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The description of the temporary evolution of upconversion energy transfer processes in solid samples including doped luminescent centers
is revised using a simple but non-restrictive pair model. The formalism is related to upconversion processes between a collective of donor
and acceptor optical centers, and leads to analytic expressions for the temporary behavior of the emission intensities from the intermediate
excited states and the up converted excited state. From a microscopic viewpoint, the results of the model are compared with numerical
solutions of the system of differential equations and with those obtained from kinetic type equations, showing the limits of directly using the
latter in the analysis of upconversion processes. The proposed model makes it possible to obtain average macroscopic solutions, explicitly
dependent on the concentration of dopant luminescent centers in the crystalline lattice, and permits an adequate prediction of the shapes of
the decay curves. It would improve the determination of the upconversion energy transfer rates from experimental data.
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Se desarrolla un modelo para la descripción de la evolucíon temporal de los procesos de transferencia de energı́a por upconversion en
materiales de estado sólido, dopados con centrośopticos luminiscentes. El modelo de pares, sencillo aunque no restrictivo, aplica para
procesos de upconversion en un colectivo de centrosópticos donores y aceptores y conduce a expresiones analı́ticas para la evolución
temporal de las intensidades de emisión desde los estados excitados intermediarios y el estado excitado superior. Desde un punto de vista
microsćopico, se comparan los resultados del modelo con las soluciones numéricas del sistema de ecuaciones diferenciales y con aquellas
obtenidas desde ecuaciones de tipo cinético, demostŕandose las limitaciones de utilizar directamente estasúltimas en el ańalisis de los
procesos de upconversion. El modelo habilita establecer soluciones macroscópicas promedio, que son explı́citamente dependientes en la
concentracíon de centros luminescentes dopantes en la matriz cristalina, y que permiten una adecuada predicción de la forma de las curvas
de decaimiento desde los estados excitados. El modelo podrı́a mejorar la determinación de las velocidades de transferencia de energı́a por
upconversion desde los datos experimentales.

Descriptores: Procesos de transferencia de energı́a; upconversion.

PACS: 78.90.+t

1. Introduction

Since Auzel [1-3] referred to the possibility of energy trans-
fer mechanisms of the upconversion type, much experi-
mental evidence has been reported in different types of
systems[4-14,inter alia]. Upconversion processes have been
the subject of important research in the last decades due to
their use in luminescent devices in which photons having en-
ergies higher than that of excitation are produced, such as
upconversion lasing[15], quantum counters and temperature
sensors[16] and improved solar cells [17]. An updated review
on this topic has been recently published by Auzel[18].

In previous work [19-25], we tried different approaches
to modeling energy transfer phenomena in solid state, both
crystalline systems as well as vitreous materials, focusing
on the macroscopic observables (rate constants, shape of de-
cay curves, etc.), but connecting these results with the de-
tails of the interactions at a microscopic level. We pro-
posed and developed a model that has been used to study
energy transfer processes such as cross-relaxations via elec-
tric multipolar and exchange interactions, and it has made
possible the rationalization of the macroscopic processes and
rates involved in terms of the actual crystallographic struc-
ture of crystalline systems and explicit details of the interac-

tion. The formalism is general in nature and could be applied
to any crystalline matrix containing optical centers such as
Ln3+ or transition metal ions. It has been successfully tested
in systems like elpasolite type crystals [19-22], reproduc-
ing qualitatively and quantitatively some observables such as
the shapes of the decay curves from excited states, and also
in LnX3 (X = F, Cl)[23], proposing alternative formalisms to
rationalize exchange interactions and, in laminar type per-
ovskite crystals, explaining the quenching-concentration de-
pendence in terms of their quasi-bidimensional luminescent
ion substructures[24]. In recent work, some of the ideas un-
derlying this formalism have been useful in improving the un-
derstanding of the upconversion regime in amorphous solids
containing optical centers[25].

In the literature, one finds simplified theoretical analy-
ses of upconversion processes with macroscopic kinetic type
equations, which allow a reasonable qualitative description
of the phenomenon. This type of analysis permits the fitting
of the experimental data using adjustable parameters, but dis-
crepancies between the shapes of the theoretical and experi-
mental curves normally lead to errors in the determination of
the magnitude of the upconversion energy transfer rates.

Following Prasad [26], upconversion processes could be
separated into two broad classes; 1) a namely excited state
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absorption (ESA) process, in which a single optical center
reaches a high-energy excited level through sequential ab-
sorption of two photons and cooperative transition processes,
which include upconversion energy transfer (UPET) between
two optical centers, one of them already in an intermediate
excited state, and reaching the up-converted excited state by
energy transfer from the donor center; and 2) cooperative
emission between two ions, both in an excited state and emit-
ting from an upper virtual state or cooperative sensitization
(where two excited ions transfer energy to a third one). More
recently, Andrews and Jenkins [27] have proposed a three-
center quantum electrodynamic model, performing a more
general treatment for the upconversion energy transfer pro-
cesses.

From the very beginning, Auzel pointed out that the
UPET processes have a better quantum efficiency than other
processes such as ESA, cooperative sensitization or coopera-
tive luminescence [3], and some time after Auzel’s first ref-
erence[1], Vial and Buisson [13,14] proposed a simple two-
center model of isolated ion pairs to explain temporal behav-
ior of UPET processes. Examples of this kind of process
have been reported in crystals ofCsCdBr3:Pr3+, LaF3:Pr3+,
LaCl3:U3+, Gd3Ga5O12:Er3+, among others.

Assuming a two-center and three energy level system for
the interacting centers (conventionally labeled as donord and
acceptora), initial state for the pair|i〉 = |d∗, a∗〉 (both
donord and acceptora excited optical centers are in an in-
termediate excited level), and a final state|f〉 = |do, aup〉
(in which the donor center transfers energy to the acceptor,
relaxing to the ground state and the acceptor center reaches
the|aup〉 higher energy state), the macroscopic temporal evo-
lution of both states is:

Ni(t) = Ni(0)e−(γ1+γ2+kup
o )t,

for the initial state and

Nf (t) =
Nf (0) kup

o

γ1 + γ2 − γ3 + kup
o

[
e−γ3t − e−(γ1+γ2+kup

o )t
]
,

for the final state.
The simplicity achieved in the isolated pair model con-

trasts, however, with the fact that it is restricted only to the
pair population, that it does not consider the effect of iso-
lated centers (which will always contribute to the decay and
will be recorded in the experiment), that there is a chance to
have donors surrounded by more than one acceptor (i.e. pairs
not strictly isolated), and that the macroscopic rates of energy
transfer are always dependent on the doping of the sample, an
experimental fact that is not reflected in these results either.

This paper reports a study that incorporates the scheme of
previous work into this type of process and presents a differ-
ent formal description of the decay curves from the upcon-
version state. A cubic system of the elpasolite type with two
differentLn3+ lanthanide ions has been chosen as an exam-
ple of a model system, although the formalism is rather gen-
eral in nature and could be applied to any system doped with

optical centers to establish better figures for the upconversion
rates from experimental data.

2. Model

This section reviews some general aspects of our model in
view of previous work and subsequently develops a non-
isolated pair model for upconversion.

Some general remarks on the formalism

The decay of an optical center in an excited state can include,
among other things, intra-center deactivation processes and
energy transfer processes such as cross-relaxation processes
with other surrounding centers in the ground state. Under
these considerations, the differential equation to be solved for
thejth donor ion and its resulting microscopic probability to
remain excited at timet is [19,20]:

ρ′j(t) =

{
−γρj(t)−

∑

i

wcr
ij ρj(t)

}

−→ ρj(t) = e

{
−γ−∑

i
wcr

ij

}
t
, (1)

whereγ is the rate of intra-center decay (including both ra-
diative and non-radiative paths), andwcr

ij is the rate of energy
transfer for the cross-relaxation between thejth donor and
the ith acceptor. Addition over the population of acceptors
that surround the donor leads to the total interaction contri-
bution

∑
i

wcr
ij .

Averaging over the acceptor and donor population, the
formalism leads to macroscopic solutions of the following
type:

ρ̄(t) =
1

ND

∑

j

e
−(γ+

∑
i

wcr
ij )t

= ∆stat(X, t)× e−(γ+W̄ cr
eff (X))t, (2)

whereW̄ cr
eff (X) is the effective rate of the cross-relaxation,

which depends on matrix elements of the interaction Hamil-
tonian, which may be electric multipolar, magnetic dipolar or
exchange and both terminal states of the transition, compo-
sition X and crystallographic characteristics of the sample.
In addition,∆stat(X, t) is a polynomial term that is a func-
tion of time and of the statistical fluctuations in the acceptor
population for a given concentration of optically active cen-
ters in the crystal matrix. Within this formalism, the connec-
tion and difference between the microscopic details and the
macroscopic averages is clear, since it retains the exponential
form considering an effective ratēW cr

eff (X), but including
the term∆stat(X, t), which leads to some changes that mod-
ify the shape of the evolution of the states in time. The search
for agreement between the experimental data and the model
and the subsequent estimation of the rates of energy transfer
is done by comparing the decay curves toρ̄(t).
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FIGURE 1. a) Cubic lattice, showing only those sites that can be
doped by luminescent centers. To the left of the upper face, one
donor (black circle) is surrounded by three acceptors (black trian-
gles). The remaining excited centers are isolated (both donors and
acceptors) and the white spheres represent non luminescent cen-
ters; b) energy level diagram for a simple UPET process.γ1 is the
intrinsic decay rate for the donor center,γ2 andγ3 analog rates for
the acceptor center (intermediate and upconversion states, respec-
tively) andkup

o is the upconversion energy transfer rate.

Non-isolated pair model for upconversion

Although the donor-acceptor distance of the pair may be any,
in previous papers and in reports by other authors it has been
shown that the interactions between pairs separated by the
minimum distance in the lattice account for about 90% of
the energy transfer effect[19,22]. Therefore, in this paper we
shall consider only nearest neighbour pairs, making it easier
to deal with the macroscopic equations. Let us consider a cu-
bic lattice in which local environments contain a donor ion
that may be isolated or may have one or more nearest neigh-
bour acceptors (see Fig. 1a). At the microscopic level, and
for a particular donor, the differential equations to be solved
are:

ρ′i(t) = −γ1ρi(t)− p kup
o ρi(t)ρj(t)

ρ′j(t) = −γ2ρj(t)− qkup
o ρi(t)ρj(t)

ρ′f (t) = −γ3ρf (t) + qkup
o ρi(t)ρj(t). (3)

Here, i is the donor in an initial intermediate excited state
|d∗〉, j is the acceptor, in a different initial intermediate ex-
cited state|a∗〉, f is the acceptor in the final up-converted
state |aup〉 (see Fig. 1b), andp is the number of nearest
neighbour acceptors in the|a∗〉 state, surrounding the generic
donor and forming pairs. In correspondence, there are also
q donors in|d∗〉 state, surrounding a generic acceptor. In
Eq. (3), it has been assumed that there is independence in the
interactions, an aspect that is not strictly true at high concen-
trations of luminescent centers, where more complex inter-
action mechanisms must be considered. However, a general
deduction will be made first, and then we will validate results
finding the proper concentration regime.

Equations (3) may be written as

ρi(t) = e{−γ1t}e

{
−pkup

o

t∫
0

ρj(t)dt

}

(4)

ρj(t) = e{−γ2t}e

{
−qkup

o

t∫
0

ρi(t)dt

}

; (5)

both fulfill the initial conditionρi(0) = ρj(0) = 1.
Since Eqs. (4) still retain an explicit coupling between

ρi(t) andρj(t), an appropriate analytic solution will be at-
tempted. For that purpose, the second exponential is ex-
panded in a series and the fundamental theorem of integral
calculus is used, permitting an easier algebraic handling:

−pkup
o

t∫

0

ρj(t′)dt′ =
(
−pkup

o t + pkup
o {qkup

o + γ2} t2

2!
−pkup

o

{
qkup

o
2 [p + q] + qkup

o (γ1 + 2γ2) + γ2
2

} t3

3!
+ ..

)
(6)

−qkup
o

t∫

0

ρi(t′)dt′ =
(
−qkup

o t + qkup
o {pkup

o + γ1} t2

2!
−qkup

o

{
pkup

o
2 [p + q] + pkup

o (2γ1 + γ2) + γ2
1

} t3

3!
+ ..

)
. (7)
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TABLE I. ρi(t) andρj(t) factors:

A.1) Four firstρi(t) factors:

αi = pkup
o

βi = pkup
o (γ2 + qkup

o )

δi = pkup
o

(
γ2
2 + (2γ2 + γ1)qk

up
o + (p + q)qkup

o
2
)

εi = pkup
o

(
γ3
2 + 3qkup

o γ2
2 + q(kup

o )3(p2 + 4pq + q2) + q(kup
o )2 [(2p + 3q)γ1 + (4p + 3q)γ2]

+qkup
o (γ2

1 + 3γ1γ2)
)

A.2) Four firstρj(t) factors:

αj = qkup
o

βj = qkup
o (γ1 + pkup

o )

δj = qkup
o

(
γ2
1 + (2γ1 + γ2)pkup

o + (p + q)pkup
o

2
)

εj = qkup
o

(
γ3
1 + 3pkup

o γ2
1 + p(kup

o )3(p2 + 4pq + q2) + p(kup
o )2 [(3p + 4q)γ1 + (3p + 2q)γ2]

+pkup
o (γ2

2 + 3γ1γ2)
)

The series expansion has been made aroundt = 0,
since at that instant there is complete information on
both ρi and ρj and their derivatives:ρi(0)=ρj(0)=1,
ρ′i(0)= − (γ1 + pkup

o ), ρ′j(0)= − (γ2 + qkup
0 ),

ρ′′i (0)=pkup
o

2(p + q) + pkup
o (2γ1 + γ2) + γ2

1 ,
ρ′′j (0) = qk2

oup(p + q) + qkup
o (γ1 + 2γ2) + γ2

2 , etc. For
bothρi andρj we get:

ρi(t) = e

(
−{γ1+αi} t +βi

t2
2!−δi

t3
3! +εi

t4
4!−...

)
(8)

ρj(t) = e

(
−{γ2+αj}t+βj

t2
2!−δj

t3
3! +εj

t4
4!−...

)
(9)

A restricted listing ofαi, βi, δi... and αj , βj , δj ... is
presented in Table I.

Microscopic solutions (8) and (9) are exact: they satisfy
differential Eqs. (3) for each of thetn terms of the polyno-
mial expansion as well as for the complete series, and they
resemble a simple exponential decay, having specific rates
γ1 andγ2, respectively, modified by smaller perturbations of
ordern in t, which depend on combinations of the numbers
of coupled pairsp, q and ratesγ1, γ2 andkup

o .

Approximate analytic solutions forρf (t) can be obtained
by truncating the polynomials up to thenth order in timet
and introducing (8) and (9) into (3). This leads to an uncou-
pled differential equation forρf (t). For a first order correc-
tion in t, the equation and the solution are remarkably simple:

ρ′f (t) = −γ3ρf (t) + qkup
o

× exp {−(γ1 + γ2 + (p + q)kup
o )t}

ρf (t) =
qkup

o

γ1 + γ2 − γ3 + (p + q)kup
o

×
{

e−γ3t − e−(γ1+γ2+kup
o (p+q))t

}
. (10)

Solution (10) shows a behavior similar to the isolated pair
model, but properly corrected for the actual number of inter-
acting pairs at a microscopic level (i.e., explicitly dependent
on the doping of the macroscopic sample, as shown in the
next section). The derivation of analytic solutions with higher
order corrections int is only possible by including terms up
to t2 in the differential equation (3):

ρf (t) =

√
πkup

o

2(qγ1 + p(γ2 + 2qkup
o ))

× q

×
[
Erfi

(
γ1 + γ2 − γ3 + (p + q)kup

o√
2kup

o (qγ1 + p(γ2 + 2qkup
o ))

)
+ Erfi

(
−γ1 − γ2 + γ3 − (p + q)kup

o + (qγ1 + pγ2 + 2pqkup
o )kup

o t√
2kup

o (qγ1 + p(γ2 + 2qkup
o ))

)]

× e

{
− (γ1+γ2−γ3)2+(p+q)2k

up
o

2+2(γ1+γ2−γ3)(p+q)k
up
o +2γ3k

up
o (2pqk

up
o +pγ2+qγ1)t

2k
up
o (qγ1+p(γ2+2qk

up
o ))

}

. (11)

Even though better agreement is seen with the numerical
results early in the system’s evolution, Eq. (11) shows strong
divergence at longer times due to the properties inherent to
the imaginary error functionErfi[28]. This problem is prop-
erly shown and analyzed in Sec. 3.

So, for the sake of simplicity and better accuracy of so-
lutions, we choose Eq. (10) as the analytic expression for
ρf (t).
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The situation depicted in the previous paragraphs corre-
sponds to donor and acceptor species of different nature and
to upconversion processes that occur only from the donor to
neighboring acceptors. For systems with one kind of opti-
cal center, upconversion processes can occur if the energy of
the up-converted state is equal (resonant process) or close to
(quasi-resonant, phonon assisted process) twice the energy of
the intermediate excited state. In this case there is no distinc-
tion between donor and acceptor; upconversion processes do
not have a preferential direction, and the results are formally
similar, although consideringp = q andγ1 = γ2 .

Macroscopic solutions

In a macroscopic sample, the concentration of luminescent
centers is an average figure that goes from the dilution limit
(few luminescent centers without neighbors) to the full oc-

cupation allowed by stoichiometry. Moreover, for a given
average concentration, the microscopic situation shown in
the previous section is obviously variable within the sample,
since both numbers,p andq, change from one site to another
in the crystal lattice.

Then it is useful to define two macroscopic indices,X
andY , which account for the average concentration of donor
and acceptor centers, respectively. If an average numberp̄ of
nearest neighbors surrounding the donors (p̄(X) = nmaxX)
and an average numberq̄ of donors around the acceptors are
considered (̄q(Y ) = nmaxY )[19,20,24], wherenmax is the
maximum number of next neighbors surrounding each donor
in the crystal matrix (for example,nmax = 6 in the cubic
case that will be studied in Sec. 3, up to onlynmax = 2 in
the case of a one-dimensional system such as some nanos-
tructured organic systems [29]), the evolution of the donors
in time is established by (see Ref. 20),

ρ̄i(t) = ∆stat
i (X, Y, t)× e

(
−(γ1+p̄kup

o )t+p̄kup
o (γ2+q̄kup

o ) t2
2!−p̄kup

o (γ2
2+(γ1+2γ2)q̄kup

o +(p̄+q̄)q̄kup
o

2) t3
3! +...

)

= ∆stat
i (X, Y, t)

× e

(
−(γ1+nmaxXkup

o )t+nmaxX
{

kup
o (γ2+nmaxY kup

o ) t2
2!−kup

o (γ2
2+(γ1+2γ2)n

maxY kup
o +(nmax)2(X+Y )Y kup

o
2) t3

3! +...
})

(12)

Equation (12) is analogous to Eq. (2) and in formal correspondence to previous results, where the∆stat
i (X, Y, t) includes

all the information on the statistical fluctuations∆p and∆q (obtained fromp = p̄+∆p andq = q̄+∆q, respectively) over the
complete optical center’s population within the sample, and has been calculated using the same procedure developed in earlier
work (see Appendix A.). The large second contribution is an average quantity that shows the effect of the coupled acceptor
centers in the temporal evolution of the donors.

To summarize, Eq. (12) corresponds to a non-single exponential decay in which the first order contribution
−(γ1 + nmaxXkup

o )t is modulated explicitly over time by the processes in the donor centers (Y ) and acceptor centers (X),
both for upconversion (kup

o ) as for intra-center decay (γ1 andγ2), as well as by the statistical fluctuations of the optical center’s
population.

Similarly, for ρj(t) the macroscopic average would be:

ρ̄j(t) = ∆stat
j (X, Y, t)× e

(
−(γ2+q̄kup

o )t+q̄kup
o (γ1+p̄kup

o ) t2
2!−q̄kup

o (γ2
1+(2γ1+γ2)p̄kup

o +(p̄+q̄)p̄kup
o

2) t3
3! +...

)

= ∆stat
j (X, Y, t)

× e

(
−(γ2+nmaxY kup

o )t+nmaxY kup
o (γ1+nmaxXkup

o ) t2
2!−nmaxY kup

o {γ2
1+(2γ1+γ2)n

maxXkup
o +(nmax)2(X+Y )Xkup

o
2} t3

3! +...
)

(13)

With respect toρf(t), in Eq. (10) the denominator includes the(p+ q)kup
o term. Since both∆p and∆q are small variations

in p = p̄ + ∆p andq = q̄ + ∆q, respectively, then a single and trivial simplification has been made:

γ1 + γ2 − γ3 + (p̄ + ∆p + q̄ + ∆q)kup
o −→ γ1 + γ2 − γ3 + (p̄ + q̄)kup

o .

This choice has the advantage of preserving the formalism in Eq.(14) and does not affect calculations in the low and moderate
doping concentration regime. Finally, forρf(t) we have:

ρ̄f (X, Y, t) =
q̄kup

o

γ1 + γ2 − γ3 + (p̄ + q̄)kup
o

{
e−γ3t − e−(γ1+γ2+(p̄+q̄)kup

o )t × 1
NA

NA∑
1

1
ND

ND∑
1

e−(∆p+∆q)kup
o t

}

+ 1
NA

NA∑
1

1
ND

ND∑
1

∆qkup
o

γ1+γ2−γ3+(p̄+q̄)kup
o

{
e−γ3t − e−(γ1+γ2+(p̄+q̄)kup

o )t × e−(∆p+∆q)kup
o t

}

=
nmaxY kup

o

γ1 + γ2 − γ3 + nmax(X + Y )kup
o

{
e−γ3t−

[
∆stat(1)

f (X,Y, t)−∆stat(2)
f (X, Y, t)

nmaxY

]
e−(γ1+γ2+nmax(X+Y )kup

o )t

}
. (14)
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FIGURE 2. Microscopic temporary evolution of the probabilities
ρi(t), ρj(t) andρf (t). a)The upper straight line is the−γ1 slope
of isolated intra-ion donor decay. Donor center (upper triplet of
lines) decaying from|d∗〉 intermediate state show almost indis-
tinguishable decay rates for (p,q) = (1,3); (1,2); (1,1)local envi-
ronments andkup

o = 1400(s−1), whereas acceptor center (lower
triplet of lines) decaying from|a∗〉 intermediate state show faster
decays asq increases ((p,q) = (1,1); (1,2); (1,3)) local environ-
ments andkup

o = 1400(s−1)). b)same case for a higher upcon-
version ratekup

o = 5600(s−1) allow to identify that the donor
decay rate lower asq increases ((p,q) = (1,3); (1,2); (1,1)) lo-
cal environments) and c) acceptor center in an|aup〉 up-converted
state. The solid lines represents temporal evolution of the up-
converted state at different local environments: upper triplet of
lines ((p,q) = (1,3); (2,3); (3,3), in descendent order), intermedi-
ate triplet of lines ((p,q) = (1,2); (2,2); (3,2), in descendent order)
and lower triplet of lines ((p,q) = (1,1); (2,1); (3,1), in descendent
order) the dotted line corresponds to kinetic type equations [for all
cases:γ1 = 3600(s−1), γ2 = 5000(s−1), γ3 = 1000(s−1) and
kup

o = 1400(s−1) ].

The statistical factors ∆stat(1)(X, Y, t) and
∆stat(2)(X, Y, t) have been listed in the Appendix A. The
problem of find the magnitude ofkup

o from the experimental
data, may be solved either from the initial slopes of Eqs. (12)
and (13) or from the maximum of the macroscopic probabil-
ity ρ̄f (X, Y, t). In this last case for instance, the maximum
(ρ̄′f (X,Y, t∗) = 0) leads to an approximate quadratic equa-
tion in kup

o with a non-negative solution (see Appendix B):

kup∗
o =

eγ3t∗(γ1 + γ2) ρ̄f (t∗)
(Y − eγ3t∗(X + Y ) ρ̄f (t∗)) nmax

, (15)

a magnitude easy to calculate once theγ1, γ2 andγ3 intrin-
sic decay rates have been determined experimentally from
independent experiments carried out at the isolation limit
for the luminescent system, and as the remaining parameters
X,Y, nmax depend on the preparation of the sample andt∗
and ρ̄f (t∗) established from the experimental decay curve.
The kup∗

o figure can be used as an initial guess for the sub-
sequent fit of the experimental data to the model Eqs. (12),
(13), and (14).

3. Results

Using cubic elpasolites doped with optical centers as the
model system, microscopic solutions (8), (9) and (10) have
been plotted in Fig. 2 for an adequate set of rate val-
ues[19,20,22]. Figures 2a and 2b show relaxations from in-
termediate states|d∗〉 and|a∗〉 that follow the expected tem-
porary behavior of optical centers decaying under the effect
of energy transfer processes. For local environments with
low donor and acceptor population (i.e. p = q =1), de-
cay curves are single exponential with expected initial slopes
(−γ1−kup

o ) and (−γ2−kup
o ), respectively, but slightly mod-

ified by the higher ordertn terms in the expansion. The so-
lutions also recover theγ1 andγ2 rates (intra-center decay
rates at the limit of dilution) at long times after the initial
excitation, which is in agreement with the experimental ev-
idence. Figures 2a and 2b also include the effect produced
by the increase ofq andp, which leads to more marked de-
viations of the single exponential behavior from the excited
states, because the upconversion processes become competi-
tive and eventually more important than the intrinsic decays
γ1 andγ2 at higher donor and acceptor concentrations.

Differences between full numerical solutions of the set
of differential equations (3) and series expansion forρi(t)
[Eq. (6)] andρj(t) [Eq. (7)] were negligible for a low con-
centration of luminescent centers except for very long times
after excitation: in most of the cases a third or fourth order
correction int for the series expansion is enough to describe
extremely well the initial temporary evolution of the system,
but for extended temporal ranges or if the number of interact-
ing optical centers is increased, higher order corrections in
time are required.

A simple criterion may be stated to find the time in-
terval in which the series is appropriate for ann−th order
in the expansion. Convergence is achieved if the (n+1)th
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term in the polynomial series is smaller than the preced-
ing nth term. Both have a binomial form that can be
approximated by excess from the higher rate contribution
(rmax = max imum {γ1, γ2, pko, qko}):

2n(rmax)n tn

n!
> 2n+1(rmax)n+1 tn+1

(n + 1)!

⇒ 0 ≤ t <
n + 1
2rmax

.

As a consequence and forn ≤ 5, a good agreement be-
tween the numerical and analytic results can be found in a
time interval

0 ≤ t < 3
2 (rmax)−1,

while validity for longer time ranges can only be achieved
for series with largern. Computation of such expansions can
easily be done in a recursive way usingMathematica[28].

However, we stress that most of the physically relevant
information of the process (intra-center decay and energy
transfer rates) is contained in the initial slope of the decay
curves and, in order to obtain these rate values from experi-
mental decay curves, we need only the early temporary evo-
lution of the system.

Figure (2.c) includes information on the temporary evo-
lution of ρf (t)or, in other words, relaxation from the up-
converted state|aup〉 at the microscopic scale, for different
numbersp andq of interacting donors and acceptors. Vari-
ation in the local environment of optical centers shows clear
effects on both the shape and the absolute value of the max-
imum of the curve decay, a result that is in agreement with
what is suggested by the general trends of experimental data.
Limitations of the kinetic-type solution are evident as it is a
unique curve, not dependent on the concentration of donor
and acceptor centers (drawn as a dotted line in Fig. 2c).

Figure 3 shows the differences between first-order
[Eq. (10)] and second-order [Eq. (11)] microscopic analytic
solutions forρf (t)in the case of low concentration of lumi-
nescent centers (p = q = 1). Both solutions are in agreement
for early temporal evolution, accurately reproducing the ris-
ing slope of the up converted state. However, the term includ-
ing the imaginary error function,Erfi(x), (which in spite of its
name is actually a real number) increases strongly some time
after the maximumρf (t∗) of the up converted probability,
and darkens the behavior of the remaining two other terms of
Eq. (11)[28]. Solving Eq. (3) including higher order terms
t3, t4 should compensate for this problem, but there is no sim-
ple way of integrating the differential equation and obtaining
simple analytic solutions such as (10) or (11). Figure 3 also
includes a full solution forρf (t) obtained from direct numeri-
cal integration of the set of differential equations (3), which is
located between first and second order analytic equations (10)
and (11). The differences between full numerical solutions
and the analytic expression (10) are small, an outstanding re-
sult that shows how robust the method is in particular for the
study of relaxation from the up converted state|aup〉 even if,

for the sake of simplicity, a first order approximation like (10)
is chosen as the representative formalism of a further inclu-
sion of statistical effects.

Finally, in Fig. 4, macroscopic decays have been plot-
ted asLog(Intensity) vs. time in the case of centers relaxing
from intermediate|d∗〉 and |a∗〉 states, or directly asInten-
sity vs. time curves for acceptors relaxing from the|aup〉
up-converted state, due to the direct proportionality between
ρ̄(X, Y, t) and the intensity of the luminescence. Macro-
scopic decay curves from|d∗〉 and|a∗〉 states show that con-
sideration of the statistical fluctuations of the optical cen-
ter’s population enhances the non-single exponential behav-
ior, although the effect is small, in agreement with previous
works[20,22]. A similar effect occurs for relaxations from
the up-converted|aup〉 state, slightly flattening the shape of
the macroscopic curve and changing the time t* for the max-
imum of the luminescent intensity, compared to the micro-
scopic one.

FIGURE 3. Microscopic temporary evolution of the probability
ρf (t). First and second order analytic solution compared to nu-
merical solutions. a) diluted local environments ((p, q) = (1,1))
and kup

o = 1200(s−1), b) increment on q ((p, q) = (1,2)) and
kup

o = 1200(s−1). Upper solid line corresponds to second or-
der analytic solution (note divergence att > 1 (ms)); dashed line
is the full numerical solution and lower solid line the first order an-
alytic solution. [For all cases:γ1 = 3600(s−1), γ2 = 5000(s−1),
γ3 = 1000(s−1)].
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FIGURE 4. Decay curves for a cubic system. a)|d∗〉 → |do〉 early
temporary decay for the donor centers and|a∗〉 → |ao〉 acceptor
centers (in both cases upper dashed line is the microscopic type
solution ((p,q) = (1,1))and lower full line corresponds to macro-
scopic averaged solution for an analogous doping concentration
of X = Y = 0.167) and b) |aup〉 → |ao〉 decay for the acceptor
centers from the up-converted state near the maximum: the curve
is flattened. For all casesγ1 = 3600(s−1), γ2 = 5000(s−1),
γ3 = 1000(s−1), kup

o = 5600(s−1), the dashed line is the mi-
croscopic type solution((p,q) = (1,1))and the full line corresponds
to macroscopic averaged solution for an analogous doping concen-
tration ofX = Y = 0.167.

The macroscopic formalisms (12), (13) and (14) make it
possible to study the whole concentration range of optical
centers in the host crystal, since the equations are expressed
in terms of unrestricted doping values (i.e. 0 ≤ X + Y ≤ 1).
However, we are limiting the model’s validity range to low
doping, less than 20%, to avoid the use of very large poly-
nomials in the microscopic solutionsρi(t) and ρj(t), and
considering that most of the experimental evidence is ob-
tained within this concentration range. There is also another
fact that supports this upper limit: doping higher than 20%
increases substantially the possibility of finding clusters of
pairs, which would make possible the appearance of three or
more centers microscopic mechanisms for the upconversion
processes.

At the microscopic level, we have shown that the pro-
posed formalism produces more general equations with ex-
plicit information on the microscopic rates, composition and

crystallographic details of a given donor center and its en-
vironment, and proving the limitations of the widely used
kinetic-type equations. On the other hand, at the macroscopic
level, and as shown in Fig. 4, consideration of the statistical
fluctuations of the optical center’s population improves the
understanding of the shapes of the decay curves and make it
possible to fit better values for transfer rates from experimen-
tal data.

4. Discussion and conclusions

The microscopic polynomial solutions found forρi(t) and
ρj(t) are mathematically exact for each order of correction
in the time variable and of course for the complete series.
Plotting their results for a set of values representative of de-
cay and transfer rates show non-single exponential curves
that are dependent on the particular environment of a donor
center, mostly due to the effect of considering that the prob-
abilities of all the states involved in the process are time-
dependent. The observed behavior of the initial slopes is
dependent on microscopic donors’ and acceptors’ local en-
vironment;−(γ1 + pkup

o ) and−(γ2 + qkup
o ) for ρi(t) and

ρj(t), respectively, followed by long term−(γ1) and− (γ2)
slopes, are in perfect agreement with the experimental evi-
dence[20,21].

Analytic solutions to microscopicρf (t) are possible trun-
cating polinomialsρi(t) andρj(t) up to thenth order in time
and solve the differential equation (3.c) forρf (t). Although
the solution chosen for the temporal evolution of the up con-
verted stateρf (t) is the simplest one (first order int for ρi(t)
and ρj(t)), there is still a considerable improvement over
early solutions provided by models of the kinetic type, be-
cause it explicitly includes the actual local environment of
luminescent centers in the sample and has a behavior that
closely approaches that of the numerical solutions. Improved
analytical solutions forρf (t) are limited to second order in
t for ρi(t) andρj(t)), but results are more complex and less
stable from the mathematical point of view than the simplest
case.

At a higher stage, the macroscopic solutions include the
effect of the statistical distribution of optical centers in the
crystal lattice. This consideration has the effect of increas-
ing the slope of the early temporary decay for the case of
bothρ̄i(t) andρ̄j(t), as well as a slight increasing of the non-
single exponential behavior, and of flattening the shape of the
decay curve of the up converted stateρ̄f (t).

To summarize, the inclusion of non-isolated pairs per-
mits a more elaborate study of the experimental decay curves
of UPET-type upconversion processes than those approxima-
tions based on kinetic models that are commonly found in
the literature. In contrast with the latter, the master equa-
tions (12), (13) and (14) developed in this paper are nonpara-
metric and contain explicit information on the microscopic
intra-center decay and energy transfer rates (which can be
calculated from first principles) of the crystallographic char-
acteristics of the particular crystal matrix that contains the
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optical centers (throughnmax), and of their actual concentra-
tion (throughX andY ). This allows a much more detailed
analysis of experimental data and, if the objective of the study
is to calculate the rates from them, a more precise estimate.

This approach is useful for samples with low to moderate
dopings, since ifXand orY are high, eventually three-center
upconversion processes can be achieved. The study of UPET

processes in systems of different symmetry and/or lower di-
mensionality can be easily extended from this work and will
be made elsewhere.
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Appendix A. Expressions for the statistical terms∆stat(X, Y, t)

The∆stat(X, Y, t) terms are the result of averaging the deviations∆p and∆q from the mean values,̄pandq̄, of the number
of acceptor centers surrounding the donor, and of the number of donor centers surrounding a generic acceptor, respectively. In
order to obtain an appropriate formalism (though with a somewhat slower convergence), the exponential terms which include
fluctuations∆p and∆q have been expanded in a series and have been averaged directly over the populations,ND andNA,
of donors and acceptors, respectively. The distribution of optical centers in the appropriate sites of the crystal lattice is of the
binomial type, and in the equations below,

µ(k)
p =

1
N

∑
(∆p)k and µ(k)

q =
1
N

∑
(∆q)k

correspond to thekth central moments of the binomial distribution of the pairs.[19,20] The final results consider thatµ(1) is
always nil.

ρ̄i(t) =
1

ND

ND∑
1

1
NA

NA∑
1

e

(
−(γ1+(p̄+∆p)kup

o )t+(p̄+∆p)kup
o (γ2+(q̄+∆q)kup

o ) t2
2!−...

)
= ∆stat

i (X,Y, t)

× e

(
−(γ1+ nmaxXkup

o )+ nmaxX
{

kup
o (γ2+nmaxY kup

o ) t2
2!−kup

o (γ2
2+(γ1+2γ2)n

maxY kup
o +(nmax)2(X+Y )Y kup

o
2) t3

3! +...
})

, (A.1)

where:

∆stat
i (X, Y, t) =

1
ND

ND∑
1

1
NA

NA∑
1

{
1−

[
−∆pkup

o t + kup
o [p̄∆qkup

o + ∆pq̄kup
o + ∆pkup

o (γ2 + ∆qkup
o )]

t2

2!
− ...

]

+
[
−∆pkup

o t + kup
o [p̄∆qkup

o + ∆pq̄kup
o + ∆pkup

o (γ2 + ∆qkup
o )]

t2

2!
− ...

]2

− ...

}

or, in terms of the central momentsµ
(k)
p andµ

(k)
q ,

∆stat
i (X,Y, t) =

{
1 + (kup

o )2 µ(2)
p

t2

2
− (kup

o )3
[
µ(3)

p + p̄µ(2)
q

] t3

3!

+(kup
o )2

[
(p̄)2µ(2)

q + µ(2)
p {(γ2)2 + 2q̄γ2 + µ(2)

q }
] t4

8
− ....

}

=
{

1 + (kup
o )2 nmaxX(1−X)

t2

2
− (kup

o )3nmax [X(1−X)(1− 2X) + nmaxXY (1− Y )]
t3

3!

+ (kup
o )2

[
(nmax)3X2Y (1− Y ) + nmaxX(1−X) { (γ2)2 + 2nmaxY γ2 + nmaxY (1− Y )}] t4

8
− ...

}
.

ρ̄j(t) =
1

ND

ND∑
1

1
NA

NA∑
1

e

(
−(γ2+(q̄+∆q)kup

o )t+(q̄+∆q)kup
o (γ1+(p̄+∆p)kup

o ) t2
2!−...

)
= ∆stat

j (X, Y, t)

× e

(
−(γ2+ nmaxY kup

o )t + nmaxY
{

kup
o (γ1+nmaxXkup

o ) t2
2!−kup

o (γ2
1+(2γ1+γ2)n

maxXkup
o +(nmax)2(X+Y )Xkup

o
2) t3

3! +...
})

(A.2)
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where:

∆stat
j (X,Y, t) =

{
1 + (kup

o )2 nmaxY (1− Y )
t2

2
− (kup

o )3nmax [Y (1− Y )(1− 2Y ) + nmaxY X(1−X)]
t3

3!

+ (kup
o )2

[
(nmaxY kup

o )2nmaxX(1−X) + (nmaxXkup
o )2nmaxY (1− Y )

+(γ1k
up
o )2nmaxY (1− Y ) + 2nmaxX(kup

o )2γ1n
maxX(1−X)

] t4

4
− ...

}
.

ρ̄f (X,Y, t) = 1
NA

NA∑
1

1
ND

ND∑
1

(q̄+∆q)kup
o

γ1+γ2−γ3+(p̄+q̄)kup
o

{
e−γ3t − e−(γ1+γ2+(p̄+q̄)kup

o )t × e−(∆p+∆q)kup
o t

}

=
q̄kup

o

γ1 + γ2 − γ3 + (p̄ + q̄)kup
o

{
e−γ3t − e−(γ1+γ2+(p̄+q̄)kup

o )t × 1
NA

NA∑
1

1
ND

ND∑
1

e−(∆p+∆q)kup
o t

}

+ 1
NA

NA∑
1

1
ND

ND∑
1

∆qkup
o

γ1+γ2−γ3+(p̄+q̄)kup
o

{
e−γ3t − e−(γ1+γ2+(p̄+q̄)kup

o )t × e−(∆p+∆q)kup
o t

}

=
nmaxY kup

o

γ1+γ2−γ3+nmax(X+Y )kup
o

{
e−γ3t−

[
∆stat(1)

f (X, Y, t)−∆stat(2)
f (X,Y, t)

nmaxY

]
e−(γ1+γ2+nmax(X+Y )kup

o )t

}
; (A.3)

then,

∆stat(1)
f (X,Y, t) =

1
NA

NA∑
1

1
ND

ND∑
1

e−(∆p+∆q)kup
o t =

1
NA

NA∑
1

1
ND

ND∑
1

[
1− (∆p + ∆q)kup

o t + {(∆p + ∆q)kup
o }2 t2

2
− ...

]

=
[
1 + (kup

o )2
{

µ(2)
p + µ(2)

q

} t2

2!
− (kup

o )3
{

µ(3)
p + µ(3)

q

} t3

3!
+ ...

]

=
[
1 + (kup

o )2 {nmaxX(1−X) + nmaxY (1− Y )} t2

2!

−(kup
o )3 {nmaxX(1−X)(1− 2X) + nmaxY (1− Y )(1− 2Y )} t3

3!
+ ...

]

and

∆stat(2)
f (X, Y, t) = 1

NA

NA∑
1

1
ND

ND∑
1

∆q · e−(∆p+∆q)kup
o t

=
[

1
NA

NA∑
1

1
ND

ND∑
1

{
∆q −∆q(∆p + ∆q)kup

o t + ∆q(∆p + ∆q)2(kup
o )2 t2

2! − ...
}]

=
[{
−µ(2)

q kup
o t + µ(3)

q (kup
o )2

t2

2!
−

(
3µ(2)

p µ(2)
q + µ(4)

q

)
(kup

o )3
t3

3!
+ ...

}]

=
[{
−nmaxY (1− Y )kup

o t + nmaxY (1− Y )(1− 2Y )(kup
o )2

t2

2!
− ...

}]
.

Appendix B

The shape of the luminescent intensity from the macroscopic average of upconverted luminescent states shows a maximum at
t* ( i.e. ρ̄′f (X, Y, t∗) = 0) and considering Eq. (14):

ρ̄′f (X, Y, t∗) ≡ 0 =
{−γ3e

−γ3t∗ + [γ1 + γ2 + nmax(X + Y )kup
o ]

[
∆stat(1)

f (t∗)− ∆stat(2)
f (t∗)
nmaxY

]
e−[γ1+γ2+nmax(X+Y )kup

o ]t∗

−




{
∆stat(1)

f

}′
(t∗)−

{
∆stat(2)

f

}′
(t∗)

nmaxY


 e−[γ1+γ2+nmax(X+Y )kup

o ]t∗





, (B.1)
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where:

{
∆stat(1)

f

}′
(t∗) ∼=

2
(
∆stat(1)

f (t∗)− 1
)

t∗ and
{

∆stat(2)
f

}′
(t∗) ∼=

∆stat(2)
f (t∗)

t∗ . (B.2)

Replacing and reordering in terms ofγ1, γ2, γ3, k
up
o , X, Y, nmax, t ∗ andρ̄f (t∗):

−γ3e
−γ3t∗ +

[
e−γ3t∗ − γ1 + γ2 − γ3 + nmax(X + Y )kup

o

nmaxY kup
o

ρ̄f (t∗)
]

×


γ1 + γ2 + nmax(X + Y )kup

o − 1
t∗ −

{
∆stat(1)

f (t∗)− 2
}

{
∆stat(1)

f (t∗)− ∆
stat(2)
f (t∗)
nmaxY

}
t∗


 = 0 (B.3)

and, ast* is not far fromt = 0,
{

∆stat(1)
f (t∗)− 2

}
{

∆stat(1)
f (t∗)− ∆

stat(2)
f (t∗)
nmaxY

}
t∗
∼= −1

(1− (1− Y )nmaxkup
o t∗) t∗ −→ − 1

t∗ (B.4)

and finally, Eq. (B.3) becomes quadratic inkup
o

−γ3e
−γ3t∗ +

[
e−γ3t∗ − γ1 + γ2 − γ3 + nmax(X + Y )kup

o

nmaxY kup
o

ρ̄f (t∗)
]

[γ1 + γ2 + nmax(X + Y )kup
o ] = 0 (B.5)

with solutions:

kup∗
o =

eγ3t∗(γ1 + γ2) ρ̄f (t∗)
(Y − eγ3t∗(X + Y ) ρ̄f (t∗)) nmax

andkup∗
o = − (γ1 + γ2 − γ3)

{1− Y nmax} (B.6)
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