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Some statistical mechanical properties of photon black holes
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We show that if the total internal energy of a black hole is constructed as the sum ofN photons all having a fixed wavelength chosen to scale
with the Schwarzschild radius asλ = αRs, thenN will scale withR2

s. A statistical mechanical calculation of the configuration proposed
yieldsα = 4π2/ ln(2) and a total entropy of the systemS = kBN ln(2), in agreement with the Bekenstein entropy of a black hole. It is
shown that the critical temperature for Bose-Einstein condensation for relativistic particles ofλ = αRs is always well below the Hawking
temperature of a black hole, in support of the proposed internal configuration. We then examine our results from the point of view of recent
loop quantum gravity ideas and find that a natural consistency of both approaches appears. We show that the Jeans criterion for gravitational
instability can be generalised to the special and general relativistic regimes and holds for any type of mass-energy distribution.
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En este artı́culo estudiamos la relación entre la energı́a y la entroṕıa de un gas de fotones tipo cuerpo negro, contenido dentro de un recinto
adiab́atico de radioR, cuando es comprimido hacia un régimen auto–gravitacional. Mostramos que este régimen coincide aproximadamente
con el ŕegimen de un agujero negro para el sistema,i.e., R ∼ Rs, dondeRs representa al radio de Schwarzschild del sistema. La entropı́a
del sistema resulta estar siempre por debajo de la cota Holográfica, incluso cuandoR → Rs. Una posible configuración cúantica para el gas
de fotones aR → Rs se sugiere, la cual satisface todas las condiciones de agujero negro para la energı́a, entroṕıa y temperatura. Finalmente,
examinamos nuestros resultados desde el punto de vista de algunas ideas recientes de Loop Quantum Gravity.

Descriptores: Fı́sica de agujeros negros; agujeros negros classicos; aspectos cuánticos de agujeros negros; evaporación; termodińamica.

PACS: 04.70.-s; 04.70.Bw; 04.70.Dy

1. Introduction

In general, black holes are defined uniquely by their mass, an-
gular momentum and charge (cf. [1]). In this paper we shall
deal exclusively with Schwarzschild black holes, where the
angular momentum and charge are both zero. These black
holes of massM are understood as systems defined uniquely
by the conditionR ≤ Rs and have the following properties:

Rs =
2GM

c2
, (1)

S

kB
=

ABH

4AP
, (2)

TBH =
hc

8π2kBRs
. (3)

Equation (1) defines the Schwarzschild radius in terms of the
mass. Relation (2) establishes the entropyS of the system
as 1/4 of the horizon areaABH = 4πR2

s, in units of the
Planck areaAP = ~G/c3. Equation (3) states that the black
hole radiates as a black body of the given temperatureTBH .
This emission process implies a loss of energy for the system,
which results in an evaporation rate for the black hole given
by: dM/dt ∝ (~c4/G2)M−2.

Notice thatdS/dM = (c2T )−1, fixing the internal en-
ergy of the black hole asU = Mc2. Equation (1) has been
about in speculative form since the 18th century, and was
given a firm theoretical footing within the framework of gen-
eral relativity during the 1930s. Equations (2)-(3) are the
result of the vigorous development in black hole thermody-
namics of the 1960s and 1970s by various authors, notably
Bekenstein and Hawking (cf. [2] and references therein).

It has been suggested (e.g.[3-5] for a review) that for any
physical system, Eq. (2) should hold always, with≤ replac-
ing the equality, which in turn should hold only in the black
hole regime. This is termed the holographic principle, from
the fact that the information content of an object would be
limited not by its 3D volume, but by its 2D bounding sur-
face. The interesting connection implied between quantum
mechanics throughAP and gravity through the particle hori-
zon, has raised the hope that the validity of the holographic
principle would yield important clues regarding quantum the-
ories of gravity. In this sense, even a heuristic study as to the
possible origin of this principle should prove valuable.

We study the behaviour of a classical black body photon
gas as it is compressed into a black hole, and propose a sim-
ple model for such a system using only photons confined to
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the Schwarzschild radius at their lowest possible momentum
level. Two parameters determine the model, with a restric-
tion only on the product of both of them. A formal statisti-
cal mechanical calculation is given through which these pa-
rameters are determined, leading to agreement with all black
hole structural properties of Eqs. (1)-(3). The study of a self–
gravitating photon sphere (a geon) was first introduced by
Wheeler [6] in 1955. Considerable development in this area
has taken place since then related to different physical prop-
erties of boson stars (seee.g.[7,8]) and their stability.

Given recent proposals of a physical model for a black
hole interior within the framework of loop quantum grav-
ity [9], we analyse our model in this context. Taking the
view that the Bekenstein entropy has a statistical mechani-
cal origin in terms of counting states on the surface defined
by the Schwarzschild radius of a black hole, canonical quan-
tum gravity has yielded scenarios in which this entropy can
be derived from first principles. We find no inconsistencies
with the quantum gravity approach, which in fact allows us
to explicitly and independently re-evaluate the parameters in-
troduced in the quantum simple model, obtaining the same
results.

2. Classical Limit

Most of the material in this section can be found elsewhere,
e.g.[10]; it is reproduced here for context. For a photon gas
having a black body spectrum the following well known re-
lations define the total electromagnetic energyEEM and en-
tropyS in terms of the volume and temperature:

EEM =
π2

15
(kBT )4

(~c)3
4πR3

3
, (4)

S

kB
=

4π2

45
(kBT )3

(~c)3
4πR3

3
, (5)

for a spherical region of radiusR.
If we think of an ideal adiabatic wall enclosing this spher-

ical region, we immediately obtain the well known scaling of
T ∝ R−1, and we can eliminate(kBT ) from Eq. (4) in favour
of S andR to obtain

E = C
~c
R

(
S

kB

)4/3

, (6)

whereC is a numerical constant of order unity. If we think
of the contraction as proceeding into the black hole regime,
we can think of the radius as reachingRs, which in this case
would yield

Rs =
2GEEM

c4
. (7)

To obtain Eq. (7) we have used Eq. (1), replacingM by
EEM/c2. Substitution ofEEM from Eq. (6) into Eq. (7)
leads to (

S

kB

)4/3

= C ′
ABH

Ap
, (8)

whereC ′ is a numerical factor of order unity. Two interesting
conclusions are immediately evident from this last equation.
Firstly, it is obvious that for any black body photon gas hav-
ing Rs > Rp, a Schwarzschild radius larger than the Plank
length, the holographic principle will be valid throughout the
contraction process, as the horizon area will always be greater
thanABH . Second, that the classical equations for the diluted
photon gas, Eqs. (4) and (5), cannot be valid in the black hole
regime, since the required relationship for the entropy of such
an object is Eq. (2) and the exponent of Eq. (8) is4/3 and
not1. The inconsistency of Eq. (8) with Eq. (2) indicates that
physical processes which the system being modelled surely
experiences, such as pair creation at high temperatures and
quantum effects related to the dimensions of the system be-
ing comparable to the typical de Broglie wavelengths of the
photons, are not been taken into account by the classical de-
scription of the photon gas through Eqs. (4) and (5). So far,
we have assumed that the photon gas was being compressed
by some external agency; however, if it is to form a self grav-
itating object, an equilibrium configuration should exist, and
possibly a collapse beyond this. This point can be estimated
by evaluating the Jeans lengthRJ of the problem for a speed
of soundvs = c/

√
3,

RJ =
c

(3Gρ)1/2
. (9)

In this context, the mass densityρ is equivalent to
EEM/V . Notice that Eq. (9) is derived directly from Ein-
stein’s equations, where the pressure term is directlydE/dV ;
hence no assumption of particle interactions is being made
(see the appendix for details on this). From Eq. (9) we see
that sinceρ scales withT 4, RJ will scale withT−2, which
is interesting given that under adiabatic conditions the radius
of the system will scale withT−1. This means that gravita-
tional instability will occur, i.e.R > RJ above a certain crit-
ical temperature, below a certain critical equilibrium radius
Rc. The situation becomes increasingly unstable in going to-
wards smaller radii and larger temperatures. In general, for a
fluid of mass-energyM , radiusR and sound speedvs,

RJ = vs

(
4πR3

3GM

)1/2

, (10)

which expressing M in terms of the Schwarzschild radius
through Eq. (1) reads

RJ =
(

8π

3

)1/2
Rvs

c

(
R

Rs

)1/2

.

If we take the critical conditionR = RJ , the previous rela-
tion gives

RJ

Rs
=

(
3
8π

)(
c

vs

)2

. (11)

Equation (11) shows that, since for all non–relativistic
systemsvs ¿ c, we should expectRJ À Rs. Indeed, for
most astrophysical applications, the Jeans radius of a system
is many orders of magnitude larger than the Schwarzschild
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radius. However, in going to a relativistic fluid, the condi-
tion vs ' c will apply, leading toRJ ' Rs. In other words,
the self-gravitating regime will appear only close to the black
hole regime. For the adiabatic photon gas we have studied,
taking vs = c/

√
3 and Eqs. (4), (5), and (9), in correspon-

dence with Eq. (11) we obtain alsoRJ ' Rs. This last
result shows that the self-gravitating regime for the photon
gas we have studied does not appear until one is very close
to the black hole regime, at scales where the analysis leading
to Eq. (8) already showed that the structure equations for the
gas (4) and (5) are no longer valid. In any case, the analy-
sis following Eq. (9) together with Eq. (11), strongly sug-
gests that any self-gravitating photon gas will be very close
to catastrophic collapse and black hole formation.

The above results are in fact valid in the regime where
the self-gravity of the radiation field is important, as shown
by [10]; instability sets in forR < 2Rs, but equilibrium max-
imum entropy configuration exists above this radius, which
however also show the scaling of Eq. (8), [c.f. their results
following their Eq. (41)].

3. Quantum limit

The gravitational collapse and transition between the classi-
cal regime of Sec. 2 and a black hole will not be treated ex-
plicitly. Advances in that direction can be found for example
in Refs. 10 to 12.

Being subject to the extreme gravitational regime ofR →
Rs, it is reasonable to expect that the photons will be highly
limited in momentum space. At this point we introduce as a
hypothesis that all photons will have a wavelengthλ = αRs,
with α a numerical constant. We can evaluate the internal
energy of the system as:

EEM =
Nhc

αRs
, (12)

whereN is the total number of photons. Establishing a corre-
spondence betweenEEM and the internal energy of a black
hole asEEM = Mc2, and using Eq. (1) to expressM in
terms ofRs, the above expression yields:

N =
α

16π2

ABH

Ap
. (13)

If we think of a correspondence between the total en-
tropy of the system and the total photon number given by
S/kB = βN , with β a proportionality constant expected to
be of order unity, we find by comparison with Eq. (2) that the
configuration we propose will satisfy all required black hole
properties if the conditionαβ = 4π2 is satisfied.

We can computeβ directly by calculating the entropy of
the proposed system from first principles, through the ther-
modynamic potentialΩ given by:

Ω = kBT
∑

k

ln
(
1− e[µ−εk]/kBT

)
, (14)

where the summation is over quantum states,µ is the chem-
ical potential, andεk is the energy of thek − th state. Since
the total number of components of the system is given by:

N =
∑

k

(
1

e[εk−µ]/kBT − 1

)
, (15)

and given that in the system proposed all photons have the
same energy, we can write

N =
N

e[ε−µ]/kBT − 1
. (16)

Note that each photon is assumed to be in a distinct detailed
quantum level, and hence the analogy with a condensate is
not complete. Now,

[ε− µ]/kBT = ln(2), (17)

which when substituted back into Eq. (14) gives:

Ω = −kBTN ln(2). (18)

This last result now yields the entropy for the system
throughS = −∂Ω/∂(kBT )|V,N asS = N ln(2), provid-
ing a justification for the assumption ofS/kB = βN made
above, in terms of simple statistical physics arguments. We
hence obtainβ = ln(2) andα = 4π2/ ln(2). Note that the
previous results are of general validity for bosons; the case of
photons is obtained withµ = 0.

We also note that given the restriction of a fixed total in-
ternal energy, according to the hypothesis that this is to be
the sum of the energies ofN photons, the maximum entropy
state will be the one with the most photons. In that case, all
photons are at their lowest possible energyλ = αRs. Hence,
the configuration proposed is also a maximum entropy state
and is suggestive of a micro–physical origin for black hole
entropy.

It has been argued [13] that the shortest scale that can en-
ter into any physical theory is the Planck length. Although
so far we have been working under the assumption of macro-
scopic black holes, we can extrapolate to the very small scales
as follows. In the context of the ideas presented here a natu-
ral lower limit for the Schwarzschild radius of order the Plank
length appears by settingN = 1 in Eq. (13), a single photon
black hole. The energye associated to this single photon is
e ≈ ~c/(Gh/c3)1/2 ≈ 1028 eV.

Note that using Eq. (1) to substituteM for Rs in Eq. (13)
gives the following quantisation for the massMN of a black
hole in units of Planck mass:

MN

mp
=

(π

α

)1/2

N1/2, (19)

wheremP = (~c/G)1/2, a quantisation suggested already
by Bekenstein’s entropy equation (2). For sufficiently small
black hole masses, this equation suggests a discrete spectrum
associated with the transitionsN = 1 → 0, N = 2 → 1,
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etc. The change in mass∆MN corresponding to a∆N = 1
transition is given by

∆MN = MN





[
1 +

π

α

(
mP

MN

)2
]1/2

− 1



 . (20)

In the limit of a macroscopic black hole, where
MN À mp, the above equation implies that

∆MN

mP
=

π

2α

mP

MN
. (21)

It is interesting to note thatc2∆MN approximately corre-
sponds tokBTBH for a black hole massMN .

If we now identify the time scale∆t for the mass loss
∆MN to take place with the limit of the Heisenberg uncer-
tainty principle, we can set up∆t ∼ ~/c2∆MN . Under the
above considerations, the mass evaporation rate for a black
hole is

∆MN

∆t
∝ ~c4

G2

1
M2

N

, (22)

which is within a numerical constant of the standard evapo-
ration rate for a black hole [2], seen here as the macroscopic
limit of an intrinsically quantum process.

If the structure of the photon configuration we are de-
scribing is in any way related to quantum phenomena akin
to Bose-Einstein condensation, we should expect the temper-
ature to lie well below the critical temperatureTc for Bose-
Einstein condensation. This, for relativistic particles, can be
calculated in an analogous way to well-known Bose-Einstein
critical temperatures for non-relativistic particles (e.g.[14]),
by integrating the expression

dN =
gV p2dp

2π2~3
[
e(ε−µ)/kBT

] , (23)

for µ = 0, g = 2 (photons) and in this caseε = pc, giving

N =
V (TckB)3

π2~3c3

∞∫

0

z2dz

ez − 1
,

wherez = ε/(kBT ). Evaluation of the above integral yields
2.202 and so, usingV = (4π/3)R3

s, leads to

N =
(

8.808
3π

)
R3

s(TckB)3

(~c)3
. (24)

If we now use the expression forN in Eq. (13), and writ-
ing Tc in units ofTBH for a black hole of radius equal to the
Planck lengthRp, which correspond to a temperatureTBHp,
we get (

Tc

TBHp

)3

=
(

6π3

1.101

)
αRp

Rs
, (25)

which for α = 4π2/ ln(2), as determined through the statis-
tical mechanical calculation shown above, yields,

(
Tc

TBHp

)
= 21.3

(
Rp

Rs

)1/3

. (26)

FIGURE 1. The solid line shows the black hole temperature, in
units of this quantity for a black hole having a Schwarzschild radius
equal to the Planck length, as a function of the Schwarzschild ra-
dius, in units of the Planck length. The dotted line gives the critical
temperature for Bose-Einstein condensation of photons in a black
hole, Eq. (26), in the same units as the solid curve, as a function of
the same quantity.

As Tc scales withR−1/3
s andTBH scales withR−1

s , it is
clear that for all black holes larger than a certain limit, the
conditionTBH ¿ Tc will be satisfied. A comparison of both
temperatures is shown in Fig. 1, as a function ofRs, from
which we see thatTc is already over an order of magnitude
greater thanTBH at Rs = Rp. Any realistic black hole will
be at a temperature much lower than the critical temperature
for Bose-Einstein condensation for photons, showing the in-
ternal consistency of the model.

The physics described so far is clearly highly idealised,
however in a core collapse process within a massive star, as
for the central regionR → Rs, the typical speeds andvs of
the constituent particles must necessarily tend toc, with de
Broglie wavelengths not greater than the Schwarzschild ra-
dius.

At this point, quantum effects similar to Bose-Einstein
condensation could take place, packing all (or most) pho-
tons into the lowest energy state. In this sense, typical wave-
lengths of the order of the Schwarzschild radius would be
expected, as longer wavelengths would be prohibited by the
containment imposed by gravity, and shorter wavelengths
would imply an expansion in momentum space. In this sense,
the identification we have maintained of the constituent par-
ticles as photons is shown to be largely arbitrary, and any rel-
ativistic bosons will yield essentially identical conclusions.
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4. Loop quantum gravity approach

We now explore the ideas of the previous sections within the
framework of loop gravity. In particular, we shall see that this
allows us an independent re-evaluation of the constantsα and
β established in the last section, with the aid of some general
results from loop quantum gravity.

The loop quantisation of3 + 1 general relativity is de-
scribed in terms of a set of spin network states which span the
Hilbert space on which the theory is based. These spin net-
work states are labelled by closed abstract graphs with spins
assigned to each link and intertwining operators assigned to
each vertex.

A recent result that follows from the theory is that if a sur-
faceΣ is intersected by a link̀i of a spin network carrying
the labelji, it acquires an area [15,16]

AΣ(ji) = 8πApγ
√

ji(ji + 1), (27)

whereγ is the Immirzi parameter.
Let us now consider for our purposes that the horizonΣ is

intersected by a large numberN` of links. Each intersection
with Σ represents a puncture. In the limit of largeN`, one
can say that each puncture is equipped with an internal space
Hj (the space of all flatU(1) connections on the punctured
sphere) of dimension [17]

dim Hj = 2j + 1. (28)

Each puncture of an edge with spinj increases the di-
mension of the boundary Hilbert space by a factor of2j + 1.
Under these considerations, it follows that the entropy can be
calculated by

S(jp) = ln

(∏
p

dim Hjp

)
. (29)

Statistically, the most important contribution comes from
those configurations in which the lowest possible spinjmin

dominates, so we can write the entropy (29) as

S(jmin) = N` ln(2jmin + 1), (30)

whereN` is given by

N` =
ABH

AΣ(jmin)
. (31)

Due to the fact that the assumed gauge group of loop
quantum gravity is SU(2), then it follows thatjmin = 1/2,
and so the Immirzi parameter is given by [16]

γ =
ln 2
π
√

3
, (32)

and (31) becomes

N` =
1

4 ln 2
ABH

Ap
. (33)

The number of linksN` associated with the particles we
are dealing with in this article must be proportional to the
number of particlesN . The simplest possible configuration
is the one in which the proportionality factor is equal to unity,
and so

N` = N. (34)

Using this relation and Eqs. (13) and (33), we can evaluateα
to obtain

α =
4π2

ln 2
. (35)

The parameterβ previously defined through the rela-
tion S = βN can now be re-derived independently through
Eq. (30) to yield:

β =
N`

N
ln(2j + 1)j=1/2 = ln 2. (36)

From (35) and (36) we can see that the product
αβ = 4π2, as required by the considerations on Sec. 3. It is
interesting that the model proposed in the previous sections
is seen not to be in conflict with a loop gravity approach,
which indeed allows us to re-evaluate the scaling parameters
introduced earlier independently, and in accordance with the
expectations of the physics discussed above.

5. Conclusions

A photon gas contained within an adiabatic enclosure will
satisfy the holographic principle, at least until just before
reaching the black hole regime, which approximately coin-
cides with the self-gravitating condition and where the clas-
sical description is no longer valid.

A configuration where all photons have the same energy
within R = RS can be constructed to satisfy all black hole
conditions.

This configuration gives rise to a discrete evaporation
spectrum forRS close to the Planck length, and in the macro-
scopic limit permits a re-derivation of the standard black hole
evaporation rate.

Our results are consistent with the loop quantum gravity
scheme, satisfying the constraints required to be in agreement
with the Bekenstein-Hawking entropy for a black hole.

A comparison of both regimes studied is highly sugges-
tive of a heuristic proof of the holographic principle, as any
real system would require an increase in entropy (at fixed en-
ergy and volume) to be turned into the photon gas we have
studied.
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A Relativistic Jeans criterion for gravitational
instability

In order to show that the Jeans gravitational instability limit
is valid in the general relativistic regime, let us proceed as
follows. The condition of hydrostatic equilibrium in general
relativistic fluid mechanics is obtained by using the fact that
the field is static. This means that one can describe the prob-
lem in a frame of reference in which the fluid is at rest, with
all hydrodynamical quantities independent of time. This also
implies that the mixed space and time components of the met-
ric tensor are null. Under these assumptions, the equation of
hydrostatic equilibrium is then given by [18]

1
w

∂p

∂r
= −1

2
∂

∂r
log g00, (A.1)

where g00 is the time component of the metric tensor,
w=e+p is the enthalpy per unit volume,e the internal en-
ergy density andp the pressure. Oppenheimer & Volkoff [19]
showed that Eq. (A.1) can lead to the form [20]

dp

dr
= − (e + p)

r
(
r − 2GM(r)

c2

)
{

GM(r)
c2

+
4π

c2
Gr3ρ

}
, (A.2)

where the mass-energyM(r) within a radiusr is given by

M(r) = 4π

r∫

0

ρ r2 dr, (A.3)

and ρ(r) := e/c2 is the mass–energy density of the fluid.
Note that for the case of relativistic and non–relativistic dust
particles,M(r) represents the mass of particles within ra-
diusr. For the case of a photon gas,M(r) is the mass corre-
sponding to the internal energy.

We now assume that the plasma obeys a Bondi-Wheeler
equation of state

p = (κ− 1) e, (A.4)

with constant indexκ. This means that the sound velocity
vs is given by the relationv2

s = c2 (κ− 1), and so, the left
hand side of Eq. (A.2) can be written as

(
v2

s /c2
)

de/dr. Seen
in this way, the left hand side of Eq. (A.2) no longer repre-
sents gradients of pressure which are in balance with self–
gravitational forces related to the plasma. Indeed, the balance
with the gravitational forces produced by the plasma is now
related to the gradients of its proper internal energy densitye
by

(κ− 1)
de

dr

= − ke

r
(
r − 2GM(r)

c2

)
{

GM(r)
c2

+
4π

c2
Gr3ρ

}
. (A.5)

Let us now take the absolute value on both sides of
Eq. (A.4), to the order of magnitudede/dr ≈ e/r and
M(r) ≈ (4/3)π r3 ρ. A gravitational instability occurs
when the absolute value of the left hand side of Eq. (A.2)
[or equivalently Eq. (A.5)] is less than the absolute value of
its right hand side. Using all the above statements, it fol-
lows that this instability occurs when the radial coordinater
is such that

r &
√

3
8π (3κ− 1)

vs√
Gρ

:= ΛJ. (A.6)

The quantityΛJ on the right hand side of Eq. (A.6) is
of the same order of magnitude as the standard Jeans length
used in non-relativistic fluid dynamics. In other words, the
criterion (A.6) means that the Jeans criterion for gravitational
collapse is also valid in the relativistic regime as well.

For the particular case studied in this article, the constant
κ = 4/3 for a photon gas and the Jeans criterion can be ap-
plied to it, givingr &

(
1/2

√
2π

)
vs/
√

Gρ .
We see than the Jeans criterion can be generalised be-

yond an equilibrium between gas pressure and rest–mass
self–gravity, to a very general equilibrium between energy–
momentum flux and total self–gravity.
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