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The a3 associative memories recently developed in Ref. 10 have proven to be powerful tools for memorizing and recalling patterns when
they appear distorted by noise. However they are only useful in the binary case. In this paper we show that it is possible to extend these
memories now to the gray-level case. To get the desired extension, we take the original opesaithfs foundation of thex3 memories,

and propose a more general family of operators. We find that the original opetaéms are a subset of these extended operators. For

this we first formulate a set of functional equations in terms of the original properties of operatoit3. Next we solve this system of
equations and find a family of solutions. We show thatdttend3 originally proposed in Ref. 10 are just a particular case of this new family.

We present the properties of the new operators. We then use these operators to build a new set of extended memories. We also give the
conditions under which the extended memories are able to recall a pattern either from the pattern’'s fundamental set or from altered versions
of them. We give real examples with images where the proposed memories show their efficiency. We compare the proposal with other similar
works, and show the ours performs much better.

Keywords: Computer science and technology; neural engineering; image quality; contrast; resolution; noise.

Las memoriasy3 recientemente desarrolladas en Ref. 10 han mostrado ser herramientas poderosas para memorizar y recobrar patrones
cuando estos aparecen distorsionados por ruido. Sin embargdlsdriles en el caso binario. En esteianio mostramos que es posible

extender estas memorias para trabajar en el caso de niveles de gris. Para obtener esia #xtesbds los operadores originatey /3,
fundamento de las memoriag3 y proponemos una familia & general, de la cual forman parte los originales. Para esto formulamos

un conjunto de ecuaciones funcionales @minos de las propiedades de los operadores originales. Enseguida, resolvemos este sistema y
encontramos una familia de soluciones. Mostramos que los operadores origiggheson un caso particular de esta nueva familia. Damos
algunas de las propiedades de los nuevos operadores. Usamos entonces los nuevos operadores para construir un conjunto de memori
extendidas. Damos las condiciones bajo las cuales estas memorias son capaces de recuperar patrones del conjunto fundamental o a par
de versiones ruidosas de las mismas. Damos tam#jemplos reales con agenes donde las memorias propuestas muestran su eficiencia.
Comparamos la propuesta con otras propuestas similares y demostramos que la nuestra tiene un mucho mefm.desempe

Descriptores: Ciencias de la computdm y tecnolodg; Ingenieta neuronal; calidad de imagen; contraste; res6hyaiuido.

PACS: 89.20.Ff; 87.80.Xs; 87.57.Ce

1. Introduction by taking into account a set of reference patterns (training
or learning phase) and given a reference pattern distorted by

Associative memories [3] together with neural networks [4],noise find the original pattern (recalling phase). This is equiv-

fuzzy models and genetic algorithms today form a groupalent to a transition of the dynamic system from an initial

of techniques and methodologies of Artificial Intelligence, state until arriving to the nearest stable state; if this perturba-

known as soft computing techniques. The importance ofion is not too large, this transition should correspond to the

these techniques is their capacity to solve particular problemdesired pattern.

in a more efficient way than classical techniques. In the so- In greater detail, an associative memddyis a system

lution of a given problem, soft computing techniques shouldhat relates input vectors and outputs vectors as follows:

collaborate to produce better solutions, giving as a result a M

hybrid-computing scheme. X—Y

The main feature of an associative memory (AM) con-with x andy, respectively the input and output pattern vec-

sists in recalling a pattern from a distorted version of it ortors. Each input vector forms an association with a corre-

from another one related to the goal pattern. This propertgponding output vector. An association between input pat-

can be useful, for example, in pattern recognition problemsernx and output pattery is denoted byx,y). For a positive

or information retrieval [5,6]. k integer, the corresponding association will be denoted by

From a technical point of view, an AM can be seen as a(x*,y*) [8,9] .

dynamic system [1] where the patterns can be considered as An associative memoryM, is represented by a matrix

states (auto-associative case) [7] or outputs dependent on thhoseij-th component isn;;. M is generated from a fi-

states (hetero-associative case). Seen as a discrete dynamite a priori set of known associations, known as the-

system, the problem consists in building the dynamic systerdamental set of associationsr simply thefundamental set
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(FS). If ¢ is an index, the fundamental set is represented asand3. Something important in this perspective is that given
{(x,y%) |¢ =1,2,...,p} with p the cardinality of the set. operatorx, operator3 is totally determined. In this work we
The patterns that form the fundamental set are cdllada-  shall try option 2). In future works we shall explore option 1).
mental patternsif it holds that ¥ = y* vV u € {1,2,...p},
M is auto-associative, otherwise it is hetero-associative.
distorted version of a key patterto be used to recall a pat-

tern will be denoted by. If when feeding a distorted version In this section we present the development of the proposed

w L ;
Efx W'tht#) teth{lﬂjt. ' 't’ pttoan azsomatnt/le :nirf?OM It . te tended memories. Firstly, we give a surveyogf mem-
appens that the output corresponds exactly to the associalflas \ve then explain the details about the development of

pattern y, we say th_at recall is p_erfect. the proposed memories.
Many ways to build an associative memory have been re-

ported in the literature. For several examples, refer to Refs. %
to 19. Recently in Ref. 10, the authors describe a new class’
of associative memories, the so-calledmemories. Their 3 memories are based on the operation of two operators
functioning is based on two binary operatatisand. In the andg3 , defined as:

properties of these two important operators lies the power of

AQ. Foundations ofa3 Memories

1. Survey ofa3 Memories

the above-mentioned memories. These memories work very a:Ax A— B 2)
well in the presence of additive or subtractive noise; its do-
main is however restricted to the binary one. In this work we B:BxA— A, 3)

describe how to extend this class of associative memories to
the case of gray-level patterns. A first attempt in this direc\Vhere A= {0,1} and B={0,1,2}. In tabular form,a :
tion was reported in Refs. 13 and 16. The results obtained" * A — Bandfj: Bx A — A are defined as shown

are however far from desired. in Tables | and _”' .
It is worth mentioning that many of the results in the bi-  BOth operations were found by extensive research by tak-

nary case are based on properties that, though obtained B}g @S their foundation thenax andmin operations of the

taking into account a particular domain, do not strictly de-Morphological associative memories.

pend on that domain. Once generalized, many of these results

in the binary case can be naturally extended to more interes&1.1. Matrix operations/o, Ao, Vg, Ag

ing ranges such as the gray-level case. .
The central point we need to solve in this research is how%et P.: [p“]mxr andc_) — [qij]rxn. be two ma}tnces. The

to generalize the operatatisand3 to get the desired new ex- ollowing matrix operations are defined in [10]:

tended associative memories. This can be done in two ways: I o
e amax operation:P,, ., Vo Qrxn = [

ij]m
1. Either by finding two more operators, say and 3’ o_ Vo (Pires i) *
functionally different, with similar properties, proba- W gy RS
bly not identical but with the same goal, or

where
n

2. To change the domain ef and 5 for a more interest-
ing domain from (a more realistic one) and see which TABLE I. Values ofa (z, y).
are the changes that must done to the original opera-
tors so that they will maintain their properties even in
a different domain.

a(x,y)

In both cases, to tackle the problem, it helps at the begin-
ning to have an analytical expression for the originand
[ operators. This can be obtained, as we shall later see, by
setting up a system dfinctional equation®y using some of
the central properties of the original operatarand8. Once  TaBLE Il. Values of33 (x, y).
expounded the systems of functional equations, we look for
a family of solutions factorizing additively the binary opera-
tors, for example:

a(z,y)=f(z)+g)

B(x,y) =p(x)+q(y) 1)

This simplifies the problem. It allows us to explore a wide
variety of operators, among these, as we shall later aee:

P P O Of|X
P O Fr O
= N O

a(x.y)

N N R P O OfX
B O Fr O R oK<
= =)
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B

. T
e Smaxoperation:P,x, Vg Qrxn = [fij} y Wheref§ = kvlﬁ(pik,qm).
mXxXn =

5]
Jdmxn

e amin operation:P,, xr Na Qrxn = [ wheref = kgla (Piks Qij)s

Wherehfj

mXxn

. . T
e Smin operation:FPy,x, Ag Qrxn = {hfj} k/_\lﬂ (Piks qrj),

wherev andA denote thanax andmin operators, respectively. These four matrix operations are similar to the morphological
matrix operations described in Ref. 8. When applied between vectors we have that:

o If z € A" andy € A™, theny Vv, x¢ is an mxn matrix, and it also holds that

a(y1,371) a(ylaxQ) a(ylaxn)
Y Vo xt =y Ay Xt a(y2,z1)  a(ys,z2) a (Y2, Tn)
@ - o = . ]
a(ym’xl) a(y"“x?) Oé(ym,l"n) mxn

Symbol® is used to represent both operations, when operating on column vegtogst! = y ® a2t = y A, 2°.

o If x € A™ andP is an mxn matrix, operations’,, ., Vg X and P, «, Ag x give as a result two vectors of dimension
with ani-th component P, x, Vg x) _@1 B (pij, ;) and (P, Ag ), _Xl B (pij, xj).
J= J=

i=

2.1.2. af3 memories

! Theij-th componenM is given as follows:
Two kinds of associative memories are described in Ref. 10:
hetero-associative and auto-associative. Due to limitations of
space limitations, we shall talk about auto-associative mem-
ories only. If to an hetero-associative memory fulfils the con-RECALLING PHASE: We have two cases:

dition that yf = x* V¢ € {1,2,---, p}, according to Section Case 1: Recovering of a fundamental pattern. A pat-

®)

P € .8
mg; = g\=/1a (xi,xj) .

1, the memory becomes an auto-associative one. In this caggn x«, with w ¢ {1,2,---,p}, is presented to the auto-
it is obvious that: associative memoryl and the following operation is done:
e The fundamental set takes the form M Ag x*. (6)

{(x,x%) 1€ =1,2,...,p}. _ . . .
The result is a column vector of dimensian with the
e The input and output patterns have the same dimen;-th component given as:
sion, for examplex.

_ _ (MAsx?), = A B (m,a%). @)
e The memory is a square matrix. j=1
In this case the recalling conditions are always satisfied

Two auto-associative,5 memoriesM andW are fully sinceM always has 1's along its main diagonal.

desqibed iT‘ Ref. 1M mgmories are useful for coping with Case 2:Recovering of a pattern from an altered version
add.mve rj0|seW memories, on the contrary, are u_seful for ot it. A patternx (altered version with additive noise of a pat-
coping with subtractive noise. Due to space limitations, onIytern x“) is presented to the auto-associative memdrand

M memories are described. the following operation is carried out:

8)

Again, the result is a column vector of dimensionwith

Auto-associativeys memories type M: M Ag x.

TRAINING PHASE:

Step 1: For each¢ = 1,2,---,p, from each couple
(¢, x¢) build the matrix: [x¢ @ (x¢)'|
nxn
Step 2: Apply binarymax operatorv to the matrices ob-
tained in Step 1 to get matrid as follows:

M = £§1 {xg ® (Xg)t} . 4)

thei-th component given as:

~ n ~

In this case a sufficient condition for obtainigg from
% is that for each row of matrik one of its elements by less
than or equal to a corresponding element in matrxo (X)".

For more details, refer to Ref. 10.
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3. Development of the Extended Memories This implies that

In this section the extended memories are developed. Firstly pf (z) =z, (pg+q) (y) = 0. (14)
we derive the extended operatoksandB. The new mem-
ories are then presented. We also investigate the conditiorhus,p = f =, ¢ = —f"g
under which the extended memories are able to recall pat- As a first observation, we have the fact that, once the pa-
terns either from the fundamental set or from altered versiongameters ofA are established, those & are determined.
of them. We firstly analyze the case of the hetero-associativRlso, asp is a homotecy.f, its inverse, is also. Taking
memories typdl andW. We then perform the same analysis as the most simple homotecy (the identity), we have:
for auto-associative memories typeandW.
f(z)=z,p(z)=2,q9=—g. (15)
3.1. OperatorsA and B

) In additiong is minus the identityA andB are as follows:
When theas memories make use of theand 3 operators

described in Ref. 10, its range of usabilityis1]; when they Alz,y)=2—y
make use of the extended operatarandB, introduced in
this section, its range (as we shall see) is the gray-level range: B(z,y)=x+y. (16)

[0, L — 1], with L the number of gray levels. We shall use the ) )
symbols A andB to denote the extended operators, the cap- O the other hand, it can be shown that When'add|.ng a
itals of  and 3. Taking into account the properties of the constant, let us say, to A, this generates a non-linearity
original binary operatore and 3 described in Sec. 2.1, one 9N B, thatisif:

way to find a generalization consists in formulating a system

of functional equations [21]. It can be shown that, in this Alzy)=z—-y+k
case, the system should have the following form:

(17)

This implies thatB (z,y) = ¢ (z + y) where¢ is non-

B(A(z,y),y) ==z linear function.
The family of binary operators generated this way allows
B((zVy),z)=B(z,2)VB(y,z) (10)  ys to obtain, on the one hand, the expression for binary oper-

As we shall see later, these two properties\aindB are atorsa and 3, whereg¢ (Fig. 1) is the step function centered

. . . 1
all that we need to characterize most of the solutions of |n—a t
terest. Once a family of solutions is found, one should show

=x— 1
that thea and 3, originally proposed in Ref. 10, are just a aloy) =e—y+

particular case of this new family. By taking into account B(z,y)=¢(z+7y) (18)
Sﬁﬂggﬁ’st&nglig\;zlngquation [22], we propose, as an initial 5o — { 0 v <1 (19
! ' - 1 z>1
Az,y)=f(2)+9(y)
B(z,y) =p(z)+q(y). (11) A
0(x)

If A andB have this form, the matter of being increasing
or decreasing with respect toor yreduces to the require-
ment thatf, g, p, q be also increasing or decreasing. As we
shall also see, distributivity to the left with respect to thax
operator is equivalent to the fact tHatis increasing with re- ] ——
spect to its first element. As can be seen, the problem is al-
ready solved by means of the second equation. With this, we
can see that we only need to focus on the inverse left rela-
tion betweenA andB. By taking into account the proposed
structure forA andB, we have:

B(a(z,y)=p(f(x)+9W) +aly) =z (12)

p distributes in its argument only if it is a solution of Cauchy’s >
equation [22], this i® is a homotecy of the form(z) = cx X
wherec is an arbitrary constant. Then 1

pf () +pg(y)+q(y) ==z (18)  FIGURE 1. Graph ofg.

Rev. Mex. 5. 53 (1) (2007) 1020
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PeyA On the other hand, the same family of operators allows us
to obtain an expression for patterns witlgray levels, whose

L discrete domain is, for exampld,= {0,1,2,..., L — 1};in

Lol — this caseA andB take the form

Aly)=z—-y+L-1

| | B(z,y) =¢(z+y), (20)
| | | (:y) where nowg is, in this case, the staircase function (Fig. 2),
L-1 L 2(L-1) ' defined as follows:
FIGURE 2. Graph ofB.
0 if (z+y)<L-1
B(z,y)=¢ 2+y—(L—-1) if L<z4+y<2(L-1) . (21)
L-1 it (r+y)>2(L-1)

FunctionsA andB have the same form as in the binary

case, namelyA : AxA—B andB : BxA—A, where NOW \yo yan do the same thing, but an altered version of a pat-

The properies bf these two important speratans are mucl Of e fundamental setis presented t the memory. The
like those of the binary operators. They are not listed her egesults presented here are essentially the same as th.ose given
due to space limitations ’ in Ref. 10. Instead of using opgrat@rsmdﬁ, th_ey take into

' account operatord andB. Their proof is not included due
to space limitations.

Example 1. Suppose we want to first memorize and then

In this section we introduce the extended memories able tfcall the following fundamental set, with L=8:
recall gray-level patterns. The proposed memories have the | 1 ) 4 6
same structure as the3 memories presented in Ref. 10. The X = (1) » X0 g and X' = g
difference between the extended memories and the standard

«aff memories is of course the use of operatarandB in- TRAINING PHASE:

stead of operatore and 3. We provide the conditions un-
der which the extended memories are able to recall patterns
either from the fundamental set or from altered versions of
them. Due to space limitations we only analyze the extended
auto-associative memories of typé (EAS M memories).

We give several numerical examples to better illustrate the X2 Va (xz)t =
operation of these devices. To operate an BASnemory,
we again use first the operater, then themax operatoryv.
During training, Eq. 4) changes as follows:

3.2. ExtendedAB Memories

X' Va (xl)T =

x3Va (x3)T =

oo oGt 1o
N 90 00 ~© 00~ 00
NN NS o

v = 5§1A (xf, mﬁ) . (22)

Thus

EN

In the same way, during pattern recall, EqZ) &énd Q)

change to: M =
Next we give the conditions under which an EA%

- &
- E &
; bh i o
memory provides correct recall. We first give the results con-

cerning the correct recall of a pattern of the fundamental setricure 3. Set of images used in the experiments.

~N o
0 g ©
~N S 0o

(M ABX?), = A B (mij,a?). (23)

Jj=

—

(M AB f)l =

>3

J=1

Rev. Mex. 5. 53 (1) (2007) 1020
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RECALLING PHASE: 4.1. Construction of the Association Matrix
7 9 8 The images shown in Fig. 3 were first converted to image
Magzt=| 6 7 6 vectors with 968 elements (32 times 29) each. For this stan-
7 8 7 dard scanning procedure is used. These vectors were then
used to construct the corresponding matriseand W, by
B(7,1) AB(9,0) AB(8,1) using the techniques described in Sec. 2.
= B(6 1) (7,0)AB(6,1)
B(7.1) 870) AB(7,1) 4.2. Recalling of the fundamental set
1AN2A2 g . L .
. . In this first experiment, the five images were fed to matrices
= OANOAQ = . .
TALAL M andW already built. To all of them were applied the pro-

cedures described in Sec. 3.2. In all cases, of course, the five

. . atterns were perfectly recalled.
One can easily verify that the other two patterns are alsg P y

correctly recalled.

The following proposition provides conditions for correct
recall of a pattern of the fundamental set when an altered ve.3.1. Case of a M memory
sion of it is presented to EABl memory.

Proposition 1. Let{(xf x5) l€=1,2 ._.,p} the funda- Three groups of images were generated: the first one
mental set of aEAS M memory and Lthe number of levels With additive noise, the second one with saturated noise
the elements of eackt can take. Leti be an altered ver- Of the salt type, and the third one with manually saturated
sion with additive noise. Ifis presented as input to tH8AS ~ noise. In the first case, to the gray-valfi¢z,y) of pixel

4.3. Recalling of a pattern by a corrupted version of it

M memory, and if besides for eache {1,...,n} it holds  With coordinates(z,y), an integerv was added, such that
that3j = jo € {1,...,n}, which depends on w and i such f (z,y) +v < (L — 1). In the second case, the gray-value of
asv;j, < A(z¥,%;,), then we have correct recall, namely a pixel was simply saturated to the valle— 1).
M AR & = 2. In the first case, the valuewas first randomly selected.
Example 2. Let us take an altered version by additive It was then added to the gray-valygz, y) of the pixel if
4 4 s < t. s € 0,1] is an uniformly randomly distributed ran-
noise of patterx? = | 2 |,forexamplez®2 = | 3 |: dom variablet is the parameter controlling how much of the
3 3 image is corrupted. This way, the bigger the value,dhe
more of the image pixels should be corruptedt K 0, no
7 9 8 4 pixel value is modified. In the contrary, if= 1, all pixels
Mpag#2=|6 7 6 | Al 3 values should be changed. In the second case, the gray-value
7 8 7 3 [ (z,y) was simply saturated t@ — 1) if s < ¢. In the third
case, Microsoft PAINT utility was used was used to manually
B(7,4)AB(9,3) AB(8,3) modify the gray-levels of the pixels.
= | B(6,4)AB(7,3) AB(6,3) A quantitative measure as to how good the
B(7,4) AB(8,3) AB(7,3) recall is all cases was chosen as follows. Let
4NHN4 4 frecalled (.18, y) 7fo7‘iginal (‘Lvy) the gray levels of a pixel in
—| 3a372 | = 2|, the original image and the corresponding pixel in the re-
ANANS 3 called image. LeNMP the number of modified pixels in the

recalled image with respect to the original image when sub-
tracting pair by pair their gray levels. NP1 is total number

Df pixels of the image, then percentage of modified pilés

of the recalled image with respect to the original image is
given as:

The reader can easily verify that this example satisfies
the conditions given by Proposition 1 for perfect recall in the
presence of additive noise.

(25)

PP =100 (NMP>

. NPI
4. Experimental results

4.3.1.1. Performance in the presence of additive noise
In this section, the proposed extended associative memo-
ries are tested with more realistic patterns. Images of fiv@wenty five images were obtained as explained. Parameter
famous mathematicians (Descartes, Einstein, Euler, Galilewas varied form 0.1 to 0.5 in steps of 0.1. Figure 4a shows
and Newton) were used are shown in Fig. 3. The images anhe obtained images. The number (percentage) of modified
32 by 29 pixels and 256 gray levels. Only the EAS associapixels at each image is shown above each image. Recalled
tive memories of typ& andW were tested. versions are shown in Fig. 4b. The number (percentage) of

Rev. Mex. 5. 53 (1) (2007) 1020



16 J.H. SOSSA AZUELA AND R. BARRON FERNANDEZ

non-recalled pixels in the recalled image with respect to thehe pixel was saturated {d. — 1). Figure 5a shows the ob-
original image is shown above each image. Notice also hovtained images. The number (percentage) of modified pixels
as the level of noise increases, the recalled versions math wedt each image is shown above each image. Recalled versions
are shown in Fig. 5b. Above each recalled image it is in-
dicated the number (percentage) of non-recalled pixels with
respect to the original image is shown above each image. No-
tice how despite the level of noise introduced to the images
Again, 25 images were obtained as explained. Parametés bigger than in the first case, recalled versions match much

with the original images.

4.3.1.2. Performance in the presence of salt noise

twas again varied from 0.1 to 0.5 in steps of 0.1. The value obetter with the original images.

() (®)
r=01 =02 =03 (=04 =05
56(6.03) 129(13.90) 218(23.49) 288(31.03) 354(38.14) 2(021)  8(0.86)  11(1.18)  16(1.72)
84(9.053) 169(18.2’1) 235(25.3?) 340(36.63) 419(45.15) I(O 11) S(O 86) 9(0 96) 11(1.18)
g P e W e W g W s W -~
F b ﬁ'\ ;i % ﬁn EE ™ F » ,i » ’ » ,i »
6(0. 64) 7(0 ) Hiss) 15209

93(10.02) 169(18.21) 270(29.09) 359(38.68) 462(49.78)

14(1.50) 20(2.15)

184(19.82)

452(48 70)

ﬂ E

171(18 42) 274(29 52)

EX

93(10. 02)

E 2

FIGURE 4. (a) Versions with additive noise,varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled images versions. The number of pixels

here is the number of non-recalled pixel values.

(a) (b)

t=0.1 =02 =03 (=04 =05
68(7.32) 138(14.87) 219(23.59) 287(30.92) 336(36.20)  4(0.43) 6(0.64)
T r - 'I% ; T T
L 4 i i Q&

A Wi,
86(9 26) 177(19.07) 265(28.55) 338(36.42) 431(46.44)  2(0.21) 9(0.96)
s ; Fa e g
BOE ";% ¥l O
172(13 %2) 4<4(48 92) 3(0.32) 4(0.43)

93(10.02) 278(29.95)

463(49.89)

7(0.75) 24(2.58)
M
84(9 O’i) 263(28.34) 368(39.65) 433(46.65)  4(0.43) 2(1.29

E %% e e BN

FIGURE 5. (a) Versions with salt noise,varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled versions. The number of pixels here is the

number of non-recalled pixel values.
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(a) 1=0.95 (b)
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FIGURE 6. a) Versions with additive noise with= 0.95. (b) Recalled versions.
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FIGURE 7. (a) Versions with subtractive noiseyaried from 0.1 to 0.5 with steps of 0.1. (b) Recalled images versions. The number of pixels
here is the number of non-recalled pixel values.
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FIGURE 8. (a) Versions with pepper noiseyaried from 0.1 to 0.5 with steps of 0.1. (b) Recalled versions. The number of pixels here is the
number of non-recalled pixel values.
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4.3.1.3 Performance in the presence of big quantities of adnon-recalled pixels in the recalled image with respect to the
ditive noise original image is shown above each image. Notice also how-

~everthe level of noise added, the recalled versions math well
We wanted to test the performance of the proposal with bigne original images.

guantities of additive noise. Five noisy, versions, one for
each original image withh = 0.95 were generated. These 4.3.2.2 Performance in the presence of pepper noise.
are shown in Fig. 6a. Notice the level of noise introduced to
each image. Even for us humans is impossible to re-built thqwemy_ﬁve images were obtained as explained. Parameter
original image from such distorted pattern. Recalled version$ \yas varied from 0.1 to 0.5 in steps of 0.1. The value of
from these extremely noisy versions are shown in Fig. 6bthe pixel was saturated to 0. Figure 8a shows the obtained
Notice how despite the level of noise introduced to the im'images. The number (percentage) of modified pixels at each
ages, the recalled versions well match their originals. image is shown above each image. The recalled versions are
The average time to recall an image in all cases, WheRpown in Fig. 8b. The number (percentage) of non-recalled
using the proposed model, is 0.4 seconds in a Pentium 4 fxels in the recalled image with respect to the original image
1.3 GHz. is shown above each image. Notice also however the level of
noise added, the recalled versions math well the original im-

4.3.2. Case of a W memory ages.

Again, three groups of images were generated. The first one

with subtractive noise, the second one with saturated nois#-3.2.3 Performance in the presence of big quantities of sub-
of type pepper, and the third one with manually added satulactive noise

rated pepper noise. In the first case, to the gray-vAlue y)

of pixel with coordinategz, ), an integern was subtracted,
such thatf (z,y) —v < (L — 1). Inthe second case, again to
the gray-value of a pixel an integer was subtracted, such th
f(z,y) —v = (L —1). The value ofv was chosen as in the
case additive noise.

We wanted to test the performance of the proposal with big
quantities of subtractive noise. Five noisy, versions, one for
ch original image with = 0.95 were generated. These are
shown in Fig. 9a. Notice the level of noise introduced to each
image. As in the case of highly distorted images with positive
saturating noise, even for us humans it is impossible to re-
4.3.2.1 Performance in the presence of subtractive noise built the original image from such distorted pattern. Recalled

versions from these extremely noisy versions are shown in
Twenty-five images were obtained as explained. ParameterFig. 9b. Notice how despite the level of noise introduced to
was varied from 0.1 to 0.5 in steps of 0.1. Figure 7a shows théhe images, the recalled versions well match their originals.
obtained images. The number (percentage) of modified pix- The average time to recall an image in all cases, when
els at each image is shown above each image. The recalleging the proposed model, is 0.4 seconds in a Pentium 4 at
versions are shown in Fig. 7b. The number (percentage) df.3 GHz.

@ =095 (b)
882(95.04) 805(86.74) 876(94.39) 753(81.14) 880(94.82) 178(19.18) 148(15.94) 153(16.48) 127(13.68) 174(18.75)

EEEREELCF EBERE

FIGURE 9. (a) Versions with subtractive noise with= 0.95. (b) Recalled versions.
(a) t=0.1 (b)
78(8.40) 79(8.51) 88(9.48) 93(10.02) 84(9.05) 919(99.03)  848(91.37)

ﬁ F: ﬁ“L 5. H E

FIGURE 10. (a) Versions with additive noise with= 0.1. (b) Recalled versions with M memory. Note how in this case most of pixel values
are not correctly recalled. Compare with the results obtained with the new proposal with the viakae)df (Figure 4.)

(a) 1=0.1 )
75(8.08) 84(9.05) 76(8.18) 68(7.32) 83(8.94) 713(76.83) 873(94.07) 921(99.24) 918(98.92) 905(97.52)

FRERCF BB

FIGURE 11. (a) Versions with subtractive noise with= 0.1. (b) Recalled versions with W memory. Note how in this case most of pixel
values are not correctly recalled. Compare with the results obtained with the new proposal with the sametvalOeldFigure 7).
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4.3.3. Comparison with other approaches of memories is an extension of the associativememories
recently introduced in Ref. 10. Whiles memories work in
The most similar work to the one presented in this work isye binary caseA B memories work in the gray-level case. To
the one reported in Refs. 13 and 16. In Refs. 13 and 16jerive the set of extended memories, we first take operators
the authors describe how a binary image can be used to rg; andg3, the foundation of the functioning @f3 memories,
call gray-level patterns. The idea consists on that given a sefnq solve a set of functional equations to get the extended op-
of gray-level patterns to be first memorized: (1) Decomposgyators A andB. It is shown that the operatorsand 3 are
them into their corresponding binary patterns, and (2) Buildy special case if the general operatarandB. We give the
the corresponding binary associative memory (one memoryecessary and sufficient conditions under which the proposed
for each binary layer) with each training pattern set (by lay-set of memories is able to recall first the fundamental set of
ers). A given pattern or a distorted version of it, is recalled i”patterns, and second a pattern from an altered version of it
three steps: (1) Decomposition of the pattern by layers into itgyhen additive or subtractive noise is added to the pattern.
binary patterns, (2) Recalling of each one of its binary com- The proposed extension was tested with several real pat-

ponents, layer by_ layer also, and (3) Reconstru_ctlon of th‘?erns (images of five known mathematicians) with very satis-

pattern from the binary patterns already regalled_ In step 2. factory results. Even in the case of severe noise, the proposed
One. of the problems. .Of the p“’pos"’?' given n Refs. 13extended memories are able to recall patterns from distorted

and 16 is that when positive or subtractive noise is added tersions of them.

the pattern, at the moment of decomposing the pattern into Compared to other similar approaches the proposal shows

its binary patterns, mixed noise is introduced. This is well much better performance in recalling result demon
known to be one of the main drawbacks of these kind of mem& MUch DEUEr periormance ecafling resutts :as demo

ories. This of course will tend to affect the performance ofstrated in Sec. 4.3.3. Also the times for patte_rn recgll with
the memory. To show this fact in Figs. 10a and 11a we shov;[/he new proposal are much better than the obtained with other

one distorted of each pattern of Fig. 3 with positive noisesImllar works.

and with subtractive noise, respectively, and with= 0.1. Nowadays, we are working through the solution of the
Recalled versions are shown in Figs. 10b and 11b, respeéollowing more general problem of patterns distorted with
tively. Note how in both cases most of the pixel values werdMix€d noise. One of the main drawbacks of classical asso-
not correctly recalled, due to the problems already describei@tive memories including morphological and memories
Compare the results obtained with the new proposal as showffi that they cannot efficiently deal with mixed noise. Their
in Figs. 4 and 7 and see how our proposal provides a mucRerformance is highly affected when mixed noise appears.
better recalling results. The reader can easily show that thi¥ixed noise is a more realistic noise than either subtractive
more noise (additive or subtractive) is added to the patterf?" @dditive noise. In this case we are searching for new ways
the worse will be the recall of the pattern if the proposal pre-0 Puild the associative matrix in such way that a pattern af-
sented in Refs. 13 and 16 is used. fected by mixed noise is efficiently recalled. For some semi-
One last thing that is worth to be mentioning is that with nal investigations, refer for example to the works reported in

the proposal described in Refs. 13 and 16 the recalling time&&fs- 11, 12, 14,15, and 17 to 20.
in the same platform is of 7 seconds in average, while with
the new proposal recalling times are of 0.4 seconds.
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