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Torques on quadrupoles
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Making use of the fact that &-pole can be represented by meansg wéctors of the same magnitude, the torque on a quadrupole in an
inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field
conditions for rotational equilibrium are also expressed in terms of these vectors.
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Haciendo uso de que un multipolo de ord¥rpuede representarse mediahtectores de la misma magnitud, la torca sobre un cuadripolo
en un campo externo inhomegeo se expresa eériminos de los vectores que representan el cuadripolo y el gradiente del campo externc
Las condiciones de equilibrio rotacional se expresan tamén érminos de estos vectores.

Descriptores: Multipolos; torca.

PACS: 41.20.Cv; 02.10.Ud

1. Introduction means ofl vectors of the same magnitude [1,2] (this result
is equivalent to the so-called Sylvester’s theorem [3,4]). Fur-
As is well known, the torque on an electric dipole placed inthermore, since the electrostatic potential of the external field
an external electric fieldz, is given by satisfies the Laplace equation, thth partial derivatives of
the electrostatic potential with respect to Cartesian coordi-
nates also correspond to a totally symmetric, tracétasdex

wherep is the dipole moment and, therefore, the torque Ontensor that can be expressed and represented by a second se

the dipole vanishes whep is collinear withE. In its el- of { vectors of the same magnitude.
ementary form, an electric dipole is formed by two elec-

tric charges,g and —¢ (so that the total charge is equal to Th h d | b db
zero), separated by a small distance. Similarly, an electric us, the quacrupole moment can be representeq by two

quadrupole can be made out of two electric dipoles, with moYectors.c andd (say), and, just as a dipole momentan be

mentsp and—p (so that the total charge and the total dipole associated with two charges; placed at the endpoints of the

moment are equal to zero), separated by a small distance, alffCtOrP/¢; the quadrupole moment representedctandd

we can go on constructing higher multipoles in this manner, 60 b€ associated with four charges;, ¢, —g, ¢, placed at
g gng P the vertices of a parallelogram with sides,/6q andd/+/6q

The field of any bounded charge distribution is the su-(Se€ Sec. 2 below). In a similar way, afypole can be rep-
perposition of the fields produced by a point charge, a poinfesented by means of point charges.
dipole, a point quadrupole and so on. In the presence of an
external inhomogeneous electric field, each multipole mo-
ment contributes to the force and the torque on the charge The energy and the torque on2&pole in an external
distribution. The torque on a point-pole depends on the field, written in terms of the Cartesian components of the
(1 — 1)-th derivatives of the electric field (that is, on théh ~ 2'-pole moment, can be obtained in a straightforward man-
partial derivatives of the electrostatic potential); in particular,ner (see, for example, Ref. 5), but the resulting expression is
the torque on a point dipole, for whidh= 1, involves the  not very convenient since ony/ + 1 out of the3! Cartesian
value of the electric field itself at the location of the dipole components of the’-pole moment are independent. In this
[see Eq. (1)]. paper we show how to find expressions for the electrostatic
energy and the torque on2&-pole in terms of the vectors
The 2-pole moment of a charge distribution is given by that represent th#/-pole and thé vectors that represent the
anl-index tensor (a vector in the case of the dipole momentappropriate derivatives of the external field, by considering
a two-index tensor in the case of the quadrupole momenin detail the case of a quadrupole. Then we obtain the equi-
and so on) which, being totally symmetric and traceless, cafibrium orientations of the quadrupole, identifying the stable
be algebraically expressed and geometrically represented mnes.

T=pxE, (1)
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2. Torque on a quadrupole. Equilibrium ori-  and by comparing with Eq. (5) one obtains the usual expres-
entations sion (1) for the torque on a dipole in an external electric
field E.
Starting from the expression According to Eq. (2), the energy of a point quadrupole in

an external electric field is

U= [ ot

for the energy of a charge distribution with charge dengity U= —é Z Qi;Gij, (6)
in an external field corresponding to the potenigkee, for i,j=1
example, Refs. 5 and 6), by means of a Taylor expansion, one
obtains where we have defined
3 2
Op _ 0y
U= / plr) [w(O) + X, O Gij = =5y () )

(Note thatG;; represents the gradient of the electric field,
+ = Z 22 ———(0) + - | dv Gi; = 0F;/0x;.) BothQ;; andGij are symmetric traceless
‘9%3% tensors and therefore there exist four vectetsy, a, andb,
with |v| = |w|, |a] = |b|, such that [1,2]

zgl

> 9y 1< 0%
0) + i=—(0) + = ii=——=—1(0
) ;p ami( ) 6iJZ:1Q]8$i8$j( ) Qij = 3(viwj +vjw;) — %(v w)0ij, (8)
Gij = g(aibj + ajbi) — 3(a-b)djy; )
Mijhm———o—(0) +---, )
j; 1 szaxj O hence,
where ther; are the Cartesian componentsraind we have L

made use of the equatici*y = 0 and the definitions U=—5[av)(b-w)+(a w)b-v)
— 2(a-b)(v-w)]|. 10
Q= /p(r)dv, pi = /p(r)xidv, i@ B)v-w)l (0

In fact, given a symmetric tensd@p;;, one can always
Qij = / (r)(3z;zj — r°d;5) dv, (3)  find three mutually orthogonal unit vecto$, Y, Z, which
are eigenvectors dj;;, satisfying
M = /p v)(5x;xim, — a0k

’ (r){Bess ’ Qij = \Xi X; + pYiY; + v 2,7, (11)

— 1220 — 1?2165 dv,
where), p, andv are the corresponding eigenvalues, which

of the total charge, dipole, quadrupole, and octopole mogye 3|l real. Sinc, Y, andZ, are orthogonal unit vectors,
ments, respectively.

Recalling that, to first order in the angi@, the change of i = Xo X + VY + Z: 7. (12)
an arbitrary vectoA under a rotation about the axis defined Y 7

by the unit vecton through the anglé® is given by andQ; is traceless if and only if + 1« + v = 0; hence,

SA=nxAd0=050xA, (4) the eigenvectoZ and its eigenvalue can be eliminated from
Eqg. (11) and we can write
wheredd = n §6, the corresponding change of the energy of

a charge element under the rotation representetbby Qij = AXiXj + pYiYj + (=X — ) (05 — X, X; — YiY5)
0U=—-F-or=—-F-00xr=—-60-rxF = —71-00, (5)

(A + ) Xi X + (20 + YY) — (A + )35 (13)
whereF andr denote the force and torque produced by the

external electric field on the charge element. By integrating Assuming that\ and .. are the greatest and the smallest
over the charge distribution one finds that the same relatiogigenvalue ofQ);;, respectively, one finds that + ., and
(5) holds for the total energy and torque of the charge distri—2x — A are non-negative (indee2l\ + 1 > A +v +pu = 0,
bution. In the case of a point dipole, for instance, using theand2u + A < g+ v + A = 0). Thus, letting [2]

fact thatE = —V, from Eqg. (2) we havé/ = —p - E and,

therefore, making use of Eq. (4), v = V2 +uX++v/2u—-2Y,
U=—-0p-E=-00xp-E=—-pxE-0, w = V22 +uX—+/2u—-2Y, (14)
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we havelv| = |w| andv - w = 3(A + 1) and from Eq. (13) (However, as pointed out above, the eigenvectapgfwith
we obtain the intermediate eigenvalue is perpendicular to the plane con-
taining the charges.)
Qij = 5 (viw; + vjw;) — 5(v - w)dij, (15) Making use of Egs. (4) and (10), and the properties of

o . _ the triple scalar product we find that the changé/ainder a
which is Eq. (8). Making use of the two-component spinorqtation of the quadrupole given b is

formalism, Eq. (15) follows from the fundamental theorem

of algebra [1,7]. U = —35[(a- 06 x v)(b-w) + (a-v)(b- 60 x w)
Remark 1 While we do not have an analog of Eq. (11) +(a-50 xw)(b-v)+(a-w)(b-3d6 x v)]
for symmetric tensors with three or more indices, using the 1 ) . _ .

spinor formalism, one can show that an analog of Eg. (15) = ~15l(00- v xa)(b-w) +(a-v)(99 - wxb)
holds for anytracelesssymmetric tensor [1,7]. + (00 -w x a)(b-v)+ (a-w)(00 - v x b)]

Remark 2 Even in the case of a two-index tensor, Eqg. (15),and therefore the torque on the quadrupole is given by
which involves two vectors only, is preferable to the well-

known expression (11), which involves three eigenvectors. 7 = %[(b ‘w)vxa+(a-v)wxb

Furthermore, when there is degenerday.,(the eigenvalue
coincides with\ or with 1), the two degenerate eigenvectors

are not uniquely defined; they span a two-dimensional plangcf. Eq. (1)]. Hence, making use of Egs. (8) and (9), we

and any pair of mutually orthogonal vectors in this plane carsee that the Cartesian components of the torque on the
be chosen as part of the ba¢X, Y, Z}. On the other hand, quadrupole can also be expressed in the form

this ambiguity does not arise in connection with the vectors

+(b-v)wxa+(a-w)vxb] (17)

v andw appearing in Eq. (15); when = XA orv = p, 1<
we have2\ + u = 0 or 2u + A = 0, respectively, which T = 19 Z eigh(brwrvjar, + arviw; by
amounts tor = —w or v = w, respectively. (Note that since Jokit=1
A+ p+v =0, the only case in which a triple degeneracy can + bivw;ay + awv;by)
occur is the trivial one withh = 4 = v =0.) 3

1
Remark 3 The vectors/ andw appearing in Eq. (15), being T 12 Z gigr(vjwr + viw;)(axb + aibr)
of the same magnitude, can be viewed as the sides of a rhom- k=1
bus whose diagonals; + w andv — w, are orthogonal to 13
each other. In fact, from Eq. (14) we see that =3 > @G, (18)

Joky=1

=24y/2A X —w=2y/-2u—-2Y, (16
vihw Tk vow K + (18) where ¢;;;, is the usual Levi-Civita symbolcf. Ref. 5,

that is, the eigenvectors @p;; with the greatest and the Eq. (1.31)]. )
smallest eigenvalue lie on the plane of this rhombus point-  The Cartesian components of the quadrupole moment,
ing along its diagonals. (Hence, the eigenvectofef with Q;;, are also equivalent to a set of spherical components,

the intermediate eigenvalue is orthogonal to the rhombus.) ¢2m» ™ = +2,+1,0 (see, for example, Refs. 8,1) and, in
an entirely similar manner, one can define a set of spherical

Remark 4 The usual examples of quadrupoles considered ifomponentsgs,, (say), corresponding t6';;. Then bothU/
the textbooks consist of sets of four point chargeg,q, —¢,  and the spherical components of the torque can be written in
q, placed at the vertices of a parallelogramc #ndd are the ~ terms of these spherical components. For instance, making
vectors that go from one of the negative charges to the twoise of Egs. (4.6) of Ref. 8 and analogous definitionsjfor

positive ones then, from Eq. (3), one readily finds that one finds that
4
Qij = 3q(cidj + cjd;) — 2¢(c - d)dy;, U:*?(%292,-2*qQ192,—1+1120920*QQ,—1921+Q2,—2922)~
which is of the form (15) with, for example, Now, making use of Egs. (10) and (17), we shall find the
12 12 orientations of a quadrupole, with respect to the gradient of
(. 1d] (el the external electric field, for which the torque vanishes. To
v=|6g— c, w = | 6q d. . . . .
|c] |d] this end, it is convenient to introduce the vectors
This means that the vectovsandw are parallel to the vec- V= %(V + w), W = %(V —w). (19)
tors joining one of the negative charges with the two positive
ones. By contrast, the eigenvectors(pf; do not have a di- Since|v| = |w|, V is orthogonal toW; in fact, according

rect relationship with the geometry of the charge distributionto Eq. (16),V andW point along the principal axes @p;;
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with the greatest and the smallest eigenvalue, respectively. In(ii) A collinear withW andB collinear withV,
a similar manner, letting

A=1la+b), B=1la-b), (20)

- 2

(iii) A orthogonal tov andW with B collinear withV,

one finds thaA andB point along the principal axes @f;; (v) A orthogonal ta/ andW with B collinear withWw,

with the greatest and the smallest eigenvalue, respectively, (v) B orthogonal toV andW with A collinear withV/
provided that these vectors are different from zero.

In terms of A, B, V, and W, the torque on the  (vi) B orthogonal tov andW with A collinear withW.
guadrupole (17) is given by

J— % (V-A)VxA-—(V-B)VxB The energy of the quadrupole can be expressed as

1
- (W-A)W x A+ (W-B)W x B] (21) U= —1—8[3(A-V)2+3(B-W)2 —3(A-W)?
and, assuming that all vectofs B, V, andW are different _3(B- V)2 — |AR[V] — [BP[W]?
from zero, from Eq. (21) one finds that there exdstequi-
librium orientations for the quadrupole, namely + |APIW 2 + BV (22)
(i) A collinear withV andB collinear withw, and, therefore, for each equilibrium orientation listed above,

| the energy of the quadrupole is

- %(2IA\2\VI2 +2[B*[W|* + |AP|W* + [B*[V[*) (AlV, B[ W),
- g (F2AAPIWI” = 2[BP*|V]* — [AP V] — [B]*|W?) (AW, B[ V),
- %(—ZIB\QIVI2 — |AP|V[® = B |W[* + |A] W) (A LV, WwithB [| V),
- %(2IBI2\WI2 — |AP|V + [APIW] + [BF|V[?) (A LV, Wwith B | W),
- %(2IA\2\VI2 — BF[W[* + AW + [B]*|V]?) (B LV, W with A [| V),
- %(—QIAIZIW\2 — [AP|V]? = [BP*|W|* + B]*|V]?) (B LV, Wwith A | W). (23)

Thus, the stable equilibrium orientation correspondA to
collinear withV andB collinear with\W, that s, the thombus  Jibrium orientations can be succinctly characterized in terms
with sidesa, b is coplanar with the rhombus with sidasv, of the principal axes of);; andG,;.
and the bisector od andb is collinear with the bisector af

andy Substituting Eq. (11) and an analogous expressioGfpr

into Eq. (18), one finds the torque on the quadrupole in terms
In other words, a quadrupole is in one of its six equi- Of the eigenvectors and eigenvaluesidf andG;;; the re-
librium orientations when each of the principal axes of thesulting expression readily shows that, when each eigenvector
quadrupole momen®;; coincides with one of the princi- Of Qi; is collinear with an eigenvector 6f;;, the torque van-
pa| axes of the gradient of the electric flanj The sta- ishes. However, such an eXpreSSion does not seem useful in
ble equilibrium orientations occur when the principal axis of Proving that these are all the equilibrium orientations, since
Qi; with the greatest eigenvalue coincides with the principafthe torque is a linear combination of the nine cross-products
axis of G;; with the greatest eigenvalue and, simultaneouslythat can be formed by multiplying each eigenvectofef by
the principal axis ofQ;; with the smallest eigenvalue coin- €ach eigenvector af;;. By contrast, in Egs. (17) and (21)
cides with the principal axis of';; with the smallest eigen- the torque is expressed in terms of four cross products only,
value. (From Egs. (10) we see that the energy of a quadrupolhich simplifies the search for the equilibrium orientations.
is invariant under the substitution efandw by their neg- Equation (6) shows that, apart from the facter/6, the
atives and therefore, given a stable equilibrium orientatiorenergy of the quadrupole for each equilibrium orientation is
of the quadrupole, another stable equilibrium orientation isa sum of products of the eigenvalues@f; by the eigen-
obtained by rotating the quadrupole through 180out the values ofG;;. In fact, from Egs. (16) and (19) we see that
normal to the rhombus with sidesandw.) Thus, the equi-  |V|? = 2\ +p and|W|? = —2u— ), with analogous expres-
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sions for|A|? and|B|?, in terms of the eigenvalues 6f;;; 3. Example
hence the values of the energy given in Eq. (23) are equiva-

lent to As an example of the foregoing results we shall consider the
L% ~ ~ Lon e - ~ field produced by a point chargg at the origin. The corre-
—sAA+pi+vr),  —g(AL+ pA+vp), sponding electrostatic potential is given by
—LO\a+pi+vN), =0+ pi+ o), 1 Q
~ ~ Y= >
—sON+ o +vii), —FOF + p+vii), dmeo 7

respectively, wherd,, ji, and# are the eigenvalues & and a straightforward computation yields [see Eq. (7)]

with A > 7 > fi. ) <3a:,;xj 5”,)

A simple alternative proof that the equilibrium orienta- Gij = (24)

tions of the quadrupole correspond to the coincidence of the

eigenvectors of);; and Gy is obtained as follows. If the (Note that we are not evaluating the derivatives at the ori-
matrix (1;;) is the product of the matrice€);;) and(Gij),  gin as in Eq. (7), but at an arbitrary poiit, y, z).) Owing
we have 3 3 to the spherical symmetry of the field, we expect one of the
M), = Zlele _ ZQﬂG’” eigenvectors of+;; to be in the radial direction, with two
=1 =1 degenerate eigenvectors tangential to the spheteconst.
(using the fact tha{G,;) is symmetric) and, according to A_s shown above, this degeneracy |mpl_|es thad collinear .
Eq. (18), with b (see Remark 2). In.fact, qqmpa_nson_of Eqg. (24) with
‘ Eqg. (9) shows that whe is positivea is antiparallel tab,
13 while if Q is negativea is parallel tob; thus, in the first case,
=3 Z €ijk Mjn, the eigenvector of7;; with the smallest eigenvalue points ra-
Jk=1 dially and, in the second case, the eigenvectd¥ gfwith the
which is equal to zero if and only {fZ;;) is symmetric. But ~ greatest eigenvalue points radially.
the product of two symmetric matrices is symmetric if and  We now consider a quadrupole formed by four point
only if the matrices commute, which happens if and only ifcharges,—q, ¢, —q, ¢ (with ¢ > 0), at the vertices of a
there is a basis formed by common eigenvectors of the twparallelogram. According to the preceding discussion, the
matrices. (This is the finite-dimensional version of the well-eigenvector of the quadrupole momepy; with the great-
known proposition employed in quantum mechanics whichest (respectively, smallest) eigenvalue bisects the angle of the
asserts that two observables commute if and only if there exparallelogram at the vertex occupied by one of the negative
ists a set of common eigenstates.) It should be noticed, howespectively, positive) charges. Taking into account the re-
ever, that these arguments cannot be applied in the case silts of the preceding paragraph, the equilibrium orientations
higher multipoles, since they are represented by objects witbf this quadrupole in the field of a point charge are those for
three or more indices. which the radial direction bisects one of the angles of the par-
We end this section with some remarks. All the results ofallelogram or is orthogonal to the plane of the parallelogram.
this section also apply in the case of a magnetic multipole irin the stable equilibrium orientation, the radial direction bi-
an external magnetic field. Making use of Eq. (2) we can als®ects the angle of the parallelogram at the vertex occupied by
find the force on an electri2’-pole; in the case of a dipole, one of the positive chargesdf > 0 or by one of the negative
one obtain& = p-VE, which, by virtue of Eq. (9), is equiv- charges ifQ < 0.
alenttoF = 1/2[(p-a)b + (p-b)a] — 1/3(a- b)p. The
torque on a&'-pole can be expressed in terms of theec-
tors representing the multipole and theectors representing Acknowledgment
the (I — 1)-th derivatives of the external field. On the other
hand, the force on &-pole can be expressed in terms of the
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