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Irradiance transport equation from geometrical optics considerations
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A general equation for the propagation of phase and irradiance is derived within the geometrical optics regime. The starting point is Poynting’s
theorem together with the representation of the Poynting vector in the eikonal approximation. It is shown that the irradiance transport equation
is a particular case of a more general conservation equation and is valid in the paraxial regime. An analysis of the range of validity of the
irradiance transport equation is performed.
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Se deriva una ecuación general para la propagación de la fase y la irradiancia dentro del régimen de láoptica geoḿetrica. Se comienza con el
teorema de Poynting junto con la representación del vector de Poynting en la aproximación eikonal. Se muestra que la ecuación de transporte
de irradiancia es un caso particular de una ecuación de conservación más general y es valida en el régimen paraxial. Se realiza un análisis
sobre el rango de validez de la ecuación de transporte de irradiancia.

Descriptores: Ecuacíon de transporte de irradiancia; sensor de frente de onda;óptica geoḿetrica.

PACS: 42.15.-i; 42.15.Dp; 42.25.-p; 42.25.Bs

1. Introduction

The irradiance transport equation (ITE) is usually obtained
by assuming that the amplitude of light, which propagat-
ing mainly in one direction, approximately satisfies the
parabolic equation [1,2]; this equation can be obtained from
the Helmholtz equation [1]. The ITE is used in many
schemes for recovering the phase from irradiance mea-
surements, without using interferometric techniques [1-4].
In addition, this transport equation is the basis for cur-
vature wavefront sensing methods [5,6]. The ITE relates
the phase in a plane orthogonal to the optical axis to
the rate of change of the beam intensity along the prop-
agation direction, assuming a paraxial beam described by
ψ(x, y, z) = [I(x, y, z)]1/2 exp[iφ(x, y, z)], where
I(x, y, z) is the irradiance, andφ(x, y, z) is the phase. In
terms of the wavefrontW (x, y, z), the phase is given by the
relationφ(x, y, z)=(2π/λ)W (x, y, z)=kW (x, y, z), and
the ITE states that

∇T · [I (x, y, z)∇T W (x, y, z)] = − ∂

∂z
I (x, y, z) , (1)

where∇T ≡ ∂/∂x x + ∂/∂y y is the nabla operator in the
x − y plane, andz is the direction of the beam propaga-
tion. This equation was derived for light propagating mainly
in one direction (i.e. the components of the wave vectork
satisfy the conditionkx, ky ¿ kz) [1-4]. In recent work [7],
a more general transport equation applicable to inhomoge-
neous transparent media in the paraxial approximation has
been obtained; here Eq. (1) is presented as a particular case
of a homogeneous medium. More recently [8], the ITE has
been derived from a subset of a basic equation used for find-
ing the direction of the phase gradient; this basic equation
comes from the imaginary part of the Helmholtz equation.

In general, the derivation of the ITE from physical optics
considerations requires many approximations based on the
Helmholtz equation [1,2], and apparently, in the mind of re-
searchers it is a physical optics equation.

In this work the correlation between the phase and the ir-
radiance will be developed from a geometrical optics point of
view. It is important to point out that the derivation of the ITE
using the representation of Poynting’s vector in the eikonal
approximation (λ → 0) has not been previously developed.
With this approach, we shall show that the ITE, which has
been obtained based on the physical optics regime [1-8], is
valid in the geometrical optics limit. For this, in Sec. 2,
we establish the relation between the eikonal equation and
Poynting’s vector; then, considering the conservation law of
the radiant energy, we obtain a general equation for irradi-
ance and the phase from a geometrical optics point of view.
Next, in Sec. 3, from the general equation relating intensity
and wavefront (or phase), the ITE that gives the propagation
of phase and intensity is obtained; here, the conditions that
the wavefront must fulfill to satisfy the ITE are analyzed. Fi-
nally, in Sec. 4 conclusions are presented. It is important to
point out that this work is part of the B.Sc. thesis of one of
the authors [9], and here it is presented in an ordered way.

2. Correlation between phase and intensity

A wavefrontW (x, y), propagating along thez-direction ex-
periences a change in both its phase and its amplitude (or
irradiance). For an isotropic and a non-conducting medium,
the geometrical light rays are defined as the orthogonal trajec-
tories to the wavefrontW ; they coincide with the direction of
the average Poynting vector. In a plane perpendicular to the
wavefront propagation, a spatial distribution of the intensity
is obtained due to the divergence and convergence of the rays
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along the observation plane (Fig. 1); this intensity distribu-
tion gives information about the curvature of the wavefront.

In order to know the relationship between the phase and
the intensity from the geometrical optics point of view, we
consider a small portion of the wavefrontδW and assume
uniform intensity. In this case, the marginal raysM , the area
δW , and a small areaδA on the detection plane bound a vol-
umeΩ in space (Fig. 2). Inside this region, a unit vectorm
along the propagation direction of the averaged flux energy is
given by

m = ∇W (x, y)/|∇W (x, y)| (2)

wherem is a unit vector orthogonal to the wavefrontδW ,
and∇ ≡ ∂/∂x x + ∂/∂y y + ∂/∂z z, is the three-dimensional
nabla operator.

In optics, the averaged Poynting vector is a quantity of
great interest because its magnitude is a measure of the light
intensity or irradiance, and its direction represents the direc-
tion of propagation of the light. For time-harmonic fields it
can be shown that [10]

〈S〉 =
c

8π
Re (E×H∗) . (3)

For an isotropic medium we have that〈S〉 = 〈S〉m, which
establishes a relationship between the wavefront and the geo-
metrical rays. From Poynting’s theorem [10] it can be shown
that the average energy flux passing through a closed surface

FIGURE 1. The intensity distribution on the detection plane gives
information about the wavefront shape.

FIGURE 2. Radiant energy flux through the regionΩ.

∂Ω, enclosing a volumeΩs is zero:

∫

∂Ω

〈S〉 · n ds =
3∑

i=1

∫

∂Ω

〈S〉m · ni ds = 0, (4)

where∂Ω = {δW , M , δA}, andni (i = 1,2,3) is the outward
normal to∂Ω. Here the energy flowing in across the bound-
ary surfaces of the volume per unit time is equal to the energy
flowing out through the boundary surfaces of the volume per
unit time. Or, equivalently,

∇ · 〈S〉 = 0. (5)

Thus, Eq. (5) shows that radiant energy is conserved.
This is true for a non-conducting medium (σ = 0) where no
mechanical work is done;i.e., it is valid for regions where
there are no free charges or other singular points such as point
sources or ray caustics.

On the other hand, it is well known that the eikonal equa-
tion [11,12], which describes the behavior of light rays in
geometrical optics, is given by

(∇W )2 = n2, (6)

or, equivalently [11], by

∇W = n m, (7)

wheren is the refractive index, andm is the propagation unit
vector given by Eq. (2). This expression relates the wave-
front and the geometrical rays. Since the average Poynting
vector is in the direction of the normalm to the geometrical
wavefront, and its magnitude is equal to the product of the
average energy density〈u〉 and the velocityv, we have

〈S〉 = v 〈u〉m. (8)

This equation shows that the average energy density is
propagated with velocityv along them-direction within the
accuracy of geometrical optics [11].

The intensity of the light is defined as the magnitude of
the average Poynting vector. Therefore, we have from Eq. (8)
that

I ≡ |〈S〉| = v 〈u〉 . (9)

Then, from Eqs. (6)-(9), the average Poynting vector can
be written as

〈S〉 = I
∇W

n
, (10)

which gives the relation between the eikonal equation and the
average Poynting vector. Substituting Eq. (10) into the con-
servation law (5) leads to

∇ ·
(

I
∇W

n

)
= 0, (11)

which has been obtained completely within the geometrical
optics limit.

Equation (11) is equivalent to that obtained from the gen-
eral form of Poynting’s vector in terms of amplitude and
phase variables for a linearly polarized wave propagating
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in an inhomogeneous transparent medium [7]. In addition,
Eq. (11) can be obtained directly from the Helmholtz equa-
tion by rewriting the phase in terms of the optical path [8],
i.e., φ(x, y, z) = kW (x, y, z).

Assuming a homogenous medium, Eq. (11) may also be
written as

I∇2W +∇W · ∇I = 0, (12)

where∇2 ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian op-
erator. This formula gives us a general relationship between
the phase and the intensity for a monochromatic wave prop-
agating in a homogeneous non-conducting medium, and it is
valid within the geometrical optics limit.

3. Propagation of phase and irradiance

To obtain the expression that gives the propagation of the
phase and intensity (i.e. the explicit dependence with thez-
direction coordinate), we rewrite Eq. (12) in terms of the
nabla operator∇T in thex− y plane:

I∇2
T W + I

∂2

∂z2
W +∇T W · ∇T I +

∂

∂z
I

∂

∂z
W = 0. (13)

If the following conditions on the wavefront are satisfied
∣∣∣∣

∂

∂z
W

∣∣∣∣ ≈ 1, (14)

and ∣∣∣∣
∂2

∂z2
W

∣∣∣∣ ¿
∣∣∇2

T W
∣∣ , (15)

then Eq. (13) reduces to the ITE [Eq. (1)]:

I∇2
T W +∇T W · ∇T I +

∂

∂z
I = 0. (16)

This equation was derived by other authors from the
physical optics point of view [1,2], but in this work we have
obtained it entirely within the geometrical optics regime.

An important application of the solutions of the
ITE [6,13] is in optical metrology. For the testing of optical
surfaces or systems, the wavefront of a light beam reflected
from or transmitted through an optical system can be deter-
mined from irradiance measurements through the ITE. In this
case, we consider a flat detection surface, because in many
cases optical metrology measurements are performed with a
planar sensor; it can, however, be properly generalized. If we
assume a plane sensor defined by thexy-plane, and the light
propagates mainly in thez-direction, the phase of the beam
can be written as

φ (x, y, z) = φT (x, y) + kz, (17)

where φT (x, y) denotes the phase in the sensor plane.
Considering that the phase is given byφ = kW , then,
Eq. (17) fulfills the conditions in Eqs. (14)-(15), provided
that∇2

T W 6= 0. In general, Eq. (17) for the phase of the
beam can be satisfied in an almost collimated laser beam, or
in the far-field of scattered light [8].

Another important case that fulfills the condi-
tions (14)-(15) is the aberrated wavefront [14],W (x, y, z),
propagating in thez-direction. It is given by

W (x, y, z) = A
(
x2 + y2

)2
+ By

(
x2 + y2

)

+C
(
x2 + 3y2

)
+ D

(
x2 + y2

)

+Ey + Fx + G + z, (18)

whereA is the spherical aberration,B coma,C astigmatism,
D defocusing,E tilt in x, F tilt in y, andG piston coeffi-
cients; it is assumed that not all the aberration coefficients
are null at the same time. According to the ITE [Eq. (1)], the
aberrated wavefront experiences a change in both its intensity
and its phase as it propagates along thez-axis.

If we consider a monochromatic plane wave that propa-
gates in the direction given byk = kx x + ky y +kz z, its
wavefront is given by

W (x, y, z) =
kx

k
x +

ky

k
y +

kz

k
z, (19)

wherek = |k|; then, in order to fulfill conditions (14)-(15),
we must have thatk2

z À k2
x + k2

y. This means that the plane
wave must propagate along (or almost along) thez-direction.

Finally, for a spherical wavefront,

W (x, y, z) =
(
x2 + y2 + z2

)1/2
; (20)

the conditions on the wavefront in Eq. (14)-(15) lead to
z2 À x2 + y2, andz > 0. Thus, the wave must propa-
gate mainly in thez-direction and we have to stay very near
thez−axis in the far field (paraxial approximation).

4. Conclusions

Based on Poynting’s theorem together with Poynting’s vec-
tor in the geometrical optics limit, an analytical general con-
servation expression has been obtained; this expression re-
lates the phase and the intensity of a monochromatic field. In
all the calculations we assume that the monochromatic field
propagates in a homogeneous, isotropic, and non-conducting
medium. The ITE has been obtained from the conserva-
tion equation for the same kind of medium, under conditions
given by Eqs. (14)-(15). By examination of some examples
we concluded that the wave must propagate mainly in thez-
direction and the measurements must be done very near the
z-axis. This means that the ITE is valid in the geometrical
optics paraxial regime, where the optical path functionW
satisfies the eikonal equation.

Even though the ITE can be obtained from the physical
optics point of view, in this work it has been shown that only
geometrical optical considerations are sufficient to deduce it.
This approach gives us an easy picture of the relation between
the irradiance distribution and the wavefront. However, if
we want to study the propagation of monochromatic fields
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in an inhomogeneous media [7] or to know the phase gradi-
ent of monochromatic fields by means of three-dimensional
intensity distributions [8], it is necessary to consider more
general developments where the ITE is a particular case of
them. Nevertheless, this approach will be enough if we re-
quire the ITE for optical metrology measurements, fulfilling
conditions (14)-(15).
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