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The Maxwell equations in a uniformly accelerated frame
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The solution of the source-free Maxwell equations in a uniformly accelerated frame of reference is expressed in terms of a single complex
scalar potential that obeys a second-order equation. The field of a static electric charge is obtained as an example of a stationary axisymmetric
field.
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La solucíon de las ecuaciones de Maxwell sin fuentes en un sistema de referencia uniformemente acelerado se expresa en términos de un solo
potencial escalar complejo que obedece una ecuación de segundo orden. El campo de una carga eléctrica est́atica se obtiene como ejemplo
de un campo estacionario axialmente simétrico.
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1. Introduction

In a recent paper [1], some kinematic effects produced by the
uniform acceleration of a reference frame on the propagation
of light were rigorously studied employing special relativity
(see also Ref. 2). These kinematic effects include the redshift
and the bending of light rays, which are analogous to the ef-
fects that, according to the general theory of relativity, must
be present in a real gravitational field. In such derivations, it
is assumed that light propagates along light rays, which are
null geodesics in space-time.

In this paper we continue investigating the effects pro-
duced by a uniform acceleration, considering the source-free
Maxwell equations. We want to be able to find, exactly, what
influence that acceleration can have on the electromagnetic
field. According to the principle of equivalence, an anal-
ogous behavior can be expected, at least locally, in a real
gravitational field. This idea has been applied in determining
whether a static electric charge in a gravitational field should
radiate (see Refs. 3-9 and the references cited therein). In this
paper the source-free Maxwell equations in a uniformly ac-
celerated reference frame are solved assuming that the elec-
tromagnetic field is stationary and axially symmetric. In the
general case, without symmetries, the complete solution of
the Maxwell equations is expressed in terms of a single scalar
potential.

In Sec. 2, we briefly summarize the relevant results
of Ref. 1 (see also Refs. 2,4,5,10-13) and the source-free
Maxwell equations are written down in useful explicit forms.
Considering an exact solution that represents monochromatic
plane waves traveling in a direction parallel to the accelera-
tion of the frame, the redshift formula is derived. In Sec. 3,
the stationary, axially symmetric solutions of the Maxwell

equations are obtained and, as an example, the field of a static
electric point charge is explicitly calculated; our result coin-
cides with the field of a uniformly accelerated charge given
in Ref. 4. In Sec. 4 we give the general solution to the source-
free Maxwell equations, in a form adapted to the accelerated
frame, in terms of a single complex potential that must obey
a linear second-order partial differential equation.

2. Electromagnetic fields in a uniformly accel-
erated frame

As shown in Ref. 1, if the origin of a reference frame S′ has
a constant proper accelerationg (which means that the accel-
eration of the origin of S′, with respect to an inertial frame
that instantaneously accompanies S′, is equal tog), the rela-
tion between the Cartesian coordinates of a suitably chosen
inertial frame S and those of S′ are given by

ct = (z′ + c2/g) sinh(gt′/c),

x = x′,

y = y′,

z = (z′ + c2/g) cosh(gt′/c), (1)

if the coordinate axes are parallel and S′ is accelerated along
thez-axis (see also Refs. 2,4,5,10-13).

The coordinates(ct, x, y, z), measured in the inertial
frame S, have the usual well-known meaning encountered
in the elementary treatment of special relativity, where it is
possible to synchronize the clocks stationary in S. The coor-
dinates(x′, y′, z′) of an event P are determined by the dis-
tances from the origin, O, of S′ in the usual manner, andt′ is
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the value that the proper time of an observer at O has simul-
taneously (with respect to this observer) with the occurrence
of P. These facts can also be derived from the expression

ds2 = −c2dt2 + dx2 + dy2 + dz2

= −(1 + gz′/c2)2c2dt′2 + dx′2 + dy′2 + dz′2 (2)

that follows from Eqs. (1). (The metric (2) defines what is
sometimes called Rindler space-time; though, of course, it
actually corresponds to Minkowski space-time.)

In order to simplify the notation, in what follows the coor-
dinates associated with the uniformly accelerated frame will
be denoted by symbols without primes; thus, the (flat) space-
time metric (2) will read

ds2 = −
(
1 +

gz

c2

)2

c2dt2 + dρ2 + ρ2dφ2 + dz2, (3)

in terms of circular cylindrical coordinates
(x0, x1, x2, x3) = (ct, ρ, φ, z).

The Maxwell equations for the source-free electromag-
netic field on a possibly curved space-time can be written as

∂αfβγ + ∂γfαβ + ∂βfγα = 0,

1√
|g̃|∂α(

√
|g̃| fαβ) = 0, (4)

wherefαβ denotes the contravariant components of the elec-
tromagnetic field tensor,∂α ≡ ∂/∂xα, the xα are space-
time coordinates,̃g ≡ det(gαβ), with gαβ being the com-
ponents of the metric tensor in the coordinate systemxα,
fαβ = gαγgβδf

γδ and the Greek lower case indices run from
0 to 3 (see, for example, Ref. 14). With the metric given by
Eq. (3), we have

(gαβ) = diag
(− h2(z), 1, ρ2, 1

)
, (5)

with
h(z) ≡ 1 +

gz

c2
, (6)

and
√
|g̃| = ρh(z).

Making use of Eq. (5) and the definitions

F0 = hf03 + iρf12,

F±1 = hf01 + iρf23 ± i(ρhf02 + if31), (7)

a straightforward computation shows that the Maxwell equa-
tions (4) are equivalent to

(
1
h

∂0 + ∂z

)
F0 +

1
ρ

(
∂ρ − i

ρ
∂φ

)
(ρF+1) = 0,

(
1
h

∂0 − ∂z

)
F0 − 1

ρ

(
∂ρ +

i
ρ
∂φ

)
(ρF−1) = 0,

(
1
h

∂0 + ∂z

)
(hF−1)− h

(
∂ρ − i

ρ
∂φ

)
F0 = 0,

(
1
h

∂0 − ∂z

)
(hF+1) + h

(
∂ρ +

i
ρ
∂φ

)
F0 = 0. (8)

The combinationsF0 andF±1, defined by Eqs. (7), also
amount to

F0 = Ez + iBz,

F±1 = Eρ + iBρ ± i(Eφ + iBφ)

= (Eρ ± iEφ) + i(Bρ ± iBφ), (9)

whereEρ, Eφ, andEz are the components of the electric
field with respect to theorthonormalbasis{eρ, eφ, ez} in-
duced by the circular cylindrical coordinatesρ, φ, z, with an
analogous meaning forBρ, Bφ, andBz (the factorsh andρ
contained in Eqs. (7) are just scale factors).

From Eqs. (8) and (9) one finds that, in vector form, the
source-free Maxwell equations are

∇ ·B = 0, ∇× (hE) = −1
c

∂B
∂t

,

∇ ·E = 0, ∇× (hB) =
1
c

∂E
∂t

,

where the divergence and curl are the usual operators associ-
ated with a flat Euclidean three-dimensional space.

2.1. Redshift

Some particular solutions of the Maxwell equations can be
readily obtained from the various expressions given above.
For instance, an electromagnetic field withF+1 = 0 = F0

corresponds to electromagnetic radiation, and from Eqs. (8)
one finds that any of these solutions is of the form

ρhF−1 = G(ρeiφ, (z + c2/g)e−gt/c), (10)

whereG is an arbitrary (complex-valued) function of two
variables. (A field withF+1 = 0 = F0 is algebraically spe-
cial, which means that both Lorentz invariants of the electro-
magnetic field,E2 −B2 andE ·B, are equal to zero.)

Thus, the field given by

ρhF−1 = ρeiφ cos
[
ω

(
t− c

g
ln(z + c2/g)

)]
, (11)

whereω is a constant (withF+1 = 0 = F0), is a solution of
the Maxwell equations, which corresponds to a monochro-
matic plane wave propagating along thez-axis. For a fixed
value ofz, Eq. (11) represents an oscillating field; however,
for z 6= 0, the angular frequency of this field differs from
ω, sincet is only the time measured by a clock atz = 0.
According to Eq. (3), the time,τ , measured by a stationary
clock atz = z0, is related tot by τ = h(z0)t; this means that
the angular frequency of the wave atz = z0 is

ω′ =
ω

h(z0)
=

ω

1 + gz0/c2
,

which agrees with the redshift formula obtained in Ref. 1 (see
also the references cited therein). Equation (11) yields two
additional things. The presence of the factorh on the left-
hand side of Eq. (11) means that the amplitude of this plane
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wave diminishes asz increases (though the fractional change
of the amplitude per unit of length isg/c2) and, owing to the
presence of the logarithm, the field given by Eq. (11)does
not have a well-defined wavelength.

3. Static axisymmetric fields

In this section we show that the solutions to the source-free
Maxwell equations that, in the uniformly accelerated frame,
are static and invariant under rotations about the direction of
the acceleration possess certain additional symmetries. As-
suming that the cylindrical components of the electromag-
netic field depend onρ andz only, Eqs. (8) reduce to

∂zF0 +
1
ρ
∂ρ(ρF±1) = 0,

1
h

∂z(hF±1)− ∂ρF0 = 0,

(12)

and by combining these equations we obtain

1
ρ
∂ρ(ρ∂ρF0) = − 1

h
∂z(h∂zF0). (13)

(Similarly, one can derive the decoupled equation forF±1

∂ρ

[
1
ρ
∂ρ(ρF±1)

]
= −∂z

[
1
h

∂z(hF±1)
]

.)

Looking for separable solutions to Eq. (13) of the form

F0(ρ, z) = A(ρ)B(z),

we obtain the ordinary differential equation

d2A

dρ2
+

1
ρ

dA

dρ
+ α2A = 0

(whereα is a constant), whose solutions are linear combi-
nations of order zero Bessel functions,J0(αρ) andN0(αρ),
and, using̃z ≡ z + c2/g as the independent variable in place
of z,

d2B

dz̃2
+

1
z̃

dB

dz̃
− α2B = 0,

whose solutions are linear combinations of order zero modi-
fied Bessel functions,I0(αz̃) andK0(αz̃). When the separa-
tion constantα is equal to zero,A is a linear combination of
1 andln ρ and, similarly,B is a linear combination of 1 and
ln z̃. Thus, the static axisymmetric solutions of the source-
free Maxwell equations that are regular forz̃ > 0 are given
by

F0 =

∞∫

0

f(α)J0(αρ)K0(αz̃) dα, (14)

wheref is an arbitrary function. Making use of Eqs. (12) and
the recurrence relations for the Bessel functions one finds that
the remaining field components are given by

F±1 =

∞∫

0

f(α)J1(αρ)K1(αz̃) dα. (15)

Despite the symmetry of Eq. (13), a much more conve-
nient and useful set of expressions is obtained employing in
place ofρ andz̃, the variablesu, v defined by

u ≡ 1
2 (ρ2 − z̃2), v ≡ ρz̃ (16)

(these definitions are identical to those of the parabolic coor-
dinates, consideringρ andz̃ as Cartesian coordinates on the
plane). Indeed, making use of the chain rule, a straightfor-
ward computation shows that Eqs. (12) are equivalent to

∂vF0 + ∂uF±1 = 0, ∂uF0 − 1
v
∂v(vF±1) = 0 (17)

and by combining these equations, one obtains the second-
order decoupled equations

∂2
uF0 +

1
v
∂v(v∂vF0) = 0, (18)

and

∂2
uF±1 + ∂v

[
1
v
∂v(vF±1)

]
= 0. (19)

It is readily seen that Eqs. (18) and (19) can be solved by
separation of variables. Equation (18) admits solutions of the
form

F0 =

∞∫

0

f(α)e±αuJ0(αv) dα, (20)

wheref(α) is an arbitrary function. Then, Eqs. (17) show
that the componentsF±1 accompanying (20) are

F1 = F−1 = ±
∞∫

0

f(α)e±αuJ1(αv) dα. (21)

3.1. The field of a point charge

As an application of the preceding results, we shall obtain the
field of an electric point charge fixed at the origin of the ac-
celerated frame. This is the electromagnetic field produced
by a point charge with a constant proper acceleration which,
in its comoving frame, must be static and axially symmetric.

Thus, the coordinates of the point charge areρ = 0,
z̃ = c2/g or, equivalently,v = 0, u = −c4/(2g2). With re-
spect to the accelerated frame, the electromagnetic field must
be given by expressions of the form

F0 =

∞∫

0

f+(α)e−αuJ0(αv) dα,

F±1 = −
∞∫

0

f+(α)e−αuJ1(αv) dα, (22)

Rev. Mex. F́ıs. 53 (1) (2007) 4–9



THE MAXWELL EQUATIONS IN A UNIFORMLY ACCELERATED FRAME 7

for u > −c4/(2g2), wheref+(α) is some function to be de-
termined, while foru < −c2/(2g2),

F0 =

∞∫

0

f−(α)eαuJ0(αv)dα,

F±1 =

∞∫

0

f−(α)eαuJ1(αv)dα, (23)

wheref− is a second function to be determined.
In order to find the explicit expressions of the functions

f±(α), we apply the boundary conditions for the electromag-
netic field on the surfaceu = −c4/(2g2) (corresponding to
the hyperboloidρ2 − z̃2 = −c4/g2, which passes through
the origin). The componentsF±1 must be continuous at the
boundaryu = −c4/(2g2), andF0, which involves the normal
component of the electric field to the boundary at the origin,
must be continuous on the surfaceu = −c4/(2g2), except at
the origin, owing to the presence of a point chargeq. These
conditions give

f+(α)eαc4/(2g2) = −f−(α)e−αc4/(2g2) (24)

and

2πρ

∞∫

0

[
f−(α)e−αc4/(2g2) − f+(α)eαc4/(2g2)

]

×J0(αv) dα = 4πqδ(ρ) (25)

(Gauss’ law).
On the other hand, Hankel’s integral theorem (see, for ex-

ample, Ref. 15, Sec. 5.14) implies that the delta function can
be expressed in the form

δ(r − ρ) =

∞∫

0

αJ0(αr)ρJ0(αρ) dα,

hence,

δ(ρ) =

∞∫

0

αρJ0(αρ) dα.

Combining this last equation with Eqs. (24) and (25), one
finds that

−ρ

∞∫

0

f+(α)eαc4/(2g2)J0(αv) dα = q

∞∫

0

αρJ0(αρ) dα.

With the change of variableα = βc2/g and the second equa-
tion in (16), the integral on the right-hand side of the last
equation is equivalent to

q
c4

g2

∞∫

0

βρJ0(βρc2/g) dβ = q
c4

g2

∞∫

0

αρJ0(αv) dα

and hence,

f+(α) = −qc4

g2
α e−αc4/(2g2). (26)

Substituting Eq. (26) into Eq. (22), making use of the so-
called Lipschitz’s integral (see,e.g., Ref. 15, Sec. 5.15)

∞∫

0

e−axJ0(bx) dx =
1√

a2 + b2
,

one obtains

F0 = −qc4

g2

u + c4/(2g2)
{[u + c4/(2g2)]2 + v2}3/2

= −4qc4

g2

ρ2 − z̃2 + c4/g2

[(ρ2 − z̃2 + c4/g2)2 + 4ρ2z̃2]3/2
. (27)

Then, Eqs. (17) or (22) yield

F±1 =
qc4

g2

v

{[u + c4/(2g2)]2 + v2}3/2

=
8qc4

g2

ρz̃

[(ρ2 − z̃2 + c4/g2)2 + 4ρ2z̃2]3/2
. (28)

According to Eqs. (9), the componentsF0 andF±1, which in
the present case are real, are equal toEz andEρ, respectively.
Thus, the solution given by Eqs. (27) and (28) coincides with
the field of an accelerated charge given in Ref. 4. In the accel-
erated frame, there is no magnetic field and, therefore, there
is no radiation (however, this issue has generated long dis-
cussions in the literature; see, for example, Refs. 3 to 9).

4. General solution in terms of a single scalar
potential

Going back to the source-free Maxwell equations without
symmetry restrictions, we shall show that, as in the case of an
inertial frame [16,17], the Maxwell equations can be solved
by separation of variables and the general solution can be ex-
pressed in terms of a single complex potential.

The combinations (9) show a simple behavior under the
spatial rotations about thez-axis. In fact, under the rotation
aboutez through an angleθ given by

eρ + ieφ 7→ eiθ(eρ + ieφ),

we haveFs 7→ eisθFs, for s = 0,±1.
By definition [16,17],η has spin weights if η 7→ eisθη

wheneρ + ieφ 7→ eiθ(eρ + ieφ); hence,F−1, F0, andF+1

have spin weight−1, 0, and 1, respectively. Ifη has spin
weights, ðη andðη, defined by

ðη ≡− ρs

(
∂ρ +

i
ρ
∂φ

)
(ρ−sη),

ðη ≡− ρ−s

(
∂ρ − i

ρ
∂φ

)
(ρsη), (29)

Rev. Mex. F́ıs. 53 (1) (2007) 4–9



8 G.F. TORRES DEL CASTILLO AND C.I. ṔEREZ SÁNCHEZ

have spin weights + 1 ands− 1, respectively [16,17]. Thus,
the source-free Maxwell equations can also be written as

(
1
h

∂0 + ∂z

)
F0 − ðF+1 =0,

(
1
h

∂0 − ∂z

)
F0 + ðF−1 =0,

(
1
h

∂0 + ∂z

)
(hF−1) + hðF0 =0,

(
1
h

∂0 − ∂z

)
(hF+1)− hðF0 =0. (30)

We look for separable solutions of Eqs. (30) of the form

Fs = gs(z, t) sZαm(ρ, φ), s = 0,±1, (31)

where the sZαm are spin-weighted cylindrical harmon-
ics [16,17],α is a real number andm is an integer. The
spin-weighted cylindrical harmonics satisfy the relations

ð(sZαm) = αs+1Zαm, ð(sZαm) = −αs−1Zαm (32)

and, therefore, substituting Eqs. (31) into Eqs. (30), we ob-
tain

(
1
h

∂0 + ∂z

)
g0 + αg+1 = 0,

(
1
h

∂0 − ∂z

)
g0 + αg−1 = 0,

(
1
h

∂0 + ∂z

)
(hg−1)− αhg0 = 0,

(
1
h

∂0 − ∂z

)
(hg+1)− αhg0 = 0. (33)

These equations can be combined to obtain asecond-order
partial differential equation forg0, g1, or g−1. For instance,
from the first and the fourth equation in (33), one finds that

(
1
h

∂0 − ∂z

)
h

(
1
h

∂0 + ∂z

)
g0 = −α2hg0

or, equivalently,

1
h2

∂2
0g0 − 1

h
∂z(h∂zg0) + α2g0 = 0. (34)

Letting
χ ≡ g0

α2 0Zαm,

for α 6= 0, one finds that Eq. (34) is equivalent to

1
h2

∂ 2
0 χ− 1

h
∂z(h∂zχ)− ððχ = 0, (35)

which reduces to the scalar wave equation whenh = 1. Ac-
cording to Eqs. (33), the functionsg±1 are given in terms of
g0 by

g±1 = − 1
α

(
1
h

∂0 ± ∂z

)
g0,

and hence, using Eqs. (31) and (32) one finds that all compo-
nents of the electromagnetic field can be expressed in terms
of the complex scalar potentialχ:

F+1 = −
(

1
h

∂0 + ∂z

)
ðχ,

F0 = −ððχ, (36)

F−1 =
(

1
h

∂0 − ∂z

)
ðχ.

The linearity of Eqs. (30) and (35) and the completeness of
the spin-weighted cylindrical harmonics implies that the gen-
eral solution to the Maxwell equations is given by Eqs. (36),
with χ being a solution of Eq. (35). [In fact, one can directly
verify that Eqs. (36) satisfy Eqs. (30), provided thatχ is a
solution of Eq. (35).]

5. Concluding remarks

As we have shown, the seemingly complex problem of solv-
ing the Maxwell equations in a uniformly accelerated frame
becomes tractable by means of appropriate definitions of the
independent and dependent variables.

The procedure followed in this paper is applicable to the
equations governing other fields and, according to the princi-
ple of equivalence, the local behavior of the fields should re-
semble that occurring in the presence of a gravitational field.

From the mathematical point of view, the equivalence of
expressions (14) and (20) leads to some relations between
Bessel functions that have not been explored here.
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