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We consider some fundamental constants from the point of view of the duality symmetry. Our analysis of duality is focused on three
issues: the maximum radiated power of gravitational waves, the cosmological constant, and the magnetic monopole mass. We show that
the maximum radiated power of gravitational waves implies that the Planck time is a minimal time. Furthermore, we prove that duality
implies a quantization of the cosmological constant. Finally, by using one of the Euler series for the numberπ, we show that the Dirac
electric-magnetic charge quantization implies a mass for the magnetic monopole (or neutrino) of the order of10−5 the mass of the electron.
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Consideramos algunas constantes fundamentales desde el punto de vista de la simetrı́a de dualidad. Nuestro análisis de dualidad se enfoca en
tres temas: la potencia máxima radiada de ondas gravitacionales, la constante cosmológica y la masa del monopolo magnético. Demostramos
que la potencia ḿaxima radiada de ondas gravitacionales implica que el tiempo de Planck corresponde a un tiempo mı́nimo. Más aun,
probamos que la dualidad implica una cuantización de la constante cosmológica. Finalmente, usando una de las series de Euler para el
númeroπ, demostramos que la cuantización de la carga eléctrica-magńetica de Dirac implica una masa para el monopolo magnético (o
neutrino) del orden de10−5 la masa del electrón.
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1. Introduction

Because the problem of the number of fundamental con-
stants [1] and their possible time variability [2] is of per-
manent interest in physics, any consistent new idea on this
subject must be welcome. In this context, it has been empha-
sized [3] that one should only consider as physically mean-
ingful the variability of dimensionless constants rather than
dimensional constants [2]. This claim is not shared, however,
by some physicists (see Ref. 2 for details), and therefore new
routes for approaching the subject seem to be needed.

One of our aims in this paper is to shed some light on the
above controversy by applying the duality concept to some
fundamental constants. Specifically, in this work, we ana-
lyze some fundamental constants from the point of view of
a duality symmetry, including the Planck time, the cosmo-
logical constant, and the magnetic monopole mass. We show
that by applying the duality concept to the maximum radiated
power of gravitational waves one obtains the result that the
Planck time must be a minimal time. Furthermore, using the
S -duality concept for the cosmological constant, obtained in
the linearized gravity development [4], and relaying on anal-
ogy of the Dirac’s quantization of the electric and magnetic
monopole charges, we argue that duality implies a quanti-
zation of the cosmological constant. Finally, by using one
of the Euler series for the numberπ, we demonstrate that the
Dirac duality concept for the electric charge implies a relation
between the electron massme and the magnetic monopole
massmg. Such a relation leads to a value formg of the order
of the neutrino mass∼ 10−5 me, which is too low in com-
parison with the expected standard value for the mass of the

magnetic monopole, namely of the order of GeVs. Thus, we
find that duality seems to imply a deep connection between
the neutrinōνe and the magnetic monopole.

Moreover, we explain that the three different types of re-
sults mentioned above can be written in a dimensionless con-
stant context. This suggests that the underlying theory must
be invariant under the duality of the dimensionless fundamen-
tal constants rather than a duality of dimensional constants.
This result is in agreement with Dirac’s older idea [3] (see
Ref. 2 for a recent discussion of this problem) that dimen-
sionless constants are more important than dimensional ones.
From this perspective, one may conclude from our results that
in fact what matters is the variability of dimensionless funda-
mental constants, as Duff has emphasized [2], rather than the
variability of dimensional fundamental constants.

This article is organized as follows. In Sec. 2, using the
maximum radiated power of gravitational waves, we prove
that the Planck time is a minimal time. In Sec. 3, we discuss
the cosmological constant duality, and in Sec. 4 we analyze
the magnetic monopole mass from a duality perspective. Fi-
nally, in Sec. 5, we make some latter remarks.

2. Duality between the maximum radiated
power and Planck time

Consider a source of gravitational waves of massM and ra-
diusr. It is known that an estimate of the radiated power of
gravitational waves is given by

P ∼ L0

(rSch

r

)5

, (1)
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where

L0 =
c5

G
, (2)

and

rSch =
GM

c2
. (3)

Here, c is the “light” velocity (or spacetime structure con-
stant in the terminology of Ref. 5) andG is the Newton
gravitational constant. In order to avoid the collapse of the
object into a black hole, it is necessary to haverSch < r and
therefore from formula (1) we see that the maximum radiated
power of any object isL0. Conversely, if we assume thatL0

is the maximum radiated power, then from (1) we obtain the
relation rSch < R, which is linked to the relationv < c,
wherev is the velocity of the source.

Let us now introduce the Planck time

tP =
(

G}
c5

)1/2

, (4)

where} is the Planck constant. This formula can be written
as

}
t2P

=
c5

G
= L0. (5)

Therefore, by fixing}, we obtain the interesting dual prop-
erty: L0 is the maximum radiated power if and only iftP is
a minimal time. Of course, whenc is setting, one has that
minimal timetP implies that the Planck length

lP = ctP =
(

G}
c3

)1/2

is a minimum length in nature (see Ref. 6). Although, this
result seems to be in agreement with the idea that a funda-
mental length arose in the string theory (see Ref. 7), its clas-
sical derivation presented here contrasts with the same result
obtained from quantum gravity (see Refs. 8 to 11, and refer-
ences therein).

3. Cosmological constant duality

In Ref. 4 it was proved that linearized gravitya la
MacDowell-Mansouri implies a cosmological constant dual-
ity symmetry

Λ ↔ 1
Λ

, (6)

which can be thought of as the analogue of the charge duality
in an Abelian gauge field theory,

e2 ↔ 1
e2

. (7)

In order to clarify this analogy, let us briefly describe the main
result of Ref. 4. Let us introduce the ‘gauge’ field of lin-
earized gravity,

Aµαβ =
1
2
(∂αhµβ − ∂βhµα) = −Aµβα. (8)

Under the transformation

δAµαβ = ∂µλαβ , (9)

the curvature tensor

Fαβ
µν = ∂µAαβ

ν − ∂νAαβ
µ (10)

is invariant. This means that the tensorFαβ
µν can be identified

with an abelian field strength.
Consider the extended curvature

Fαβ
µν = Fαβ

µν + Ωαβ
µν , (11)

where

Ωαβ
µν = δα

µhβ
ν − δβ

µhα
ν − δα

ν hβ
µ + δβ

ν hα
µ. (12)

In Ref. 4 it was shown that the action

S =
1

16Λ

∫
d4xεµναβFτλ

µνFσρ
αβετλσρ

+
iΘ
8π

∫
d4xεµναβFτλ

µνFσρ
αβδτλσρ, (13)

where Λ and Θ are constants, permits a dual action.
From (13) we observe that the cosmological constantΛ is
playing the role of a gauge coupling constantg2, and thatΘ is
playing the role of aθ constant in the usual abelian Maxwell
theory. Thus, we find that the analogue of the gauge coupling
constant dualityg2 → 1/g2 in the case of linearized gravity
corresponds to the cosmological constant duality transforma-
tion Λ → 1/Λ (see Ref. 4 for details).

In this section we are interested in a deeper understand-
ing of the relation (6). For this purpose let us recall how the
relation (7) arises in Abelian gauge field theory. It turns out
that the origin of (7) is Dirac’s electric charge quantization
condition, namely

ge =
n}c
2

, (14)

whereg is the magnetic monopole charge. The key point is
that the source-free Maxwell field equations are invariant un-
der the transformation

E → B B → −E. (15)

While in the case of nonsource-free Maxwell equations the
transformation (9) needs to be extended and accompanied by
the transformation

g ↔ e. (16)

Due to (14), one sees that (16) is equivalent to (7).
In general, the cosmological constantΛ can be written in

terms of a fundamental lengthl in the form

Λ = ± (D − 1)(D − 2)
2l2

, (17)

whereD is the dimension of the spacetime of an arbitrary
signature. Therefore, the duality relation (6) is equivalent to

l2 ↔ 1
l2

. (18)
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We observe that (18) establishes the analogy between (6)
and (7) in a clearer context. Thus, following this analogy,
one should expect (18) to be a consequence of the quantiza-
tion relation

Ll =
nlpR

2
, (19)

wherelp is the Planck length,R is the radius of the universe
andL is the dual length associated withl. In turn, this re-
sult implies a quantization ofl, and therefore a quantization
of the cosmological constant via the relation (17). In fact, by
writing Λl ≡ Λ and

ΛL = ± (D − 1)(D − 2)
2L2

, (20)

we discover that (19) implies the formula

ΛLΛl =
(D − 1)2(D − 2)2

n2l2pR
2

. (21)

Of course, the casesD = 1 and D = 2 are exceptional,
as can be seen even from (17). So, out of these two cases,
one may be interested in an understanding of the meaning
of (19) and (21). First of all, ifΛL 6= 0, we discover thatΛl

should be quantized. Second, assumingL ∼R/2, we observe
from (19) thatl = nlp and thereforelp is a minimal length, in
agreement with our discussion in Sec. 3. Finally, from (19)
we see that, takingL ∼lp/2, one obtainsl = nR, and there-
fore from (17) or (21) we find that

Λl = ± (D − 1)(D − 2)
2n2R2

. (22)

For n=1, D=4 and R∼1028cm we getΛl∼10−56cm−2,
which is a very small value but nevertheless different from
zero. It is not difficult to see that these results can be du-
alized, that is, whenΛl is small,ΛL is large and vice versa.
For historical reasons the attempt to make zero the cosmolog-
ical constant is called “the cosmological constant problem”.
From (21) we observe that forD 6= 1 andD 6= 2, this type of
problem has no a solution free of singularities. In fact, (21)
implies that ifΛl → 0, thenΛL →∞ and vice versa.

4. The magnetic monopole mass duality

Consider the duality transformations

g2 ←→ 1
e2

(23)

and
mg ←→ 1

me
. (24)

Observe that (23) is a consequence of (14). In (24),mg refers
to the mass of the magnetic monopole. Moreover, we are
assuming that there exists the analogue of formula (24) for
mass quantization, as Zee [12] has suggested for any massive
system. It is not difficult to see that the relation

mgg
2

mee2
= β, (25)

is invariant under transformations (23) and (24). Thus, the
constantβ in (25) must be fundamental, dimensionless, and
should not be related to any property of the system. On the
other hand, it is known that not only the fine structure con-
stantα = e2/}c can be related to the numberπ via the
Weyler heuristic formula

α =
9

8π4

(
π5

245!

)1/4

, (26)

but also all masses of fundamental particles via the hyperdia-
mon lattices based on Clifford algebras (see Ref. 13, and ref-
erences therein). This suggests thatβ in (25) could, in prin-
ciple, be related to the numberπ. Let us choose one of the
simplest possibilities for such a constant, namelyβ = aπ2,
wherea is a numerical factor independent ofπ to be deter-
mined below. Thus expression (25) becomes

mgg
2

mee2
= aπ2. (27)

Using (14) and the fine structure constantα = e2/}c, for-
mula (27) yields

mg = 4ameα
2π2. (28)

It turns out to be convenient to multiply this expression byc2:

mgc
2 = 4amec

2α2π2. (29)

On the other hand, there exists a famous numerical series
due to Euler for determining the numberπ, namely

∞∑
n=1

1
n2

=
π2

6
, (30)

which can be used in Eq. (29) to obtain the intriguing result

mgc
2 =

∞∑
n=1

mec
2α2

2
1
n2

, (31)

provided we seta = 1/2(4!). Therefore, we have shown that
using (14) the invariant formula (25) withβ = π2/2(4!) leads
to (31). We recognize in the expression

En ≡ −mec
2α2

2
1
n2

(32)

the well known formula for the eigenvalues of the energy for
the hydrogen atom. From (31) we find that the value ofmg

is of the order of the neutrino mass,mνe ∼ 10−5me, but
too low in comparison with the expected standard value for
the magnetic monopole mass, which is of the order of GeVs.
One may try to understand this result by considering the well-
known neutron decay

n → p + e + ν̄e. (33)

A hydrogen atom is made out of a protonp and an elec-
trone. Thus, the transition (33) suggests that the total energy
obtained by the eigenvalues of the energy according to (32)
should determine the mass of the neutrinoν̄e. However, re-
lation (32) suggests identifyingmνe with mg, and therefore,
we may conclude that duality seems to imply a deep connec-
tion between the neutrinōνe and the magnetic monopole.
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5. Final remarks

In this work we have shown that duality at the level of funda-
mental constants leads to some interesting and intriguing con-
clusions: the Planck time is a minimal time, the cosmologi-
cal constant is quantized and the magnetic monopole mass is
related to the neutrino mass. One should expect similar ob-
servations if the duality concept is applied to other physical
scenarios.

A question arises whether this duality of the fundamen-
tal constants might shed some light on the controversy about
the variability of fundamental constants. Let us write for-
mula (19) (forn = 1) as

L
R

l

lp
=

1
2
. (34)

We observe that this is a duality relation between two dimen-
sionless constantsL/R andl/lp. Similarly, considering the
ratiosmg/me andg2/e2, one sees that (25) is a duality ex-
pression between two dimensionless constants. Of course,
exactly the same conclusion can be obtained from Dirac’s
quantization condition (14), since in that case one may write
(for n = 1)

g2

}c
e2

}c
=

1
4
. (35)

These observations mean that, from the point of view of du-
ality symmetry what seems to be essential are the dimension-
less constants rather than the dimensional ones, in agreement
with Dirac’s argument [3] and Duff’s reply [2]. In fact, it is
easy to see that duality in terms of fundamental dimensional
constants does not make sense. For instance, let us assume a
duality for the light velocityc of the form

c2 ↔ 1
c2

. (36)

If we setc = 1, then this symmetry is lost. Thus, in order
to maintain the duality symmetry of an underlying theory, it
is necessary to express it in terms of dimensionless constants.
In turn, this implies that what matters is the variability of such
dimensionless constants, rather than dimensional constants.
Considering this observation, we discover that (34) and (35)
establish that time variability of a dimensionless fundamental
constant implies a time variability of its corresponding dual.

Now, one should expect that the duality of the dimension-
less fundamental constants is reestablished in a duality at the
level of fundamental field theory. Maxwell field theory, with
both electric and magnetic sources, offers an excellent exam-
ple of this remark. Therefore, one should be interested in
applying the ideas discussed in this paper in a corresponding
field theory in which duality may play a fundamental role. In
fact, the duality for linearized gravity used in Sec. 3 as start-
ing point in connection with the duality of the cosmological
constant is a good example of this idea. However, one may
still be more ambitious and ask for a theory in which duality
acts as a fundamental principle. In a sense, this is the prin-
ciple suggested by the interconnection between the various

string theories leading to the so-called M-theory [14]. Thus,
one may say that M-theory is the final goal of a duality prin-
ciple. The fine point is that this idea may require a new and
unexpected mathematical framework for its realization. In a
series of works [15]-[22], it has become more evident that a
candidate for such a mathematical framework is the oriented
matroid theory [23]. Hence, one of our aims for further re-
search is to use the oriented matroid theory as a mathematical
tool in order to have a better understanding of the duality of
fundamental constants.

The main idea of the present work was to link duality
symmetry with various fundamental constants. In this re-
spect, it is worth mentioning that a relation between the cos-
mological constant and atomic units was established a long
time ago [24]. In fact, this relation seems to present some
kind of duality between the cosmological constant, similar
to the present discussion. Therefore, it may be interesting
for further research to analyze the ideas of Ref. 24 from the
point of view of the present work. Furthermore, there will be
effects of duality symmetry in connection with fundamental
constants, and in particular with the cosmological constant,
which we might hope be able to measure. In this sense the
cosmic geophysical observations discussed in Ref. 25 may be
a guide, and this is something we hope to consider in the near
future.

From the present work the following natural questions
may emerge:

(i) The Expression (1) for the radiated power of gravita-
tional waves is calculated in linearized GRT,i.e., for
weak gravitational fields. What sense does it make then
to bring it into context with the Planck time which gov-
erns extremely strong gravity?

(ii) What does it mean to quantize a fundamental constant,
as motivated by some formal analogy for the cosmo-
logical constant? Wouldn’t it be a proposal against the
spirit of such a constant?

(iii) Is there any physical meaning of the sum over all infi-
nite energy levels of the hydrogen atom?

It is clear that, although these questions are interesting, their
answer might not be so simple. Nevertheless, it is tempting to
try to give a possible answer. Let us first discuss question (i).
It turns out that exactly the same question can arise in the case
of weak/strong coupling duality of linearized gravity [4,26].
The answer in this case may rely on the assumption of dual
‘phases’ of M-theory, one which describes weak gravity and
the other, strong gravity. And each one would have its own
field theory limit. But the idea is that M-theory itself be-
comes invariant under a weak-strong duality transformation.
From this perspective, it seems surprising that one may touch
this idea of dual phases of M-theory by simply considering
the duality between the maximum radiated power of gravi-
tational waves and Planck time. A similar argument can be
applied in the case of question (ii). M-theory should have
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two dual phases each one with small/large cosmological con-
stant. So, the traditional spirit of the cosmological constant
comes from just one of these dual phases; but as soon as one
realizes the possibility of the other dual gravitational phase,
then the quantization of the cosmological constant becomes
as a consequence. It is worth mentioning that the idea of the
quantum cosmological constant has already appeared in other
contexts [27,28]. At first sight it seems that the question (iii)
should correspond to a different scenario. However, since
we have assumed in Sec. 4 the weak/strong coupling dual-
ity for an Abelian gauge theory, which is presumably part
of M-theory, we find that a possible answer might also be
found in the concept of dual phases of M-theory. In fact,
suppose that we have a system in which in one phase can be
described by the associated constantsme and e and in the
other bymg andg, respectively. In order for this description
to make sense, something must remain constant. According
to formula (25) this is provided by the combinationsmgg

2

andmee
2. Thus, such a constant must be fundamental, di-

mensionless, and should not be related to any property of the
system itself. What better than the numberπ? It just hap-
pens that, as the Weyler heuristic formula, and formula (27)
indicates, such a constant should be proportional toπ2 rather
thanπ itself. Now, from (27), one may obtain (29). The next
step is simply to apply the famous numerical series (30) due
to Euler for determining the numberπ2. What we obtain is
the energy formula (31), which can be related to the hydrogen

atom. From this perspective, one has obtained the surprising
result that the quantum energy formula for the hydrogen atom
is a consequence of the dual phases of M-theory.

Although the above explanations in terms of M-theory
seem reasonable, one can still have the feeling that the ques-
tions above require further discussion. For instance, M-
theory does not give an answer to the question: What is the
strong gravitational coupling phase? Attempts to answer this
question have been given by Nieto [4] and Hull [26]. In
particular, Hull’s idea is to construct a theory from the dual
gauge fields

Dµνλα = εµνλβhβ
α (37)

and
Cµναγρσ = εµναβεγρσλhβλ, (38)

which are duals of the gravitational fluctuationh. Although
these ideas have generated some motivation (see Ref. 29,
and references therein), complete dual gravitational theory is
still a mystery. Thus, since the strong gravitational coupling
phase is an open problem, one cannot expect to give a gen-
eral answer at the present to the above questions in terms of
M-theory.
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