promote
hanges in the elongation of the motor and the information of
he length of the system is used by a Maxwell’s demon con-

0.00 —5.074000 i .

that works very well for small morphological changes. Fi-
0.05 —2.699700 . .

nally, we showed that morphological adaptations could pro-
0.10 —1.812000 duce larger velocities than those obtained from the classical
0.15 —0.471480 rectifying mechanism based on an external ratchet potential.
0.20 —0.027426 It is interesting to perform an estimation of the veloc-
0.25 +1.119100 ity that could be achieved by an actual motor possessing
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the geometrical characteristics used in our model. For thisional changes that are induced in artificial molecular ma-
purpose we could consider a molecular motor such thathines by diverse stimulg.g, light, electrochemistry, heat,
Rmin=0.1 zm, immersed in a fluid witm=0.01 gcm's™!, allosteric effects, or temperature [42]. Some specific molec-
at 7 = 300K. We can also consider a motor with ular structures with conformational changes have been pre-
Imax = 10 Rmin, restitution coefficient selected ac- sented as potential solutions to proposed designs for theoreti-
cording to the so-called extensibility parameter [41],cal nanoswimmers [42,43]. On the other hand, the activation
b = klnae/ksT = 50. By assuming that of these configurational changes could be controlled using a
(1 —2¢7) A/6v/27%/%2 ~ 10~%, we obtain, from Eq. (28), Maxwell's demon, similar to those that raise and lower an
thatvem, ~ 10~ 2um s1, energy barrier by using the information of the location of a

We do not know whether natural or artificial microscopic macrocycle over a long rod-shaped molecule [44]. Experi-
systems exist that presents directed Brownian motor behayental implementations of such mechanism have been con-
ior based on the mechanisms proposed in the present papékcted using photo and chemically activated barriers [45,46].
We stress that biological systems that propel themselves in [N this paper, some issues that could be relevant for under-
fluid environments by performing morphological changes re-Standing the dynamics of the proposed Brownian motor have
sembling those described in Fig. 1, such as certain protozdaPt been considered. They include a detailed non-equilibrium
and species of Euglena (see the discussion in Ref. 31 for futhermodynamics analysis of its operation and efficiency, and
ther details), can not be considered as physical realizatior@ analysis of the effects induced by the hydrodynamic mem-
of our model, since in such systems contractions and expar®’y of its environment, similar to those calculated for single
sions are not driven by thermal fluctuations but by an internaBrownian particles [47]. Such effects will be taken into ac-
mechanism that can be theoretically treated as a piston [31§0unt in subsequent publications.

However, it is worth noticing that some microscopic systems

exist that possess the characteristics needed by the compacknowledgements

nents of our theoretical motor. In particular, differences in

viscous drag between different parts of a larger microstrucH. Hijar thanks La Salle University Mexico for financial sup-
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