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In this paper we perform a comparison between two solutions of the Thomas-Fermi equation. One of these solutions is the one recently
found by Bougoffa (2014) which makes use of a direct method to solve the differential equation. The other solution found uses a variational
method. The first method uses approximations of the residual conditions after assuming a trial function, inspired by the Sommerfeld solution.
Our solution does not require approximations and we found that it reproduces more conveniently the corresponding numerical solution in
terms of relative error.
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1. Introduction

From the earliest days of quantum mechanics, it has been
clear that one could not hope to solve most of the physically
interesting systems exactly, especially those with more par-
ticles. Thus, by 1930 (only three years after the first works
of Thomas [1] and Fermi [2], and five years after the advent
of the ”new” quantum theory), a large variety of approximate
methods had been developed to construct approximate ana-
lytical solutions for nonlinear differential equations. There
has been a great deal of work on rigorous mathematical prob-
lems in quantum theory, most of it on the fundamentals and
relevant operator theory.

The Thomas-Fermi equation is a nonlinear ordinary dif-
ferential equation for modeling electrons of an atom. In par-
ticular, the Thomas-Fermi model is widely used in nuclear
physics, for example, to answer questions related to nuclear
matter in neutron stars [3]. In spite of its generality, the ap-
plication of the Thomas-Fermi method is based on the solu-
tion u(x) of the second-order nonlinear differential equation
which is difficult to determine.

The purpose of this model is give a expression for the
electron densityρ(r), and of course, the electrostatic poten-
tial between the nucleus and the cloud of electrons at a dis-
tancer for this. This central potentialV (r) dominates the
interaction of electrons obeying Fermi-Dirac statistics in a
volume region considered to be large enough so thatV (r)
does not vary appreciably over the size of the region. In this
case the electrons move freely. Under these conditions, the
electron kinetic energy is a minimum, and the electrons are
packed in phase space as densely as possible consistent with

the exclusion principle. Ifpmax is the maximum value for the
electron momentum

n =
8π

3h3
p3
max, (1)

wheren is the number of electrons per unit volume. The po-
tential energy is−eV , and it is confined in a neutral atom if
its energy is non-positive,i.e.

p2

2m
= eV. (2)

Using the expression (2) into (1), we can express the electron
charge density in terms of the potentialV ,

ρ(r) = −en = − 1
3π2

√(
2meV

~2

)3

. (3)

Now the electronic charge densityρ(r) and the potential
V (r) are related via the Poisson equation:

∇2V (r) + 4πρ(r) = 0, (4)

Taking into account the solution of (4), the boundary
conditions are such thatV (r) tends toZe/r when r → 0
(Coulomb field), andV (r) tends to zero whenr tends to in-
finity.

The Thomas-Fermi equation in its usual form is presented
when performing a change of variable

x =
r

a
, V (r) =

eZu(r)
r

, a = a0

(
9π2

128Z

)1/3

, (5)

where

a0 =
h2

4π2mee2
= 5.2917721092.10−11 m ≈ 0.53 Å,

is the first Bohr radius of the hydrogen atom, at a distancer
from the nucleus,me ande are the mass and charge of elec-
tron.
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This change is also convenient because it eliminates all
numerical constants in Eq. (4) leading to an universal non-
linear second-order ordinary differential equation which de-
scribes all atoms without distinguishing their composition
or number of electrons. Substituting the changes described
in (5) into Eq. (4), we find the Thomas-Fermi equation

d2u

dx2
− u3/2

x1/2
= 0. (6)

This new equation (6) satisfies

u(0) = 1, u(∞) = 0. (7)

An important parameter is the magnitude of the initial
slope

B = −du(r)
dr

∣∣
x=0

, (8)

such as under numerical integration yieldsB = 0.5055π
= −1.588 [4].

There have been many attempts to construct an approx-
imate analytical solution of the Thomas-Fermi equation for
atoms [5, 6] in these cases using variational principles, try-
ing to solve the equation by proposing a one-parameter trial
function:

u1(x) = (1 + ηx)e−ηx, (9)

whereη = 1.905 and Csavinsky [7] has proposed a two-
parameters trial function:

u2(x) =
(
a0e

−α0x + b0e
−β0x

)2
, (10)

wherea0=0.7218337, α0=0.1782559, b0=0.2781663 and
β0=1.759339. Later, Kesarwani and Varshni [8] suggested:

u3(x) =
(
ae−αx + be−βx + ce−γx

)2
, (11)

where a=0.52495, α=0.12062, b=0.43505, β=0.84795,
c = 0.04 andγ = 6.7469.

The last two equations are obtained using an equivalent
Firsov’s variational principle [9]. The first equation has been
modified by Wu [10] in the following form:

u4(x) = (1 + m
√

x + nx)2e−2m
√

x, (12)

wherem = 1.14837 andn = 4.0187× 10−6.
Recently, M. Desaixet al. [12] proposed the following

expression:

u5(x) :=
1

[1 + (kx)a]b
, (13)

where a = 0.9237797117, b = 2.097976638 and k =
0.4834685937. Moreover, other attempts have been carried
out to solve this problem [13, 14]. But, all of these proposed
trial functions do not reproduce appropriately the numerical
solution of the Thomas-Fermi equation [15] and its deriva-
tive atx = 0. They did not prove to be efficient when used to
calculate the total ionization energy of heavy atoms.

Oulne [16], proposed a trial function which depends on
three parametersα, β andγ:

u6(x) = (1 + α
√

x + βxe−γ
√

x)2e−2α
√

x, (14)

The optimum values of the variational parametersα, β and
γ, obtained by minimizing the Lagrangian, are respectively
equal to 0.7280642371, -0.5430794693 and 0.3612163121.

From other methods Marincaet al. [17], solve the
Thomas-Fermi equation in this case using OHAM (Optimal
Homotopy Asymptotic Method), finding a pair of approx-
imate solutions with good accuracy. These solutions are
somewhat complicated, introducing many parameters in a
combination (or rather a generalization) of solutions found
previously by other authors using simpler functions.

A solution has recently been tested which is based in
the trial function of Wu [10], in which we add other terms
given account for a solution more closer to the numeri-
cal solution obtaining good results adjusted to the semi-
analytic solution of other works In the area. The solu-
tion is of type Wu such that [11]uour(x) = (1 + a

√
x +

bx+ cx
√

x)2 exp (−2a
√

x) with a = 0.9614236887819619,
b=−0.3442527917822383, andc = 0.08703140640977791.
Our solution has shown to have relative errors below 4% with
respect to other solutions and to the numerical solution.

More recently Bougoffa [18] inspired in the Sommerfeld
solution found a solution to Thomas-Fermi equation by a
direct method to solve the differential equation. The idea
is new and very simple but powerfully motivational. Their
method consists in the reduction of the original differential
equation (6) into an equivalent equation, so that the solution
can then be expressed in a logarithmic form. In the process,
once the solution is proposed, it is an algebraic subsidiary
condition that cannot be solved unless it approximates cer-
tain terms to simpler expressions, such as a function expan-
sion. The result is that one can make several approximations
and obtain almost two distinct solutions.

In the present work, we propose a new trial function, con-
structed on the basis of the Bougoffa [18] function, which
reproduces correctly the numerical solution of the Thomas-
Fermi equation [15]. It also gives more precise results for the
total ionization energies of heavy atoms in comparison with
the previously proposed approximate solutions.

2. The system

We use variational techniques and optimization to find an-
alytical solutions. In this case, the idea is that the Thomas-
Fermi differential equation, can be described by the following
Lagrangian

L(u) =
1
2

(
du

dx

)2

+
2
5

u5/2

x1/2
. (15)

This Lagrangian is equivalent to equation (6) when one
uses the Euler-Lagrange equation

d

dx

∂L

∂u′
=

∂L

∂u
, (16)
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where the prime symbol denotes derivative respect to thex
variable. Finally, the total Lagrangian will be

Lt =

∞∫

0

Ldx, (17)

thus, when a solution is fixed,u = u(x, αi), i = 1, 2, 3..., in
terms of some coefficients, it can be optimized using a total
Lagrangian minimum condition to find the value of arbitrary
constant

∂Lt

∂αi
= 0. (18)

3. Solutions

The first solution proposed in [18], is

up1(x) = (1 + ax)−2
. (19)

This solution is achieved from a direct method to solve the as-
sociated differential equation and making approximations in
terms of a subsidiary condition. We propose the same func-
tion but in this case solved through variational method lead-
ing toa = 0.569270441723403 (fully analytical) in compar-
ison with the value found by Bougoffaa = 9−1/3. When
this is calculated, however, the solution may also be achieved

analytically obtaining the corresponding Lagrangian

L =
2

(
5a2 + 1+ax√

x

)

2(1 + ax)6
, (20)

Now integrating over the intervalx ∈ (0,∞),

Lt =
2a

5
+

7π

64
√

a
, (21)

and optimizing

∂Lt

∂a
=

2
5

+
7π

128
√

a3
= 0. (22)

The algebraic solution to the above equation is found di-
rectly

a =
(35π)2/3

32× 21/3
. (23)

Bougoffa also proposes another solution such that

up2(x) = (1 + ax)−3
. (24)

In this case , the result is

L =
9a2

2(1 + ax)8
+

2
5
√

x(1 + ax)15/2
. (25)

TABLE I. The values of the functions proposed by Bougoffa by direct method (DM), our solutions via variational method (VM), and
numerical solution using a Runge-Kutta method.

x Numerical ua
p1 ua

p2 ub
p1 ub

p2

0 1 1 1 1 1

0.005 0.9925 0.995209 0.997143 0.994331 0.994683

0.01 0.9854 0.990453 0.994298 0.988711 0.989403

0.05 0.9352 0.953604 0.971919 0.945414 0.948483

0.1 0.8818 0.910364 0.944880 0.895179 0.900445

0.5 0.607 0.649971 0.760834 0.605955 0.611942

1 0.424 0.456075 0.592241 0.406073 0.401305

2 0.243 0.259910 0.379210 0.218657 0.199476

5 7.88E-2 0.086314 0.134052 0.067593 0.046610

10 2.43E-2 0.029649 0.040670 0.022325 0.010564

12 1.71E-2 0.021824 0.028095 0.016305 0.006836

15 1.08E-2 0.014831 0.017363 0.010989 0.003931

20 5.78E-3 0.008874 0.008954 0.006518 0.001871

25 3.47E-3 0.005900 0.005206 0.004310 0.001032

30 2.26E-3 0.004204 0.003290 0.003059 0.000628

35 1.55E-3 0.003146 0.002209 0.002283 0.000410

40 1.11E-3 0.002443 0.001555 0.001769 0.000283

45 8.28E-4 0.001952 0.001135 0.001411 0.000203

50 6.32E-4 0.001595 0.000854 0.001151 0.000150

Superscripta correspond to the Eq. (19) and (24) for direct method, respectively, that is, the original solutions found by
Bougoffa. Superscriptb correspond to the Eq. (19) and (24) variational calculus, respectively, that is, our solutions.
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TABLE II. Comparison of the relative error (%) of the functions respect of numerical solution. In this case
Er(yNum, yi) = (yNum − yi)/yNum × 100

x Er(Num, ua
p1) Er(Num, ua

p2) Er(Num, ub
p1) Er(Num, ub

p2)

0 0 0 0 0

0.005 -0.2730 -0.4678 -0.1845 -0.2199

0.01 -0.5128 -0.9030 -0.3360 -0.4062

0.05 -1.9679 -3.9263 -1.0922 -1.4203

0.1 -3.2393 -7.1536 -1.5172 -2.1144

0.5 -7.0792 -25.3434 0.1721 -0.8142

1 -7.5649 -39.6797 4.2279 5.3523

2 -6.9589 -56.0535 10.0173 17.9108

5 -9.5364 -70.1170 14.2219 40.8492

10 -22.0156 -67.3688 8.1263 56.5232

12 -27.6306 -64.3018 4.6451 60.0180

15 -37.3276 -60.7725 -1.7573 63.5979

20 -53.5438 -54.9137 -12.7851 67.6216

25 -70.0325 -50.0457 -24.2141 70.2397

30 -86.0296 -45.5765 -35.3898 72.1740

35 -103.0245 -42.5636 -47.3534 73.4886

40 -120.1331 -40.0970 -59.4371 74.4948

45 -135.7528 -37.1338 -70.4694 75.4526

50 -152.4069 -35.1603 -82.2696 76.1368

TABLE III. Comparison of total ionization energies in units (e2/a0) from HF and solutions by direct method and variational calculus.

Z HF E(ua
p1) E(ua

p2) E(ub
p1) Er(ua

p1) Er(ua
p2) Er(ub

p1)

92 28070 17790.17 10590.05 21065.86 36.62 62.27 24.95

93 28866 18244.65 10860.58 21604.01 36.80 62.38 25.16

94 29678 18705.68 11135.03 22149.94 36.97 62.48 25.37

95 30506 19173.30 11413.39 22703.67 37.15 62.59 25.58

96 31351 19647.54 11695.69 23265.22 37.33 62.69 25.79

97 32213 20128.40 11981.94 23834.62 37.51 62.80 26.01

98 33093 20615.92 12272.14 24411.91 37.70 62.92 26.23

99 33990 21110.12 12566.33 24997.10 37.89 63.03 26.46

100 34905 21611.02 12864.50 25590.23 38.09 63.14 26.69

101 35839 22118.64 13166.68 26191.32 38.28 63.26 26.92

102 36793 22633.01 13472.87 26800.40 38.49 63.38 27.16

103 37766 23154.15 13783.09 27417.49 38.69 63.50 27.40

104 38758 23682.07 14097.35 28042.63 38.90 63.63 27.65

105 39772 24216.81 14415.66 28675.83 39.11 63.75 27.90

106 40806 24758.38 14738.05 29317.12 39.33 63.88 28.15

107 41862 25306.81 15064.51 29966.52 39.55 64.01 28.42

108 42941 25862.11 15395.07 30624.08 39.77 64.15 28.68

109 44042 26424.31 15729.74 31289.80 40.00 64.28 28.95

Second column is HF numerical solution. The next three columns are ionization energies for Bougoffa and our solutions. In
this case, calculus forub

p1 andub
p2 match. The last three columns represents error associated to each solution.
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Now integrating over the intervalx ∈ (0,∞),

Lt =
4096

15015
√

a
+

9a

14
, (26)

and optimizing again

∂Lt

∂a
=

9
14
− 2048

15015
√

a3
= 0, (27)

we find

a =
256

9× 7252/3
= 0.35573513495039094, (28)

in comparison with the value found by Bougoffa
a = 144−1/3.

The values of the functions proposed by Bougoffa (direct
method) and our solutions (via variational method) are shown
in the Table I. It can be seen that both satisfy the boundary
conditions (7), obtaining accurate results. In Table II, the rel-
ative error (%) of the solutions are shown in comparison to
the numerical solution [15].

To test the efficiency of the different solutions, given by
the Eqs. (19) and (24) for direct method and variational cal-
culus respectively, we have calculated the total ionization en-
ergy of heavy atoms following the relation [19]

E =
12× 21/3 × Z7/3

7× (9π2)1/3

du

dx

∣∣∣
x=0

, (29)

in hartrees (e2/a0) and the obtained results, presented in Ta-
ble II, are compared with those of Hartree-Fock (HF) [20].

4. Conclusions

In this manuscript a variational method has been used since
obtaining the corresponding lagrangian for a Thomas-Fermi
system for multielectronic atoms, which is known there is
no analytical solution and only an approximate solution is
possible. The problem is related to inverse problems to ob-
tain the corresponding lagrangian for systems of differential
equations, in this case, non-lineal and the Lagrangian is ob-
tained by direct inspection. The method has been compared
with a technique for solving the Thomas-Fermi equation, us-
ing direct resolution in terms of ordinary variable changes
and series expansions. We show in this manuscript that the

variational calculation offers better approximation and a so-
lution closer to the numerical solution.

We proposed a couple of trial functions to find solutions
to the Thomas-Fermi equation, based on a solution obtained
by Bougoffa through a direct method for solving this dif-
ferential equation. Comparing the results in Table II, we
can see that the Eq. (19) solved by variational methods has
a smaller error compared with that obtained by the direct
method throughout the measured range. This does not hap-
pen to Eq. (24), in which, the error is smaller only in the main
interval0 ≤ x ≤ 12. The errors calculated for solutions via
direct method are 25.47% and 37.76% for the Eqs. (19) and
(24) respectively, compared with the errors for our solutions
which are 4.16% and 31.20%, respectively, taking in account
67 points to thex values.

Furthermore, in the test of efficiency in Table III, for vari-
ous heavy atoms, we can see that our errors are smaller com-
pared with the solutions found by using the direct method.
However, we can also see that the errors of ionization en-
ergies, by both the direct method or variational method, in-
crease as the atom gets heavier. This, of course, we can say
that our solutions are more accurate and can be used to calcu-
late more conveniently some other features for heavy atoms.

The derivative of our function (19) atx = 0 is -1.13854
as for function (24) which is closer to the numerical deriva-
tive: -1.58807102 [15]. In the case for solution obtained for
direct method the derivative of function (19) atx = 0 is equal
to -0.9615 and for function (24) a value of -0.572357.
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