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Torques on quadrupoles
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Making use of the fact that a2l-pole can be represented by means ofl vectors of the same magnitude, the torque on a quadrupole in an
inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The
conditions for rotational equilibrium are also expressed in terms of these vectors.
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Haciendo uso de que un multipolo de orden2l puede representarse mediantel vectores de la misma magnitud, la torca sobre un cuadripolo
en un campo externo inhomogéneo se expresa en términos de los vectores que representan el cuadripolo y el gradiente del campo externo.
Las condiciones de equilibrio rotacional se expresan también en t́erminos de estos vectores.

Descriptores: Multipolos; torca.

PACS: 41.20.Cv; 02.10.Ud

1. Introduction

As is well known, the torque on an electric dipole placed in
an external electric field,E, is given by

τ = p×E, (1)

wherep is the dipole moment and, therefore, the torque on
the dipole vanishes whenp is collinear with E. In its el-
ementary form, an electric dipole is formed by two elec-
tric charges,q and−q (so that the total charge is equal to
zero), separated by a small distance. Similarly, an electric
quadrupole can be made out of two electric dipoles, with mo-
mentsp and−p (so that the total charge and the total dipole
moment are equal to zero), separated by a small distance, and
we can go on constructing higher multipoles in this manner.

The field of any bounded charge distribution is the su-
perposition of the fields produced by a point charge, a point
dipole, a point quadrupole and so on. In the presence of an
external inhomogeneous electric field, each multipole mo-
ment contributes to the force and the torque on the charge
distribution. The torque on a point 2l-pole depends on the
(l − 1)-th derivatives of the electric field (that is, on thel-th
partial derivatives of the electrostatic potential); in particular,
the torque on a point dipole, for whichl = 1, involves the
value of the electric field itself at the location of the dipole
[see Eq. (1)].

The 2l-pole moment of a charge distribution is given by
an l-index tensor (a vector in the case of the dipole moment,
a two-index tensor in the case of the quadrupole moment,
and so on) which, being totally symmetric and traceless, can
be algebraically expressed and geometrically represented by

means ofl vectors of the same magnitude [1,2] (this result
is equivalent to the so-called Sylvester’s theorem [3,4]). Fur-
thermore, since the electrostatic potential of the external field
satisfies the Laplace equation, thel-th partial derivatives of
the electrostatic potential with respect to Cartesian coordi-
nates also correspond to a totally symmetric, tracelessl-index
tensor that can be expressed and represented by a second set
of l vectors of the same magnitude.

Thus, the quadrupole moment can be represented by two
vectors,c andd (say), and, just as a dipole momentp can be
associated with two charges±q placed at the endpoints of the
vectorp/q, the quadrupole moment represented byc andd
can be associated with four charges,−q, q, −q, q, placed at
the vertices of a parallelogram with sidesc/

√
6q andd/

√
6q

(see Sec. 2 below). In a similar way, any2l-pole can be rep-
resented by means of2l point charges.

The energy and the torque on a2l-pole in an external
field, written in terms of the Cartesian components of the
2l-pole moment, can be obtained in a straightforward man-
ner (see, for example, Ref. 5), but the resulting expression is
not very convenient since only2l + 1 out of the3l Cartesian
components of the2l-pole moment are independent. In this
paper we show how to find expressions for the electrostatic
energy and the torque on a2l-pole in terms of thel vectors
that represent the2l-pole and thel vectors that represent the
appropriate derivatives of the external field, by considering
in detail the case of a quadrupole. Then we obtain the equi-
librium orientations of the quadrupole, identifying the stable
ones.
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2. Torque on a quadrupole. Equilibrium ori-
entations

Starting from the expression

U =
∫

ρ(r)ϕ(r)dv

for the energy of a charge distribution with charge densityρ
in an external field corresponding to the potentialϕ (see, for
example, Refs. 5 and 6), by means of a Taylor expansion, one
obtains

U =
∫

ρ(r)


ϕ(0) +

3∑

i=1

xi
∂ϕ

∂xi
(0)

+
1
2

3∑

i,j=1

xixj
∂2ϕ

∂xi∂xj
(0) + · · ·


 dv

= Qϕ(0) +
3∑

i=1

pi
∂ϕ

∂xi
(0) +

1
6

3∑

i,j=1

Qij
∂2ϕ

∂xi∂xj
(0)

+
1
30

3∑

i,j,k=1

Mijk
∂3ϕ

∂xi∂xj∂xk
(0) + · · · , (2)

where thexi are the Cartesian components ofr and we have
made use of the equation∇2ϕ = 0 and the definitions

Q =
∫

ρ(r)dv, pi =
∫

ρ(r)xidv,

Qij =
∫

ρ(r)(3xixj − r2δij) dv, (3)

Mijk =
∫

ρ(r)(5xixjxk − r2xiδjk

− r2xjδki − r2xkδij) dv,

of the total charge, dipole, quadrupole, and octopole mo-
ments, respectively.

Recalling that, to first order in the angleδθ, the change of
an arbitrary vectorA under a rotation about the axis defined
by the unit vectorn through the angleδθ is given by

δA = n×A δθ = δθ ×A, (4)

whereδθ ≡ n δθ, the corresponding change of the energy of
a charge element under the rotation represented byδθ is

δU = −F ·δr = −F ·δθ×r = −δθ ·r×F = −τ ·δθ, (5)

whereF andτ denote the force and torque produced by the
external electric field on the charge element. By integrating
over the charge distribution one finds that the same relation
(5) holds for the total energy and torque of the charge distri-
bution. In the case of a point dipole, for instance, using the
fact thatE = −∇ϕ, from Eq. (2) we haveU = −p · E and,
therefore, making use of Eq. (4),

δU = −δp ·E = −δθ × p ·E = −p×E · δθ,

and by comparing with Eq. (5) one obtains the usual expres-
sion (1) for the torque on a dipole in an external electric
field E.

According to Eq. (2), the energy of a point quadrupole in
an external electric field is

U = −1
6

3∑

i,j=1

QijGij , (6)

where we have defined

Gij ≡ − ∂2ϕ

∂xi∂xj
(0). (7)

(Note thatGij represents the gradient of the electric field,
Gij = ∂Ei/∂xj .) BothQij andGij are symmetric traceless
tensors and therefore there exist four vectors,v, w, a, andb,
with |v| = |w|, |a| = |b|, such that [1,2]

Qij = 1
2 (viwj + vjwi)− 1

3 (v ·w)δij , (8)

Gij = 1
2 (aibj + ajbi)− 1

3 (a · b)δij ; (9)

hence,

U = − 1
12

[
(a · v)(b ·w) + (a ·w)(b · v)

− 2
3 (a · b)(v ·w)

]
. (10)

In fact, given a symmetric tensorQij , one can always
find three mutually orthogonal unit vectors,X, Y, Z, which
are eigenvectors ofQij , satisfying

Qij = λXiXj + µYiYj + νZiZj , (11)

whereλ, µ, andν are the corresponding eigenvalues, which
are all real. SinceX, Y, andZ, are orthogonal unit vectors,

δij = XiXj + YiYj + ZiZj , (12)

andQij is traceless if and only ifλ + µ + ν = 0; hence,
the eigenvectorZ and its eigenvalue can be eliminated from
Eq. (11) and we can write

Qij = λXiXj + µYiYj + (−λ− µ)(δij −XiXj − YiYj)

= (2λ + µ)XiXj + (2µ + λ)YiYj − (λ + µ)δij . (13)

Assuming thatλ andµ are the greatest and the smallest
eigenvalue ofQij , respectively, one finds that2λ + µ, and
−2µ−λ are non-negative (indeed,2λ+µ > λ+ ν +µ = 0,
and2µ + λ 6 µ + ν + λ = 0). Thus, letting [2]

v ≡
√

2λ + µX +
√
−2µ− λY,

w ≡
√

2λ + µX−
√
−2µ− λY, (14)
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we have|v| = |w| andv ·w = 3(λ + µ) and from Eq. (13)
we obtain

Qij = 1
2 (viwj + vjwi)− 1

3 (v ·w)δij , (15)

which is Eq. (8). Making use of the two-component spinor
formalism, Eq. (15) follows from the fundamental theorem
of algebra [1,7].

Remark 1. While we do not have an analog of Eq. (11)
for symmetric tensors with three or more indices, using the
spinor formalism, one can show that an analog of Eq. (15)
holds for anytracelesssymmetric tensor [1,7].

Remark 2. Even in the case of a two-index tensor, Eq. (15),
which involves two vectors only, is preferable to the well-
known expression (11), which involves three eigenvectors.
Furthermore, when there is degeneracy (i.e., the eigenvalueν
coincides withλ or with µ), the two degenerate eigenvectors
are not uniquely defined; they span a two-dimensional plane
and any pair of mutually orthogonal vectors in this plane can
be chosen as part of the basis{X,Y,Z}. On the other hand,
this ambiguity does not arise in connection with the vectors
v and w appearing in Eq. (15); whenν = λ or ν = µ,
we have2λ + µ = 0 or 2µ + λ = 0, respectively, which
amounts tov = −w orv = w, respectively. (Note that since
λ+µ+ν = 0, the only case in which a triple degeneracy can
occur is the trivial one withλ = µ = ν = 0.)

Remark 3. The vectorsv andw appearing in Eq. (15), being
of the same magnitude, can be viewed as the sides of a rhom-
bus whose diagonals,v + w andv − w, are orthogonal to
each other. In fact, from Eq. (14) we see that

v +w = 2
√

2λ + µX, v−w = 2
√
−2µ− λY, (16)

that is, the eigenvectors ofQij with the greatest and the
smallest eigenvalue lie on the plane of this rhombus point-
ing along its diagonals. (Hence, the eigenvector ofQij with
the intermediate eigenvalue is orthogonal to the rhombus.)

Remark 4. The usual examples of quadrupoles considered in
the textbooks consist of sets of four point charges,−q, q,−q,
q, placed at the vertices of a parallelogram. Ifc andd are the
vectors that go from one of the negative charges to the two
positive ones then, from Eq. (3), one readily finds that

Qij = 3q(cidj + cjdi)− 2q(c · d)δij ,

which is of the form (15) with, for example,

v =
(

6q
|d|
|c|

)1/2

c, w =
(

6q
|c|
|d|

)1/2

d.

This means that the vectorsv andw are parallel to the vec-
tors joining one of the negative charges with the two positive
ones. By contrast, the eigenvectors ofQij do not have a di-
rect relationship with the geometry of the charge distribution.

(However, as pointed out above, the eigenvector ofQij with
the intermediate eigenvalue is perpendicular to the plane con-
taining the charges.)

Making use of Eqs. (4) and (10), and the properties of
the triple scalar product we find that the change ofU under a
rotation of the quadrupole given byδθ is

δU = − 1
12 [(a · δθ × v)(b ·w) + (a · v)(b · δθ ×w)

+ (a · δθ ×w)(b · v) + (a ·w)(b · δθ × v)]

= − 1
12 [(δθ · v × a)(b ·w) + (a · v)(δθ ·w × b)

+ (δθ ·w × a)(b · v) + (a ·w)(δθ · v × b)]

and therefore the torque on the quadrupole is given by

τ = 1
12 [(b ·w)v × a + (a · v)w × b

+(b · v)w × a + (a ·w)v × b] (17)

[cf. Eq. (1)]. Hence, making use of Eqs. (8) and (9), we
see that the Cartesian components of the torque on the
quadrupole can also be expressed in the form

τi =
1
12

3∑

j,k,l=1

εijk(blwlvjak + alvlwjbk

+ blvlwjak + alwlvjbk)

=
1
12

3∑

j,k,l=1

εijk(vjwl + vlwj)(akbl + albk)

=
1
3

3∑

j,k,l=1

εijkQjlGkl, (18)

where εijk is the usual Levi-Civita symbol [cf. Ref. 5,
Eq. (1.31)].

The Cartesian components of the quadrupole moment,
Qij , are also equivalent to a set of spherical components,
q2m, m = ±2,±1, 0 (see, for example, Refs. 8,1) and, in
an entirely similar manner, one can define a set of spherical
components,g2m (say), corresponding toGij . Then bothU
and the spherical components of the torque can be written in
terms of these spherical components. For instance, making
use of Eqs. (4.6) of Ref. 8 and analogous definitions forg2m

one finds that

U=−4π

5
(q22g2,−2−q21g2,−1+q20g20−q2,−1g21+q2,−2g22).

Now, making use of Eqs. (10) and (17), we shall find the
orientations of a quadrupole, with respect to the gradient of
the external electric field, for which the torque vanishes. To
this end, it is convenient to introduce the vectors

V ≡ 1
2 (v + w), W ≡ 1

2 (v −w). (19)

Since|v| = |w|, V is orthogonal toW; in fact, according
to Eq. (16),V andW point along the principal axes ofQij
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with the greatest and the smallest eigenvalue, respectively. In
a similar manner, letting

A ≡ 1
2 (a + b), B ≡ 1

2 (a− b), (20)

one finds thatA andB point along the principal axes ofGij

with the greatest and the smallest eigenvalue, respectively,
provided that these vectors are different from zero.

In terms of A, B, V, and W, the torque on the
quadrupole (17) is given by

τ = 1
3 [(V ·A)V ×A− (V ·B)V ×B

− (W ·A)W ×A + (W ·B)W ×B] (21)

and, assuming that all vectorsA, B, V, andW are different
from zero, from Eq. (21) one finds that there existsix equi-
librium orientations for the quadrupole, namely

(i) A collinear withV andB collinear withW,

(ii) A collinear withW andB collinear withV,

(iii) A orthogonal toV andW with B collinear withV,

(iv) A orthogonal toV andW with B collinear withW,

(v) B orthogonal toV andW with A collinear withV,

(vi) B orthogonal toV andW with A collinear withW.

The energy of the quadrupole can be expressed as

U = − 1
18

[3(A ·V)2 + 3(B ·W)2 − 3(A ·W)2

− 3(B ·V)2 − |A|2|V|2 − |B|2|W|2

+ |A|2|W|2 + |B|2|V|2] (22)

and, therefore, for each equilibrium orientation listed above,
the energy of the quadrupole is

− 1
18

(2|A|2|V|2 + 2|B|2|W|2 + |A|2|W|2 + |B|2|V|2) (A ‖ V, B ‖ W),

− 1
18

(−2|A|2|W|2 − 2|B|2|V|2 − |A|2|V|2 − |B|2|W|2) (A ‖ W, B ‖ V),

− 1
18

(−2|B|2|V|2 − |A|2|V|2 − |B|2|W|2 + |A|2|W|2) (A ⊥ V,W with B ‖ V),

− 1
18

(2|B|2|W|2 − |A|2|V|2 + |A|2|W|2 + |B|2|V|2) (A ⊥ V,W with B ‖ W),

− 1
18

(2|A|2|V|2 − |B|2|W|2 + |A|2|W|2 + |B|2|V|2) (B ⊥ V,W with A ‖ V),

− 1
18

(−2|A|2|W|2 − |A|2|V|2 − |B|2|W|2 + |B|2|V|2) (B ⊥ V,W with A ‖ W). (23)

Thus, the stable equilibrium orientation corresponds toA
collinear withV andB collinear withW, that is, the rhombus
with sidesa, b is coplanar with the rhombus with sidesu, v,
and the bisector ofa andb is collinear with the bisector ofu
andv.

In other words, a quadrupole is in one of its six equi-
librium orientations when each of the principal axes of the
quadrupole momentQij coincides with one of the princi-
pal axes of the gradient of the electric fieldGij . The sta-
ble equilibrium orientations occur when the principal axis of
Qij with the greatest eigenvalue coincides with the principal
axis ofGij with the greatest eigenvalue and, simultaneously,
the principal axis ofQij with the smallest eigenvalue coin-
cides with the principal axis ofGij with the smallest eigen-
value. (From Eqs. (10) we see that the energy of a quadrupole
is invariant under the substitution ofv andw by their neg-
atives and therefore, given a stable equilibrium orientation
of the quadrupole, another stable equilibrium orientation is
obtained by rotating the quadrupole through 180◦ about the
normal to the rhombus with sidesv andw.) Thus, the equi-

librium orientations can be succinctly characterized in terms
of the principal axes ofQij andGij .

Substituting Eq. (11) and an analogous expression forGij

into Eq. (18), one finds the torque on the quadrupole in terms
of the eigenvectors and eigenvalues ofQij andGij ; the re-
sulting expression readily shows that, when each eigenvector
of Qij is collinear with an eigenvector ofGij , the torque van-
ishes. However, such an expression does not seem useful in
proving that these are all the equilibrium orientations, since
the torque is a linear combination of the nine cross-products
that can be formed by multiplying each eigenvector ofQij by
each eigenvector ofGij . By contrast, in Eqs. (17) and (21)
the torque is expressed in terms of four cross products only,
which simplifies the search for the equilibrium orientations.

Equation (6) shows that, apart from the factor−1/6, the
energy of the quadrupole for each equilibrium orientation is
a sum of products of the eigenvalues ofQij by the eigen-
values ofGij . In fact, from Eqs. (16) and (19) we see that
|V|2 = 2λ+µ and|W|2 = −2µ−λ, with analogous expres-
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sions for|A|2 and|B|2, in terms of the eigenvalues ofGij ;
hence the values of the energy given in Eq. (23) are equiva-
lent to

− 1
6 (λλ̃ + µµ̃ + νν̃), − 1

6 (λµ̃ + µλ̃ + νν̃),

− 1
6 (λµ̃ + µν̃ + νλ̃), − 1

6 (λν̃ + µµ̃ + νλ̃),

− 1
6 (λλ̃ + µν̃ + νµ̃), − 1

6 (λν̃ + µλ̃ + νµ̃),

respectively, wherẽλ, µ̃, and ν̃ are the eigenvalues ofGij

with λ̃ > ν̃ > µ̃.
A simple alternative proof that the equilibrium orienta-

tions of the quadrupole correspond to the coincidence of the
eigenvectors ofQij andGij is obtained as follows. If the
matrix (Mij) is the product of the matrices(Qij) and(Gij),
we have

Mjk =
3∑

l=1

QjlGlk =
3∑

l=1

QjlGkl

(using the fact that(Gij) is symmetric) and, according to
Eq. (18),

τi =
1
3

3∑

j,k=1

εijkMjk,

which is equal to zero if and only if(Mij) is symmetric. But
the product of two symmetric matrices is symmetric if and
only if the matrices commute, which happens if and only if
there is a basis formed by common eigenvectors of the two
matrices. (This is the finite-dimensional version of the well-
known proposition employed in quantum mechanics which
asserts that two observables commute if and only if there ex-
ists a set of common eigenstates.) It should be noticed, how-
ever, that these arguments cannot be applied in the case of
higher multipoles, since they are represented by objects with
three or more indices.

We end this section with some remarks. All the results of
this section also apply in the case of a magnetic multipole in
an external magnetic field. Making use of Eq. (2) we can also
find the force on an electric2l-pole; in the case of a dipole,
one obtainsF = p ·∇E, which, by virtue of Eq. (9), is equiv-
alent toF = 1/2[(p · a)b + (p · b)a] − 1/3(a · b)p. The
torque on a2l-pole can be expressed in terms of thel vec-
tors representing the multipole and thel vectors representing
the (l − 1)-th derivatives of the external field. On the other
hand, the force on a2l-pole can be expressed in terms of the
l vectors representing the multipole and thel +1 vectors rep-
resenting thel-th derivatives of the external field.

3. Example

As an example of the foregoing results we shall consider the
field produced by a point chargeQ at the origin. The corre-
sponding electrostatic potential is given by

ϕ =
1

4πε0

Q

r
,

and a straightforward computation yields [see Eq. (7)]

Gij = − Q

4πε0

(
3xixj

r5
− δij

r3

)
. (24)

(Note that we are not evaluating the derivatives at the ori-
gin as in Eq. (7), but at an arbitrary point(x, y, z).) Owing
to the spherical symmetry of the field, we expect one of the
eigenvectors ofGij to be in the radial direction, with two
degenerate eigenvectors tangential to the spherer = const.
As shown above, this degeneracy implies thata is collinear
with b (see Remark 2). In fact, comparison of Eq. (24) with
Eq. (9) shows that whenQ is positivea is antiparallel tob,
while if Q is negativea is parallel tob; thus, in the first case,
the eigenvector ofGij with the smallest eigenvalue points ra-
dially and, in the second case, the eigenvector ofGij with the
greatest eigenvalue points radially.

We now consider a quadrupole formed by four point
charges,−q, q, −q, q (with q > 0), at the vertices of a
parallelogram. According to the preceding discussion, the
eigenvector of the quadrupole momentQij with the great-
est (respectively, smallest) eigenvalue bisects the angle of the
parallelogram at the vertex occupied by one of the negative
(respectively, positive) charges. Taking into account the re-
sults of the preceding paragraph, the equilibrium orientations
of this quadrupole in the field of a point charge are those for
which the radial direction bisects one of the angles of the par-
allelogram or is orthogonal to the plane of the parallelogram.
In the stable equilibrium orientation, the radial direction bi-
sects the angle of the parallelogram at the vertex occupied by
one of the positive charges ifQ > 0 or by one of the negative
charges ifQ < 0.
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