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The Maxwell equations in a uniformly accelerated frame
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The solution of the source-free Maxwell equations in a uniformly accelerated frame of reference is expressed in terms of a single complex
scalar potential that obeys a second-order equation. The field of a static electric charge is obtained as an example of a stationary axisymmetric
field.
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La solucbn de las ecuaciones de Maxwell sin fuentes en un sistema de referencia uniformemente acelerado se @pressaietun solo
potencial escalar complejo que obedece una eénate segundo orden. El campo de una cargeteta esitica se obtiene como ejemplo
de un campo estacionario axialmente &irico.
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1. Introduction equations are obtained and, as an example, the field of a static
electric point charge is explicitly calculated; our result coin-

In arecent paper [1], some kinematic effects produced by theides with the field of a uniformly accelerated charge given
uniform acceleration of a reference frame on the propagatiofh Ref. 4. In Sec. 4 we give the general solution to the source-
of light were rigorously studied employing special relativity free Maxwell equations, in a form adapted to the accelerated
(see also Ref. 2). These kinematic effects include the redshiftame, in terms of a single complex potential that must obey
and the bending of light rays, which are analogous to the efa linear second-order partial differential equation.
fects that, according to the general theory of relativity, must
be present in a real gravitational field. In such derivations, i . . .
is assumed that light propagates along light rays, which artg' Electromagnetic fields in a uniformly accel-
null geodesics in space-time. erated frame

In this paper we continue investigating the effects pro-

duced by a uniform acceleration, considering the source-fre§S Snown in Ref. 1, if the ongin o_f areference framet@s
Maxwell equations. We want to be able to find, exactly. what® constant proper acceleratigiwhich means that the accel-
' ! ration of the origin of § with respect to an inertial frame

influence that acceleration can have on the electromagnetff%at nstantaneously accompaniésis eaual tos). the rela
field. According to the principle of equivalence, an anal- o between the C)r;rtes'an Fz:oordsfnatgs of ;)gg itablv chosen
ogous behavior can be expected, at least locally, in a rea“ W ! ! uitably

gravitational field. This idea has been applied in determinindnertlal frame S and those of &re given by

whether a static electric charge in a gravitational field should

) ; ) ; t = (2 + ¢ /g) sinh(gt’/c),
radiate (see Refs. 3-9 and the references cited therein). In this ct = (2 + 7 /g)sinh(gt /c)

paper the source-free Maxwell equations in a uniformly ac- x=2a,

celerated reference frame are solved assuming that the elec- ,

tromagnetic field is stationary and axially symmetric. In the y=yv,

general case, without symmetries, the complete solution of z = (2 4 ¢%/g) cosh(gt' /¢), (1)
the Maxwell equations is expressed in terms of a single scalar

potential. if the coordinate axes are parallel andsSaccelerated along

In Sec. 2, we briefly summarize the relevant resultsthe z-axis (see also Refs. 2,4,5,10-13).
of Ref. 1 (see also Refs. 2,4,5,10-13) and the source-free The coordinateqct, z,y, z), measured in the inertial
Maxwell equations are written down in useful explicit forms. frame S, have the usual well-known meaning encountered
Considering an exact solution that represents monochromatio the elementary treatment of special relativity, where it is
plane waves traveling in a direction parallel to the accelerapossible to synchronize the clocks stationary in S. The coor-
tion of the frame, the redshift formula is derived. In Sec. 3,dinates(z’,y’, 2’) of an event P are determined by the dis-
the stationary, axially symmetric solutions of the Maxwell tances from the origin, O, of $n the usual manner, aridis
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the value that the proper time of an observer at O has simul- The combinationg|, and F..,, defined by Egs. (7), also
taneously (with respect to this observer) with the occurrencamount to

of P. These facts can also be derived from the expression
Fy=FE, +iB,,
ds? = —c2dt? 4 da? + dy? + d2? , , ,
Fi1 =E,+iB, £i(Ey +1By)
— 7(1 +gZ//Cz)262dt/2 +dz’2 +dy'2 +dzl2 (2) ) ) )
= (E, £1Ey) +i(B, £1By), 9)

that follows from Egs. (1). (The metric (2) defines what is ]
sometimes called Rindler space-time; though, of course, ¥here £,, Ey, and E. are the components of the electric
actually corresponds to Minkowski space-time.) field with respect to therthonormalbasis{e,, e;, e. } in-

In order to simplify the notation, in what follows the coor- duced by the circular cylindrical coordinatese, z, with an
dinates associated with the uniformly accelerated frame wilRnalogous meaning fds,, By, andB. (the factorsh andp

be denoted by symbols without primes; thus, the (flat) spacekontained in Egs. (7) are just scale factors).
time metric (2) will read From Egs. (8) and (9) one finds that, in vector form, the

source-free Maxwell equations are

42 = — (14 22) 2a2 + dp* + p2a¢? + 42, (3
57 = t3) At +dp 4 prdd +de7 3) 1B
V.-B=0, Vx(hE)=-—

in terms of circular cylindrical  coordinates c ot
(xo,xl,xQ,a:3)=(ct,p,¢,z). V-E = 0’ V X (hB) :187E7
The Maxwell equations for the source-free electromag- c Ot

netic field on a possibly curved space-time can be written asyhere the divergence and curl are the usual operators associ-
ated with a flat Euclidean three-dimensional space.
8afﬂ'y+a'yfaﬁ+aﬁf'ya :0, P

1 — 2.1. Redshift
da (/9] 1*7) = 0, (4)

\/m Some particular solutions of the Maxwell equations can be
wheref*? denotes the contravariant components of the elecreadily obtained from the various expressions given above.
tromagnetic field tenso), = 9/0x%, the z* are space- For instance, an electromagnetic field with; = 0 = Fp
time coordinatesg = det(gag), With g,z being the com-  corresponds to electromagnetic radiation, and from Egs. (8)
ponents of the metric tensor in the coordinate systeétm  one finds that any of these solutions is of the form

8 = Jargps S’ and the Greek lower case indices run from . ‘
gtf) 3 ?sgg,ﬂfgr example, Ref. 14). With the metric given by phF_1 = G(pe'?, (2 + c*/g)e™9"/°), (10)

Eq. (3), we have where G is anarbitrary (complex-valued) function of two

(gap) = diag( — h3(2),1, %, 1)7 (5) variables. (A field withF,; = 0 = Fy is algebraically spe-
cial, which means that both Lorentz invariants of the electro-
with 9z magnetic fieldE2 — B2 andE - B, are equal to zero.)
h(z) =1+, (6) Thus, the field given by
and/|g| = ph(z). o _ ¢ 2
Making use of Eq. (5) and the definitions phE-y = petcos jw {1 g In(z+¢*/9) )| (11)

Fo=hf% +ipfi? wherew is a constant (withf, ; = 0 = Fy), is a solution of
01 . .23 1 02 . .31 the Maxwell equations, which corresponds to a monochro-
For = 0f™ +ipf~ £i(phf™ +if7), (") matic plane wave propagating along thexis. For a fixed

a straightforward computation shows that the Maxwell equaY@!ué 0fz, Eq. (11) represents an oscillating field; however,

tions (4) are equivalent to for z #* 0,. the angular frequency of this field differs from
w, sincet is only the time measured by a clock at= 0.
1 1 i According to Eq. (3), the time;, measured by a stationary
g+ 0, | Fo+—-{9,— -0 Fy1) =0, X ' " ;
(h o+ ) ot p ( " p ¢) (F1) clock atz = 2z, is related ta by 7 = h(z)t; this means that

the angular frequency of the wavezat z, is

<180 - 82) FO — 1 <8/, + 1%) (pF_1) = 0, w w
h p p w/ = =
) . h(z0) 14 gz/c?’
<h80 + aZ) (hF_1) = h <8P - p8¢> Fo=0, which agrees with the redshift formula obtained in Ref. 1 (see
) also the references cited therein). Equation (11) yields two
(130 _ 52> (hFyy) + h (ap + 13¢> F,=0. (8) additional things. The presence of the factoon the left-
h p hand side of Eq. (11) means that the amplitude of this plane
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wave diminishes asincreases (though the fractional change  Despite the symmetry of Eq. (13), a much more conve-
of the amplitude per unit of length ig/c?) and, owing to the  nient and useful set of expressions is obtained employing in
presence of the logarithm, the field given by Eq. (llbes place ofp andz, the variables:, v defined by
not have a well-defined wavelength.
U= %(p2722), v=pz (16)

3. Static axisymmetric fields o S .

(these definitions are identical to those of the parabolic coor-
In this section we show that the solutions to the source-freginates, considering andz as Cartesian coordinates on the
Maxwell equations that, in the uniformly accelerated frame plane). Indeed, making use of the chain rule, a straightfor-
are static and invariant under rotations about the direction afvard computation shows that Eqgs. (12) are equivalent to
the acceleration possess certain additional symmetries. As-
suming that the cylindrical components of the electromag- OyFo + 0uFyy =0, OuFy — lav(UFil) -0 (17)
netic field depend op andz only, Egs. (8) reduce to

and by combining these equations, one obtains the second-

1
ZF - F = ) .
:Fo+ pap(p 1) =0 order decoupled equations

) 12)
—0,(hFy1) — 0,Fy = 0,
p O (hFe) = 0 Fo O2Fy + ~0,(00, Fy) = 0, 1s)
and by combining these equations we obtain v
L0, (90, Fy) = —0.(hd. Fy) g
~0,(pd,Fy) = ——0.(hd. Fy). 13
p P P20 h 0 83Fi1 —|—6U [i@v(vFﬂ)} =0. (19)

(Similarly, one can derive the decoupled equationAog
It is readily seen that Egs. (18) and (19) can be solved by

0p Fap(pFil)] = -0, Lllaz(hFﬂ)] ) separation of variables. Equation (18) admits solutions of the
P form
Looking for separable solutions to Eq. (13) of the form i
Fy= / f(a)e™ " Jy(aw) da, (20)
Fyo(p.2) = A(p) B(=), J

we obtain the ordinary differential equation where f(«) is an arbitrary function. Then, Egs. (17) show

d24  1d4 that the componentg,.; accompanying (20) are

— +-—+a’A=

dp?>  pd o
(wherea is a constant), whose solutions are linear combi- —F = i/f )etou I (aw) da. (1)
nations of order zero Bessel functiong«p) and Ny (ap), 5
and, usingg = z + ¢ /g as the independent variable in place
of z, i .

: d2B  1dB 3.1. The field of a point charge

—a?B =0,

dz? + z dz
whose solutions are linear combinations of order zero modit
fied Bessel functiondy («2) and Ky («Z). When the separa-
tion constantx is equal to zerod is a linear combination of

As an application of the preceding results, we shall obtain the
field of an electric point charge fixed at the origin of the ac-
celerated frame. This is the electromagnetic field produced

1 andln p and, similarly, 3 is a linear combination of 1 and by a point charge with a constant proper acceleration which,
Inz. Thus, the static axisymmetric solutions of the sourcen its comoving frame, must be static and axially symmetric.
free Maxwell equations that are regular for> 0 are given Thus, the coordinates of the point charge are= 0,
by Z = ¢2/g or, equivalentlyy = 0, u = —c*/(2¢?). With re-
spect to the accelerated frame, the electromagnetic field must
Fy = /f(a)Jo(ap)KO(aé) da, (14)  be given by expressions of the form

wheref is an arbitrary function. Making use of Egs. (12) and P
the recurrence relations for the Bessel functions one finds that 0= f+
the remaining field components are given by

~ Jo(aw) de,

Fiy = / f(e)Ji(ap)Ki(aZ) da. (15) P = / f(@)e™ " Ji(aw) da, (22)
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for u > —c*/(2¢?), wheref, («) is some function to be de- and hence,

termined, while foru < —c?/(2g?), 4
AT
o f+ (Ol) - 92 ae . (26)
Fo = /f—(o‘)eau‘]()(o‘v)do" Substituting Eq. (26) into Eq. (22), making use of the so-
0 called Lipschitz's integral (see.g, Ref. 15, Sec. 5.15)
Fy = /f— ()e*™ J1(aw)da, (23) / —az I (ha) dir — 1
) f o= T
wheref_ is a second function to be determined. one obtains
In order to find the explicit expressions of the functions 4 . )
f+(a), we apply the boundary conditions for the electromag- Fy = _9c u+c*/(29°)
netic field on the surface = —c¢*/(2¢%) (corresponding to 92 {[u+ct/(29%)]? +v2}3/2
the hyperboloidp? — 22 = —c*/g?, which passes through Lot 222 42
e : qc p- -z +c/g
the origin). The component8,; must be continuous at the TR (PR 1A PP 4 AR (27)
boundaryu = —c*/(2¢?), andFy, which involves the normal 9= 1w g P
component of the electric field to the boundary at the origin,Then, Eqgs. (17) or (22) yield
must be continuous on the surface= —c*/(2¢?%), except at 4
. . . qc v
the origin, owing to the presence of a point chaggé& hese Fip = —
conditions give 9* {lu+c/(26%) + 023372
4 2 4 2 8(]04 pé
act/(20%) — _ —ac’/(29%) = . 28
fr(a)e f-(a)e (24) 2 [(p? — 22 + c1/g?)? + 4p22]3/2 (28)
and According to Egs. (9), the componerfts and Fy 1, which in
oo the present case are real, are equélf@ndE,, respectively.
9 -~ —ac/(2¢%) _ act/(2¢2) Thus, the solution given by Egs. (27) and (28) coincides with
7T'O/ [f (a)e f+lae } the field of an accelerated charge given in Ref. 4. In the accel-
0

erated frame, there is no magnetic field and, therefore, there
x Jo(av) da = 4mqd(p) (25) is no radiation (however, this issue has generated long dis-

cussions in the literature; see, for example, Refs. 3 to 9).
(Gauss’ law).

On the other hand, Hankel’s integral theorem (see, for ex-

ample, Ref. 15, Sec. 5.14) implies that the delta function car?" Gener_al solution in terms of a single scalar
be expressed in the form potential
0 Going back to the source-free Maxwell equations without
S(r—p) = /ajo(ar)pjo(ap) da, symmetry restrictions, we shall show that, as in the case of an

inertial frame [16,17], the Maxwell equations can be solved
by separation of variables and the general solution can be ex-

0

hence, - pressed in terms of a single complex potential.
' The combinations (9) show a simple behavior under the
5(p) = / apJo(ap) da. spatial rotations about theaxis. In fact, under the rotation
0 aboute, through an anglé given by
Combining this last equation with Egs. (24) and (25), one ] 0 )
finds that e, +iey — e(e, +iey),
o0 oo we haveF, — e*?F,, fors =0, £1.
—p / Frla)e® /29 J(aw) da = ¢ / apJo(ap) da. By definition [16,17],n has spin weighs if 7 — ey
) ; whene, + ieys — €i?(e, + ie,); hence,F_y, Fy, and F

have spin weight-1, 0, and 1, respectively. I has spin
With the change of variable = 3¢ /g and the second equa- weights, dn anddr, defined by
tion in (16), the integral on the right-hand side of the last

equation is equivalent to om=-p° <8p + i%) (p~°n),
p
c* 7 9 ct 7 — . i .
U BpJo(Bpc”/g)dB = U apJo(aw) do n=-p"° <8p - p%) (p"n), (29)
0 0
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have spin weight + 1 ands — 1, respectively [16,17]. Thus,
the source-free Maxwell equations can also be written as

(;80 + 82) Fy — 6F+1 =0,
1
<h80 — 8Z> Fy+0F_1 =0,
1 _
(hao + 3z> (hF_1) + hoF, =0,

(;Lao - 6Z> (hFy1) — hoF, =0. (30)
We look for separable solutions of Egs. (30) of the form

Fy :gs(zvt)szam(pvd))v s=10,=+1, (31)

where the ,Z,,, are spin-weighted cylindrical harmon-
ics [16,17],« is a real number and is an integer. The

spin-weighted cylindrical harmonics satisfy the relations

8(sZozm) = as+1Zama 5(SZ&m) = _asflzonn (32)

and, therefore, substituting Egs. (31) into Egs. (30), we ob

tain
1
<h80 + 8z) go +agy1 =0,
1
(hao - 3;;) go+ag-1=0,
1
(hao + 8,2) (hg_l) — Oéhgo =0,

(illao — az) (hg41) — ahgo = 0. (33)

These equations can be combined to obtageeond-order
partial differential equation fog,, g1, or g_,. For instance,
from the first and the fourth equation in (33), one finds that

1 1
(hao - 82) h (hao + az) go = _a2h90

or, equivalently,

1 1
520090 = 3.0:(hd=g0) + 0’g0 = 0. (34)
Letting
X= % ()Zam7

for o # 0, one finds that Eq. (34) is equivalent to
1
h
which reduces to the scalar wave equation whea 1. Ac-

cording to Egs. (33), the functions.; are given in terms of

go by

1 _
ﬁ‘aoQX — —9.(h0.x) — 80y =0, (35)

1/1
g1 = —— (50 =+ 32) 90,
a \ h

and hence, using Egs. (31) and (32) one finds that all compo-
nents of the electromagnetic field can be expressed in terms
of the complex scalar potentigt

1
F+1 = - <h80 + az) SXa

1 _
Foq= (hao . az> .

The linearity of Egs. (30) and (35) and the completeness of
the spin-weighted cylindrical harmonics implies that the gen-
eral solution to the Maxwell equations is given by Egs. (36),
with x being a solution of Eq. (35). [In fact, one can directly
verify that Eqgs. (36) satisfy Egs. (30), provided thats a
solution of Eq. (35).]

5. Concluding remarks

As we have shown, the seemingly complex problem of solv-
ing the Maxwell equations in a uniformly accelerated frame
becomes tractable by means of appropriate definitions of the
independent and dependent variables.

The procedure followed in this paper is applicable to the
equations governing other fields and, according to the princi-
ple of equivalence, the local behavior of the fields should re-
semble that occurring in the presence of a gravitational field.

From the mathematical point of view, the equivalence of
expressions (14) and (20) leads to some relations between
Bessel functions that have not been explored here.
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