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Applying the Sarlet-Bahar method one obtains the invariant of equations of motion of the type
..
ρ + ω2(t)ρ/2 = α(t)F (β(t)ρ). The corre-

sponding auxiliary equation for the Ermakov system is also obtained, and the results obtained by other authors are generalized.
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Aplicando el ḿetodo de Sarlet-Bahar, se obtiene el invariante para ecuaciones de movimiento del tipo
..
ρ + ω2(t)ρ/2 = α(t)F (β(t)ρ).

Tambíen se obtiene la ecuación auxiliar correspondiente al sistema de Ermakov y se generalizan los resultados obtenidos por otros autores.
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1. Introduction
Finding a constant of motion is very important when one
studies dynamical systems. To achieve this goal, Noether’s
theorem is a helpful formalism because it provides links be-
tween the symmetries of the physical laws inherent to the ac-
tion functional and the corresponding constants of motion of
the system. The importance of an integral of motion lies in
the fact that it reduces the order of the equation of motion and
provides information about the underlying physical system;
of course, the existence of a second integral of motion would
imply the complete integration of the differential equations
which describe the physical system [1]. Sometimes, the La-
grangian does not possess any obvious symmetry but through
Noether’s theorem one can force the Lagrangian to admit a
symmetry transformation [2]. Otherwise, applying Noether’s
theorem to a Lagrangian one can find the corresponding Er-
makov system, which is generally defined as a system of two
coupled differential equations (one of which is the equation
of motion and the other one is known as the auxiliary equa-
tion) and an invariant, Rayet al. [3, 4]. In his treatment, Er-
makov assumed that the frequencyω(t) is a function of time
only, and left open the problem of how to find the auxiliary
equation [5]. With regard to this question, Sarletet al. [6]
presented a simple direct method for the construction of first
integrals for second order Newtonian systems. Their method
consists in trying to construct a first integral by multiplying
the equation of motion by an appropriate integrating factor.
Additionally, this procedure provides a beautiful mechanism
for finding the auxiliary equation as well. In the present pa-
per, we show an application of the Sarlet-Bahar method to a
non-linear equation of motion and generalize the results ob-
tained by Rayet al. [7].

The outline of the paper is as follows: in Sec. 2, using the
Sarlet-Bahar method, the auxiliary equation and the invariant

are obtained. For that, we follow the Rayet al. procedure
described in paper [7]. In Sec. 3 the results are discussed,
and we point out our conclusions.

2. The Sarlet-Bahar Method
To illustrate the Sarlet-Bahar method we begin with the equa-
tion of motion

..
ρ +

1
2
ω2(t)ρ = α(t)F (β(t)ρ), (1)

whereω2(t) is an arbitrary function oft, α, β and F are
arbitrary functions of their arguments. This type of non-
homogeneous and non-linear equation describes, for exam-
ple, the behavior of forced oscillations with time dependent
amplitude of the driving force, or parametrically excited sys-
tems.

The procedure consists in looking for an expression for
each term of Eq. (1) as a total differential by adding and sub-
stracting terms. According to this, we multiply Eq. (1) byγ

.
ρ,

with γ an arbitrary function of time, and after some algebra
one finds the following equation:
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where λ(t), κ(t) and φ(κρ) are arbitrary functions, and
ξ= κ(t)ρ. These functions will help to write Eq. (1) as a
total differential, and the goal of this method is to determine
them.

A first step in requiring Eq. (2) to have an exact differen-
tial is that

[
.
γα

β
+

γ
.
α

β
− αγ

.

β

β2

]
= 0,

for which it is necessary that

β = α(t)γ(t). (3)

Using this result in Eq. (2), it transforms into
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where the equation of motion (1) and the identity
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were taken into account. Equating the coefficients of
.
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, ρ

.
ρ,

ρ
..
ρ, ρ2 with zero in Eq. (4), one obtains

a = −
.
γ

2
(6)

.
a =

1
2
γω2 − λ− κ2

ξ

dφ

dξ
(7)

a =
γ

.

β

β
(8)

.

λ =
γ

.

βω2

β
− 2κ

.
κ

ξ

dφ

dξ
. (9)

Equations (6) and (8) yield
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1√
γ

(10)

whereas Eqs. (6) and (7) lead to
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and, with the aid of Eqs. (9) and (11), one obtains
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Multiplying the last equation byγ, it can be rewritten as
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Choosing

κ =
1√
γ

and γ = x2, (14)

Eq. (13) becomes

..
x + ω2 (t) x =

1
x2ρ

dφ

dξ
, (15)

which plays the role of the auxiliary equation in the Ermakov
formalism. Through the transformation given by Eq. (14),
the expressions forα, β, λ, anda take the form
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1
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(16)
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1
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x
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.
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and by substitutingα, β, λ anda [Eqs. (16)-(19)] back into
the first term of Eq. (4), we obtain the invariant
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1
2
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.
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(ρ

x

)
, (20)

whereϕ( ρ
x ) is an arbitrary function of its argument.

3. Application of the Sarlet-Bahar Method

In order to verify that the method proposed in this paper
works, it will be applied to a well-known problem, namely
the forced harmonic oscillator whose equation of motion can
be written as

..
x + Ω2(t)x =

1
m

F (t), (21)

wherem is the mass attached to the spring,Ω(t) the oscilla-
tion frequency and F(t) the external force.

By comparing Eq. (21) with Eq. (1), one notes that
the external force F(t) depends explicitly on time and that
α(t) = 1/m is a constant.

Following the method proposed in Sec. 2, one can find
the auxiliary equation

..
ρ + Ω2(t)ρ =

1
ρ2
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dξ
(22)

and the invariant
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The invariant contains the kinetic energy, the potential en-
ergy and the momentum, all in mass units. In this expression,
the potential energy and the momentum appear modified by
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an expansion rate. By settingφ(x/ρ) = x2/ρ2, one repro-
duces the results obtained by Rayet al. and Lutzky, and this
term appears as an additional potential energy. The term

∫ x
ρ

F (η)dη

provides the contribution of the external forceF (t) to the in-
variant.

4. Conclusions

In this paper, we have started from the non-linear equation of
motion

..
ρ +

1
2
ω2(t)ρ = α(t)F (β(t)ρ) (24)

and, applying the Sarlet-Bahar formalism to this equation of
motion, one has determined the form of the functionsα(t)
andβ(t) in such a way that Eq. (24) admits a time-dependent
invariant. This method leads to an auxiliary Eq. (15) and the

invariant given by Eq. (20). These results generalize those
obtained by Rayet al. [7] for conservative systems. Be-
sides, we reproduce their results when the arbitrary function
ϕ(ρ/x) equalsk/2 (ρ/x)2. Applications of the formalism
presented in this paper to other equations of motion and de-
tailed comparison with other methods, in order to generate
time-dependent invariants, are topics of further study.

To elucidate the physical meaning of the invariant, the
method was applied to the equation of motion of a forced har-
monic oscillator. It is found that the invariant contains terms
that have to do with the kinetic energy, the potential energy,
the momentum, and a contribution due to the external force.
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