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Theαβ associative memories recently developed in Ref. 10 have proven to be powerful tools for memorizing and recalling patterns when
they appear distorted by noise. However they are only useful in the binary case. In this paper we show that it is possible to extend these
memories now to the gray-level case. To get the desired extension, we take the original operatorsα andβ, foundation of theαβ memories,
and propose a more general family of operators. We find that the original operatorsα andβ are a subset of these extended operators. For
this we first formulate a set of functional equations in terms of the original properties of operatorsα andβ. Next we solve this system of
equations and find a family of solutions. We show that theα andβ originally proposed in Ref. 10 are just a particular case of this new family.
We present the properties of the new operators. We then use these operators to build a new set of extended memories. We also give the
conditions under which the extended memories are able to recall a pattern either from the pattern’s fundamental set or from altered versions
of them. We give real examples with images where the proposed memories show their efficiency. We compare the proposal with other similar
works, and show the ours performs much better.

Keywords: Computer science and technology; neural engineering; image quality; contrast; resolution; noise.

Las memoriasαβ recientemente desarrolladas en Ref. 10 han mostrado ser herramientas poderosas para memorizar y recobrar patrones
cuando estos aparecen distorsionados por ruido. Sin embargo, son sólo útiles en el caso binario. En este artı́culo mostramos que es posible
extender estas memorias para trabajar en el caso de niveles de gris. Para obtener esta extensión tomamos los operadores originalesα yβ,
fundamento de las memoriasαβ y proponemos una familia ḿas general, de la cual forman parte los originales. Para esto formulamos
un conjunto de ecuaciones funcionales en términos de las propiedades de los operadores originales. Enseguida, resolvemos este sistema y
encontramos una familia de soluciones. Mostramos que los operadores originalesα y β son un caso particular de esta nueva familia. Damos
algunas de las propiedades de los nuevos operadores. Usamos entonces los nuevos operadores para construir un conjunto de memorias
extendidas. Damos las condiciones bajo las cuales estas memorias son capaces de recuperar patrones del conjunto fundamental o a partir
de versiones ruidosas de las mismas. Damos también ejemplos reales con imágenes donde las memorias propuestas muestran su eficiencia.
Comparamos la propuesta con otras propuestas similares y demostramos que la nuestra tiene un mucho mejor desempeño.

Descriptores: Ciencias de la computación y tecnoloǵıa; Ingenieŕıa neuronal; calidad de imagen; contraste; resolución; ruido.

PACS: 89.20.Ff; 87.80.Xs; 87.57.Ce

1. Introduction

Associative memories [3] together with neural networks [4],
fuzzy models and genetic algorithms today form a group
of techniques and methodologies of Artificial Intelligence,
known as soft computing techniques. The importance of
these techniques is their capacity to solve particular problems
in a more efficient way than classical techniques. In the so-
lution of a given problem, soft computing techniques should
collaborate to produce better solutions, giving as a result a
hybrid-computing scheme.

The main feature of an associative memory (AM) con-
sists in recalling a pattern from a distorted version of it or
from another one related to the goal pattern. This property
can be useful, for example, in pattern recognition problems
or information retrieval [5,6].

From a technical point of view, an AM can be seen as a
dynamic system [1] where the patterns can be considered as
states (auto-associative case) [7] or outputs dependent on the
states (hetero-associative case). Seen as a discrete dynamic
system, the problem consists in building the dynamic system

by taking into account a set of reference patterns (training
or learning phase) and given a reference pattern distorted by
noise find the original pattern (recalling phase). This is equiv-
alent to a transition of the dynamic system from an initial
state until arriving to the nearest stable state; if this perturba-
tion is not too large, this transition should correspond to the
desired pattern.

In greater detail, an associative memoryM is a system
that relates input vectors and outputs vectors as follows:

x
M−→ y

with x andy, respectively the input and output pattern vec-
tors. Each input vector forms an association with a corre-
sponding output vector. An association between input pat-
ternx and output patterny is denoted by(x,y). For a positive
k integer, the corresponding association will be denoted by(
xk,yk

)
[8,9] .

An associative memory,M , is represented by a matrix
whoseij -th component ismij . M is generated from a fi-
nite a priori set of known associations, known as thefun-
damental set of associations, or simply thefundamental set
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(FS). If ξ is an index, the fundamental set is represented as:{(
xξ, yξ

) |ξ = 1, 2, . . . , p
}

with p the cardinality of the set.
The patterns that form the fundamental set are calledfunda-
mental patterns. If it holds that xξ = yξ ∀ µ ∈ {1, 2, . . . p},
M is auto-associative, otherwise it is hetero-associative. A
distorted version of a key patternx to be used to recall a pat-
tern will be denoted bỹx. If when feeding a distorted version
of xw with w ∈ {1, 2, . . . , p} to an associative memoryM it
happens that the output corresponds exactly to the associated
pattern yw, we say that recall is perfect.

Many ways to build an associative memory have been re-
ported in the literature. For several examples, refer to Refs. 2
to 19. Recently in Ref. 10, the authors describe a new class
of associative memories, the so-calledαβmemories. Their
functioning is based on two binary operators:α andβ. In the
properties of these two important operators lies the power of
the above-mentioned memories. These memories work very
well in the presence of additive or subtractive noise; its do-
main is however restricted to the binary one. In this work we
describe how to extend this class of associative memories to
the case of gray-level patterns. A first attempt in this direc-
tion was reported in Refs. 13 and 16. The results obtained
are however far from desired.

It is worth mentioning that many of the results in the bi-
nary case are based on properties that, though obtained by
taking into account a particular domain, do not strictly de-
pend on that domain. Once generalized, many of these results
in the binary case can be naturally extended to more interest-
ing ranges such as the gray-level case.

The central point we need to solve in this research is how
to generalize the operatorsα andβ to get the desired new ex-
tended associative memories. This can be done in two ways:

1. Either by finding two more operators, sayα’ andβ’
functionally different, with similar properties, proba-
bly not identical but with the same goal, or

2. To change the domain ofα andβ for a more interest-
ing domain from (a more realistic one) and see which
are the changes that must done to the original opera-
tors so that they will maintain their properties even in
a different domain.

In both cases, to tackle the problem, it helps at the begin-
ning to have an analytical expression for the originalα and
β operators. This can be obtained, as we shall later see, by
setting up a system offunctional equationsby using some of
the central properties of the original operatorsα andβ. Once
expounded the systems of functional equations, we look for
a family of solutions factorizing additively the binary opera-
tors, for example:

α (x, y) = f (x) + g (y)

β (x, y) = p (x) + q (y) (1)

This simplifies the problem. It allows us to explore a wide
variety of operators, among these, as we shall later see:α

andβ. Something important in this perspective is that given
operatorα, operatorβ is totally determined. In this work we
shall try option 2). In future works we shall explore option 1).

2. Foundations ofαβαβαβ Memories

In this section we present the development of the proposed
extended memories. Firstly, we give a survey ofαβ mem-
ories. We then explain the details about the development of
the proposed memories.

2.1. Survey ofαβ Memories

αβ memories are based on the operation of two operatorsα
andβ , defined as:

α : A×A → B (2)

β : B ×A → A, (3)

where A= {0, 1} and B= {0, 1, 2}. In tabular form,α :
A × A → B andβ : B × A → A are defined as shown
in Tables I and II.

Both operations were found by extensive research by tak-
ing as their foundation themax andmin operations of the
morphological associative memories.

2.1.1. Matrix operations∨α, ∧α, ∨β , ∧β

Let P = [pij ]m×r andQ = [qij ]r×n be two matrices. The
following matrix operations are defined in [10]:

• αmax operation:Pm×r ∨α Qr×n =
[
fα

ij

]
m×n

where

fα
ij =

r∨
k=1

α (pik, qkj),

TABLE I. Values ofα (x, y).

x y α(x,y)

0 0 1

0 1 0

1 0 2

1 1 1

TABLE II. Values ofβ (x, y).

x y α(x,y)

0 0 1

0 1 0

1 0 0

1 1 1

2 0 1

2 1 1
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• βmax operation:Pm×r ∨β Qr×n =
[
fβ

ij

]
m×n

wherefβ
ij =

r∨
k=1

β (pik, qkj),

• αmin operation:Pm×r ∧α Qr×n =
[
fα

ij

]
m×n

wherefα
ij =

r∨
k=1

α (pik, qkj),

• βmin operation:Pm×r ∧β Qr×n =
[
hβ

ij

]
m×n

wherehβ
ij =

r∧
k=1

β (pik, qkj),

where∨ and∧ denote themax andmin operators, respectively. These four matrix operations are similar to the morphological
matrix operations described in Ref. 8. When applied between vectors we have that:

• If x ∈ An andy ∈ Am, theny ∨α xt is an m×n matrix, and it also holds that

y ∨α xt = y ∧α xt =




α (y1, x1) α (y1, x2) · · · α (y1, xn)
α (y2, x1) α (y2, x2) · · · α (y2, xn)
...

...
. . .

...
α (ym, x1) α (ym, x2) · · · α (ym, xn)




m×n

.

Symbol⊗ is used to represent both operations, when operating on column vectors:y ∨α xt = y ⊗ xt = y ∧α xt.

• If x ∈ An andP is an m×n matrix, operationsPm×r ∨β x andPm×r ∧β x give as a result two vectors of dimensionm,

with ani-th component(Pm×r ∨β x)i =
n∨

j=1
β (pij , xj) and(Pm×r ∧β x)i =

n∧
j=1

β (pij , xj).

2.1.2. αβαβαβ memories

Two kinds of associative memories are described in Ref. 10:
hetero-associative and auto-associative. Due to limitations of
space limitations, we shall talk about auto-associative mem-
ories only. If to an hetero-associative memory fulfils the con-
dition that yξ = xξ ∀ ξ ∈ {1, 2, · · · , p}, according to Section
1, the memory becomes an auto-associative one. In this case
it is obvious that:

• The fundamental set takes the form{(
xξ, xξ

) |ξ = 1, 2, . . . , p
}

.

• The input and output patterns have the same dimen-
sion, for examplen.

• The memory is a square matrix.

Two auto-associativeαβ memories,M andW are fully
described in Ref. 10.M memories are useful for coping with
additive noise;W memories, on the contrary, are useful for
coping with subtractive noise. Due to space limitations, only
M memories are described.

Auto-associativeαβ memories type M:

TRAINING PHASE:
Step 1: For eachξ = 1, 2, · · · , p, from each couple(

xξ,xξ
)

build the matrix:
[
xξ ⊗ (

xξ
)t

]
n×n

.

Step 2:Apply binarymax operator∨ to the matrices ob-
tained in Step 1 to get matrixM as follows:

M =
p∨

ξ=1

[
xξ ⊗ (

xξ
)t

]
. (4)

The ij -th componentM is given as follows:

mij =
p∨

ξ=1
α

(
xξ

i , x
ξ
j

)
. (5)

RECALLING PHASE: We have two cases:
Case 1: Recovering of a fundamental pattern. A pat-

tern xω, with ω ∈ {1, 2, · · · , p}, is presented to the auto-
associative memoryM and the following operation is done:

M ∧β xω. (6)

The result is a column vector of dimensionn, with the
i-th component given as:

(M ∧β xω)i =
n∧

j=1
β

(
mij , x

ω
j

)
. (7)

In this case the recalling conditions are always satisfied
sinceM always has 1’s along its main diagonal.

Case 2:Recovering of a pattern from an altered version
of it. A patternx̃ (altered version with additive noise of a pat-
ternxω) is presented to the auto-associative memoryM and
the following operation is carried out:

M ∧β x̃. (8)

Again, the result is a column vector of dimensionn, with
thei-th component given as:

(M ∧β x̃)i =
n∧

j=1
β (mij , x̃j) . (9)

In this case a sufficient condition for obtainingxω from
x̃ is that for each row of matrixM one of its elements by less
than or equal to a corresponding element in matrixxω⊗(x̃)t.
For more details, refer to Ref. 10.
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3. Development of the Extended Memories

In this section the extended memories are developed. Firstly
we derive the extended operatorsA andB. The new mem-
ories are then presented. We also investigate the conditions
under which the extended memories are able to recall pat-
terns either from the fundamental set or from altered versions
of them. We firstly analyze the case of the hetero-associative
memories typeM andW. We then perform the same analysis
for auto-associative memories typeM andW.

3.1. OperatorsA and B

When theαβ memories make use of theα andβ operators
described in Ref. 10, its range of usability is[0, 1]; when they
make use of the extended operatorsA andB, introduced in
this section, its range (as we shall see) is the gray-level range:
[0, L− 1], with L the number of gray levels. We shall use the
symbols,A andB to denote the extended operators, the cap-
itals of α andβ. Taking into account the properties of the
original binary operatorsα andβ described in Sec. 2.1, one
way to find a generalization consists in formulating a system
of functional equations [21]. It can be shown that, in this
case, the system should have the following form:

B (A (x, y) , y) = x

B ((x ∨ y) , z) = B (x, z) ∨ B (y, z) (10)

As we shall see later, these two properties ofA andB are
all that we need to characterize most of the solutions of in-
terest. Once a family of solutions is found, one should show
that theα andβ, originally proposed in Ref. 10, are just a
particular case of this new family. By taking into account
Cauchy’s functional equation [22], we propose, as an initial
solution, the following:

A(x, y) = f (x) + g (y)

B (x, y) = p (x) + q (y) . (11)

If A andB have this form, the matter of being increasing
or decreasing with respect tox or yreduces to the require-
ment thatf, g, p, q, be also increasing or decreasing. As we
shall also see, distributivity to the left with respect to themax
operator is equivalent to the fact thatB is increasing with re-
spect to its first element. As can be seen, the problem is al-
ready solved by means of the second equation. With this, we
can see that we only need to focus on the inverse left rela-
tion betweenA andB. By taking into account the proposed
structure forA andB, we have:

B (α (x, y)) = p (f (x) + g (y)) + q (y) = x (12)

p distributes in its argument only if it is a solution of Cauchy’s
equation [22], this isp is a homotecy of the formp(x) = cx
wherec is an arbitrary constant. Then

pf (x) + pg (y) + q (y) = x. (13)

This implies that

pf (x) = x, (pg + q) (y) = 0. (14)

Thus,p = f−1, q = −f−1g
As a first observation, we have the fact that, once the pa-

rameters ofA are established, those ofB are determined.
Also, asp is a homotecy,f , its inverse, is also. Takingf
as the most simple homotecy (the identity), we have:

f (x) = x, p (x) = x, q = −g. (15)

In additiong is minus the identity,A andB are as follows:

A(x, y) = x− y

B (x, y) = x + y. (16)

On the other hand, it can be shown that when adding a
constant, let us sayk, to A, this generates a non-linearity
onB, that is if:

A(x, y) = x− y + k. (17)

This implies thatB (x, y) = φ (x + y) whereφ is non-
linear function.

The family of binary operators generated this way allows
us to obtain, on the one hand, the expression for binary oper-
atorsα andβ, whereφ (Fig. 1) is the step function centered
at 1:

α (x, y) = x− y + 1

β (x, y) = φ (x + y) (18)

φ (x) =
{

0 x ≤ 1
1 x > 1 . (19)

FIGURE 1. Graph ofφ.
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FIGURE 2. Graph ofB.

On the other hand, the same family of operators allows us
to obtain an expression for patterns withL gray levels, whose
discrete domain is, for example,A = {0, 1, 2, . . . , L− 1}; in
this caseA andB take the form

A(x, y) = x− y + L− 1

B (x, y) = φ (x + y) , (20)

where nowφ is, in this case, the staircase function (Fig. 2),
defined as follows:

B (x, y) =





0 if (x + y) ≤ L− 1
x + y − (L− 1) if L ≤ x + y < 2 (L− 1)

L− 1 if (x + y) ≥ 2 (L− 1)
. (21)

FunctionsA andB have the same form as in the binary
case, namely:A : A×A→B andB : B×A→A, where now
A = {0, 1, 2, . . . , L− 1} andB = {0, 1, 2, . . . , 2 (L− 1)}.
The properties of these two important operations are much
like those of the binary operators. They are not listed here
due to space limitations.

3.2. ExtendedAB Memories

In this section we introduce the extended memories able to
recall gray-level patterns. The proposed memories have the
same structure as theαβ memories presented in Ref. 10. The
difference between the extended memories and the standard
αβ memories is of course the use of operatorsA andB in-
stead of operatorsα andβ. We provide the conditions un-
der which the extended memories are able to recall patterns
either from the fundamental set or from altered versions of
them. Due to space limitations we only analyze the extended
auto-associative memories of typeM (EAS M memories).
We give several numerical examples to better illustrate the
operation of these devices. To operate an EASM memory,
we again use first the operator⊗, then themax operator∨.
During training, Eq. (4) changes as follows:

vij =
p∨

ξ=1
A

(
xξ

i , x
ξ
j

)
. (22)

In the same way, during pattern recall, Eqs. (7) and (9)
change to:

(M ∧B xω)i =
n∧

j=1
B

(
mij , x

ω
j

)
. (23)

(M ∧B x̃)i =
n∧

j=1
B (mij , x̃j) . (24)

Next we give the conditions under which an EASM
memory provides correct recall. We first give the results con-
cerning the correct recall of a pattern of the fundamental set.

We then do the same thing, but an altered version of a pat-
tern of the fundamental set is presented to the memory. The
results presented here are essentially the same as those given
in Ref. 10. Instead of using operatorsα andβ, they take into
account operatorsA andB. Their proof is not included due
to space limitations.

Example 1. Suppose we want to first memorize and then
recall the following fundamental set, with L=8:

x1 =




1
0
1


 , x2 =




4
2
3


and x3 =




6
5
5


.

TRAINING PHASE:

x1 ∨A

(
x1

)T
=




7 8 7
6 7 6
7 8 7


 ,

x2 ∨A

(
x2

)t
=




7 9 8
5 7 6
6 8 7


 ,

x3 ∨A

(
x3

)T
=




7 8 8
6 7 7
6 7 7


 .

Thus

M =




7 9 8
6 7 6
7 8 7


 .

FIGURE 3. Set of images used in the experiments.
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RECALLING PHASE:

M ∧B x1 =




7 9 8
6 7 6
7 8 7


 ∧B




1
0
1




=




B (7, 1) ∧ B (9, 0) ∧ B (8, 1)
B (6, 1) ∧ B (7, 0) ∧ B (6, 1)
B (7, 1) ∧ B (8, 0) ∧ B (7, 1)




=




1 ∧ 2 ∧ 2
0 ∧ 0 ∧ 0
1 ∧ 1 ∧ 1


 =




1
0
1


 .

One can easily verify that the other two patterns are also
correctly recalled.

The following proposition provides conditions for correct
recall of a pattern of the fundamental set when an altered ver-
sion of it is presented to EASM memory.

Proposition 1. Let
{(

xξ, xξ
) |ξ = 1, 2, . . . , p

}
the funda-

mental set of anEAS M memory and L the number of levels
the elements of eachxξ can take. Let̃x be an altered ver-
sion with additive noise. If̃xis presented as input to theEAS
M memory, and if besides for eachi ∈ {1, . . . , n} it holds
that ∃j = j0 ∈ {1, . . . , n}, which depends on w and i such
as vij0 ≤ A (xw

i , x̃j0), then we have correct recall, namely
M ∧B x̃ = xw.

Example 2. Let us take an altered version by additive

noise of patternx2 =




4
2
3


, for examplẽx2 =




4
3
3


:

M ∧B x̃2 =




7 9 8
6 7 6
7 8 7


 ∧B




4
3
3




=




B (7, 4) ∧ B (9, 3) ∧ B (8, 3)
B (6, 4) ∧ B (7, 3) ∧ B (6, 3)
B (7, 4) ∧ B (8, 3) ∧ B (7, 3)




=




4 ∧ 5 ∧ 4
3 ∧ 3 ∧ 2
4 ∧ 4 ∧ 3


 =




4
2
3


 .

The reader can easily verify that this example satisfies
the conditions given by Proposition 1 for perfect recall in the
presence of additive noise.

4. Experimental results

In this section, the proposed extended associative memo-
ries are tested with more realistic patterns. Images of five
famous mathematicians (Descartes, Einstein, Euler, Galileo
and Newton) were used are shown in Fig. 3. The images are
32 by 29 pixels and 256 gray levels. Only the EAS associa-
tive memories of typeM andW were tested.

4.1. Construction of the Association Matrix

The images shown in Fig. 3 were first converted to image
vectors with 968 elements (32 times 29) each. For this stan-
dard scanning procedure is used. These vectors were then
used to construct the corresponding matricesM andW, by
using the techniques described in Sec. 2.

4.2. Recalling of the fundamental set

In this first experiment, the five images were fed to matrices
M andW already built. To all of them were applied the pro-
cedures described in Sec. 3.2. In all cases, of course, the five
patterns were perfectly recalled.

4.3. Recalling of a pattern by a corrupted version of it

4.3.1. Case of a M memory

Three groups of images were generated: the first one
with additive noise, the second one with saturated noise
of the salt type, and the third one with manually saturated
noise. In the first case, to the gray-valuef (x, y) of pixel
with coordinates(x, y), an integerv was added, such that
f (x, y)+ v ≤ (L− 1). In the second case, the gray-value of
a pixel was simply saturated to the value(L− 1).

In the first case, the valuev was first randomly selected.
It was then added to the gray-valuef (x, y) of the pixel if
s < t. s ∈ [0, 1] is an uniformly randomly distributed ran-
dom variable,t is the parameter controlling how much of the
image is corrupted. This way, the bigger the value oft, the
more of the image pixels should be corrupted. Ift = 0, no
pixel value is modified. In the contrary, ift = 1, all pixels
values should be changed. In the second case, the gray-value
f (x, y) was simply saturated to(L− 1) if s < t. In the third
case, Microsoft PAINT utility was used was used to manually
modify the gray-levels of the pixels.

A quantitative measure as to how good the
recall is all cases was chosen as follows. Let
frecalled (x, y) , foriginal (x, y) the gray levels of a pixel in
the original image and the corresponding pixel in the re-
called image. LetNMP the number of modified pixels in the
recalled image with respect to the original image when sub-
tracting pair by pair their gray levels. IfNPI is total number
of pixels of the image, then percentage of modified pixelsPP
of the recalled image with respect to the original image is
given as:

PP = 100
(

NMP

NPI

)
(25)

4.3.1.1. Performance in the presence of additive noise

Twenty five images were obtained as explained. Parametert
was varied form 0.1 to 0.5 in steps of 0.1. Figure 4a shows
the obtained images. The number (percentage) of modified
pixels at each image is shown above each image. Recalled
versions are shown in Fig. 4b. The number (percentage) of
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non-recalled pixels in the recalled image with respect to the
original image is shown above each image. Notice also how
as the level of noise increases, the recalled versions math well
with the original images.

4.3.1.2. Performance in the presence of salt noise

Again, 25 images were obtained as explained. Parameter
twas again varied from 0.1 to 0.5 in steps of 0.1. The value of

the pixel was saturated to(L− 1). Figure 5a shows the ob-
tained images. The number (percentage) of modified pixels
at each image is shown above each image. Recalled versions
are shown in Fig. 5b. Above each recalled image it is in-
dicated the number (percentage) of non-recalled pixels with
respect to the original image is shown above each image. No-
tice how despite the level of noise introduced to the images
is bigger than in the first case, recalled versions match much
better with the original images.

FIGURE 4. (a) Versions with additive noise,t varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled images versions. The number of pixels
here is the number of non-recalled pixel values.

FIGURE 5. (a) Versions with salt noise,t varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled versions. The number of pixels here is the
number of non-recalled pixel values.
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FIGURE 6. a) Versions with additive noise witht = 0.95. (b) Recalled versions.

FIGURE 7. (a) Versions with subtractive noise,t varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled images versions. The number of pixels
here is the number of non-recalled pixel values.

FIGURE 8. (a) Versions with pepper noise,t varied from 0.1 to 0.5 with steps of 0.1. (b) Recalled versions. The number of pixels here is the
number of non-recalled pixel values.
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4.3.1.3 Performance in the presence of big quantities of ad-
ditive noise

We wanted to test the performance of the proposal with big
quantities of additive noise. Five noisy, versions, one for
each original image witht = 0.95 were generated. These
are shown in Fig. 6a. Notice the level of noise introduced to
each image. Even for us humans is impossible to re-built the
original image from such distorted pattern. Recalled versions
from these extremely noisy versions are shown in Fig. 6b.
Notice how despite the level of noise introduced to the im-
ages, the recalled versions well match their originals.

The average time to recall an image in all cases, when
using the proposed model, is 0.4 seconds in a Pentium 4 at
1.3 GHz.

4.3.2. Case of a W memory

Again, three groups of images were generated. The first one
with subtractive noise, the second one with saturated noise
of type pepper, and the third one with manually added satu-
rated pepper noise. In the first case, to the gray-valuef (x, y)
of pixel with coordinates(x, y), an integerv was subtracted,
such thatf (x, y)−v ≤ (L− 1). In the second case, again to
the gray-value of a pixel an integer was subtracted, such that
f (x, y)− v = (L− 1). The value ofv was chosen as in the
case additive noise.

4.3.2.1 Performance in the presence of subtractive noise

Twenty-five images were obtained as explained. Parametert
was varied from 0.1 to 0.5 in steps of 0.1. Figure 7a shows the
obtained images. The number (percentage) of modified pix-
els at each image is shown above each image. The recalled
versions are shown in Fig. 7b. The number (percentage) of

non-recalled pixels in the recalled image with respect to the
original image is shown above each image. Notice also how-
ever the level of noise added, the recalled versions math well
the original images.

4.3.2.2 Performance in the presence of pepper noise.

Twenty-five images were obtained as explained. Parameter
t was varied from 0.1 to 0.5 in steps of 0.1. The value of
the pixel was saturated to 0. Figure 8a shows the obtained
images. The number (percentage) of modified pixels at each
image is shown above each image. The recalled versions are
shown in Fig. 8b. The number (percentage) of non-recalled
pixels in the recalled image with respect to the original image
is shown above each image. Notice also however the level of
noise added, the recalled versions math well the original im-
ages.

4.3.2.3 Performance in the presence of big quantities of sub-
tractive noise

We wanted to test the performance of the proposal with big
quantities of subtractive noise. Five noisy, versions, one for
each original image witht = 0.95 were generated. These are
shown in Fig. 9a. Notice the level of noise introduced to each
image. As in the case of highly distorted images with positive
saturating noise, even for us humans it is impossible to re-
built the original image from such distorted pattern. Recalled
versions from these extremely noisy versions are shown in
Fig. 9b. Notice how despite the level of noise introduced to
the images, the recalled versions well match their originals.

The average time to recall an image in all cases, when
using the proposed model, is 0.4 seconds in a Pentium 4 at
1.3 GHz.

FIGURE 9. (a) Versions with subtractive noise witht = 0.95. (b) Recalled versions.

FIGURE 10. (a) Versions with additive noise witht = 0.1. (b) Recalled versions with M memory. Note how in this case most of pixel values
are not correctly recalled. Compare with the results obtained with the new proposal with the value oft = 0.1 (Figure 4.)

FIGURE 11. (a) Versions with subtractive noise witht = 0.1. (b) Recalled versions with W memory. Note how in this case most of pixel
values are not correctly recalled. Compare with the results obtained with the new proposal with the same value oft = 0.1 (Figure 7).
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4.3.3. Comparison with other approaches

The most similar work to the one presented in this work is
the one reported in Refs. 13 and 16. In Refs. 13 and 16,
the authors describe how a binary image can be used to re-
call gray-level patterns. The idea consists on that given a set
of gray-level patterns to be first memorized: (1) Decompose
them into their corresponding binary patterns, and (2) Build
the corresponding binary associative memory (one memory
for each binary layer) with each training pattern set (by lay-
ers). A given pattern or a distorted version of it, is recalled in
three steps: (1) Decomposition of the pattern by layers into its
binary patterns, (2) Recalling of each one of its binary com-
ponents, layer by layer also, and (3) Reconstruction of the
pattern from the binary patterns already recalled in step 2.

One of the problems of the proposal given in Refs. 13
and 16 is that when positive or subtractive noise is added to
the pattern, at the moment of decomposing the pattern into
its binary patterns, mixed noise is introduced. This is well
known to be one of the main drawbacks of these kind of mem-
ories. This of course will tend to affect the performance of
the memory. To show this fact in Figs. 10a and 11a we show
one distorted of each pattern of Fig. 3 with positive noise
and with subtractive noise, respectively, and witht = 0.1.
Recalled versions are shown in Figs. 10b and 11b, respec-
tively. Note how in both cases most of the pixel values were
not correctly recalled, due to the problems already described.
Compare the results obtained with the new proposal as shown
in Figs. 4 and 7 and see how our proposal provides a much
better recalling results. The reader can easily show that the
more noise (additive or subtractive) is added to the pattern
the worse will be the recall of the pattern if the proposal pre-
sented in Refs. 13 and 16 is used.

One last thing that is worth to be mentioning is that with
the proposal described in Refs. 13 and 16 the recalling times
in the same platform is of 7 seconds in average, while with
the new proposal recalling times are of 0.4 seconds.

5. Conclusions

In this paper we have proposed a new set of associative mem-
ories able to work with gray-level patterns. The proposed set

of memories is an extension of the associativeαβ memories
recently introduced in Ref. 10. Whileαβ memories work in
the binary case,AB memories work in the gray-level case. To
derive the set of extended memories, we first take operators
α andβ, the foundation of the functioning ofαβ memories,
and solve a set of functional equations to get the extended op-
erators,A andB. It is shown that the operatorsα andβ are
a special case if the general operatorsA andB. We give the
necessary and sufficient conditions under which the proposed
set of memories is able to recall first the fundamental set of
patterns, and second a pattern from an altered version of it
when additive or subtractive noise is added to the pattern.

The proposed extension was tested with several real pat-
terns (images of five known mathematicians) with very satis-
factory results. Even in the case of severe noise, the proposed
extended memories are able to recall patterns from distorted
versions of them.

Compared to other similar approaches the proposal shows
a much better performance in recalling results as demon-
strated in Sec. 4.3.3. Also the times for pattern recall with
the new proposal are much better than the obtained with other
similar works.

Nowadays, we are working through the solution of the
following more general problem of patterns distorted with
mixed noise. One of the main drawbacks of classical asso-
ciative memories including morphological andαβ memories
is that they cannot efficiently deal with mixed noise. Their
performance is highly affected when mixed noise appears.
Mixed noise is a more realistic noise than either subtractive
or additive noise. In this case we are searching for new ways
to build the associative matrix in such way that a pattern af-
fected by mixed noise is efficiently recalled. For some semi-
nal investigations, refer for example to the works reported in
Refs. 11, 12, 14, 15, and 17 to 20.
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