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The description of the temporary evolution of upconversion energy transfer processes in solid samples including doped luminescent ce
is revised using a simple but non-restrictive pair model. The formalism is related to upconversion processes between a collective of d
and acceptor optical centers, and leads to analytic expressions for the temporary behavior of the emission intensities from the interme
excited states and the up converted excited state. From a microscopic viewpoint, the results of the model are compared with hume
solutions of the system of differential equations and with those obtained from kinetic type equations, showing the limits of directly using
latter in the analysis of upconversion processes. The proposed model makes it possible to obtain average macroscopic solutions, exp
dependent on the concentration of dopant luminescent centers in the crystalline lattice, and permits an adequate prediction of the shaj
the decay curves. It would improve the determination of the upconversion energy transfer rates from experimental data.

Keywords: Upconversion; energy transfer processes.

Se desarrolla un modelo para la descidpcde la evoludén temporal de los procesos de transferencia de Eneay upconversion en
materiales de estad@l&lo, dopados con centrdspticos luminiscentes. El modelo de pares, sencillo aunque no restrictivo, aplica para
procesos de upconversion en un colectivo de cerdpieos donores y aceptores y conduce a expresionegiealpara la evolubn
temporal de las intensidades de emistdesde los estados excitados intermediarios y el estado excitado superior. Desde un punto de vi
micros®pico, se comparan los resultados del modelo con las solucionearisamdel sistema de ecuaciones diferenciales y con aquellas
obtenidas desde ecuaciones de tipcetioo, demostindose las limitaciones de utilizar directamente esttisias en el aalisis de los
procesos de upconversion. El modelo habilita establecer soluciones nigicascpromedio, que son ekgtamente dependientes en la
concentradn de centros luminescentes dopantes en la matriz cristalina, y que permiten una adecuadampdediadorma de las curvas

de decaimiento desde los estados excitados. El model@apodjorar la determinain de las velocidades de transferencia de éaqrgr
upconversion desde los datos experimentales.

Descriptores: Procesos de transferencia de efergpconversion.

PACS: 78.90.+t

1. Introduction tion. The formalism is general in nature and could be applied
to any crystalline matrix containing optical centers such as
Since Auzel [1-3] referred to the possibility of energy trans-Ln** or transition metal ions. It has been successfully tested
fer mechanisms of the upconversion type, much experiin systems like elpasolite type crystals [19-22], reproduc-
mental evidence has been reported in different types oihg qualitatively and quantitatively some observables such as
systems[4-14inter alia]. Upconversion processes have beenthe shapes of the decay curves from excited states, and also
the subject of important research in the last decades due to LnX3 (X = F, Cl)[23], proposing alternative formalisms to
their use in luminescent devices in which photons having enkationalize exchange interactions and, in laminar type per-
ergies higher than that of excitation are produced, such agvskite crystals, explaining the quenching-concentration de-
upconversion lasing[15], quantum counters and temperaturgendence in terms of their quasi-bidimensional luminescent
sensors[16] and improved solar cells [17]. An updated reviewon substructures[24]. In recent work, some of the ideas un-
on this topic has been recently published by Auzel[18]. derlying this formalism have been useful in improving the un-
In previous work [19-25], we tried different approaches dersta_m_ding of_ the upconversion regime in amorphous solids
to modeling energy transfer phenomena in solid state, botROntaining optical centers[25].
crystalline systems as well as vitreous materials, focusing In the literature, one finds simplified theoretical analy-
on the macroscopic observables (rate constants, shape of d&&s of upconversion processes with macroscopic kinetic type
cay curves, etc.), but connecting these results with the deéquations, which allow a reasonable qualitative description
tails of the interactions at a microscopic level. We pro-of the phenomenon. This type of analysis permits the fitting
posed and developed a model that has been used to stugfthe experimental data using adjustable parameters, but dis-
energy transfer processes such as cross-relaxations via elégepancies between the shapes of the theoretical and experi-
tric multipolar and exchange interactions, and it has madénental curves normally lead to errors in the determination of
possible the rationalization of the macroscopic processes artie magnitude of the upconversion energy transfer rates.
rates involved in terms of the actual crystallographic struc-  Following Prasad [26], upconversion processes could be
ture of crystalline systems and explicit details of the interac-separated into two broad classes; 1) a namely excited state
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absorption (ESA) process, in which a single optical centeoptical centers to establish better figures for the upconversion
reaches a high-energy excited level through sequential alvates from experimental data.
sorption of two photons and cooperative transition processes,
which include upconversion energy transfer (UPET) betweerk
. . , —-2. Model
two optical centers, one of them already in an intermediate

excited state, and reaching the up-converted excited state Bhis section reviews some general aspects of our model in

energy transfer from the donor center; and 2) cooperativgjew of previous work and subsequently develops a non-
emission between two ions, both in an excited state and emifsp|ated pair model for upconversion.

ting from an upper virtual state or cooperative sensitization

(where two excited ions transfer energy to a third one). Moresome general remarks on the formalism

recently, Andrews and Jenkins [27] have proposed a three-

center quantum electrodynamic model, performing a mord he decay of an optical center in an excited state can include,

general treatment for the upconversion energy transfer pr&among other things, intra-center deactivation processes and

cesses. energy transfer processes such as cross-relaxation processes
From the very beginning, Auzel pointed out that theWwith other surrounding centers in the ground state. Under

UPET processes have a better quantum efficiency than oth#tese considerations, the differential equation to be solved for

processes such as ESA, cooperative sensitization or coopei@€ jth donor ion and its resulting microscopic probability to

tive luminescence [3], and some time after Auzel’s first ref-remain excited at timeis [19,20]:

erence[l1], Vial and Buisson [13,14] proposed a simple two-

center model of isolated ion pairs to explain temporal behav- T — 3 (1) er

ior of UPET processes. Examples of this kind of process (1) { 73 (1) Zi:w” Pi (t)}

have been reported in crystals@§CdBg:Pr3+, LaFs:Pr3t,

LaCl;:U3F, GdsGas O12:Ert, among others. i) = e{—v—; 'wi}-'}t )
Assuming a two-center and three energy level system for Pitt) = ’

the interacting centers (conventionally labeled as ddrrd  \yhere is the rate of intra-center decay (including both ra-

acceptora), initial state for the pairi) = |dx,ax) (both  diative and non-radiative paths), an¢{'is the rate of energy

donord and acceptou excited optical centers are in an in- transfer for the cross-relaxation between fitie donor and

termediate excited level), and a final staf¢ = [d°,a"”)  the jth acceptor. Addition over the population of acceptors

(in which the donor center transfers energy to the acceptothat surround the donor leads to the total interaction contri-
relaxing to the ground state and the acceptor center reachggtionz wgr.
.

thela“P) higher energy state), the macroscopic temporal evo-

lution of both states is: Averaging over the acceptor and donor population, the

formalism leads to macroscopic solutions of the following

N;(t) = N;(0)e~(ntratho™t type:
- _ 1 —(r+2 wij)t
for the initial state and p(t) = s zj: e i
_ Nf(o) kgp —v3t —(y1+v2+k )t —
Nyt = Y1+ 2 — V3 + ko” [6 e ] ’ = Aot (X, 1) x e OFWep, (D1, (2)
for the final state. WhereWeC’f“f (X) is the effective rate of the cross-relaxation,

The simplicity achieved in the isolated pair model con-which depends on matrix elements of the interaction Hamil-
trasts, however, with the fact that it is restricted only to thetonian, which may be electric multipolar, magnetic dipolar or
pair population, that it does not consider the effect of iso-exchange and both terminal states of the transition, compo-
lated centers (which will always contribute to the decay andsition X and crystallographic characteristics of the sample.
will be recorded in the experiment), that there is a chance tén addition, A,;.:(X, ) is a polynomial term that is a func-
have donors surrounded by more than one accepgopgirs  tion of time and of the statistical fluctuations in the acceptor
not strictly isolated), and that the macroscopic rates of energgopulation for a given concentration of optically active cen-
transfer are always dependent on the doping of the sample, aars in the crystal matrix. Within this formalism, the connec-
experimental fact that is not reflected in these results either.tion and difference between the microscopic details and the

This paper reports a study that incorporates the scheme ofiacroscopic averages is clear, since it retains the exponential
previous work into this type of process and presents a differform considering an effective raﬁéfg}“f(X), but including
ent formal description of the decay curves from the upconthe termA .+ (X, t), which leads to some changes that mod-
version state. A cubic system of the elpasolite type with twaify the shape of the evolution of the states in time. The search
different Ln3* lanthanide ions has been chosen as an exanfor agreement between the experimental data and the model
ple of a model system, although the formalism is rather genand the subsequent estimation of the rates of energy transfer
eral in nature and could be applied to any system doped witis done by comparing the decay curveto).
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(a) Non-isolated pair model for upconversion

Although the donor-acceptor distance of the pair may be any,
in previous papers and in reports by other authors it has been
shown that the interactions between pairs separated by the
minimum distance in the lattice account for about 90% of
the energy transfer effect[19,22]. Therefore, in this paper we
shall consider only nearest neighbour pairs, making it easier
to deal with the macroscopic equations. Let us consider a cu-
bic lattice in which local environments contain a donor ion
that may be isolated or may have one or more nearest neigh-
bour acceptors (see Fig. 1a). At the microscopic level, and
for a particular donor, the differential equations to be solved
are:

pi(t) = —mpi(t) — p kP pi(t)p;(t)

(
P (t) = —v2p;(t) — qkyPpi(t)p;(t)
pp(t) = —y3pr(t) + akyP pi(t)py(t). 3

(b) Here, i is the donor in an initial intermediate excited state
|d«), j is the acceptor, in a different initial intermediate ex-
_ (aup) cited statelax), f is the acceptor in the final up-converted
state |a“P) (see Fig. 1b), angb is the number of nearest
neighbour acceptors in thex) state, surrounding the generic
donor and forming pairs. In correspondence, there are also
g donors in|d«) state, surrounding a generic acceptor. In

(d%) . L *
: - (a ) Eq. (3), it has been assumed that there is independence in the
Y4 v o Y, Y3 interactions, an aspect that is not strictly true at high concen-

: v trat.ions of Iumi_nescent centers, vyhere more complex inter-
(0) v v v ¥ (0) action mechanisms must be considered. However, a general
deduction will be made first, and then we will validate results
finding the proper concentration regime.

Equations (3) may be written as

ok f pi(t)d
pi(t) = e{*%t}e{ pRo (J) p;i(t) t}

FIGURE 1. a) Cubic lattice, showing only those sites that can be (4)
doped by luminescent centers. To the left of the upper face, one .

donor (black circle) is surrounded by three acceptors (black trian- {qu;‘p / Pi(t)dt}

gles). The remaining excited centers are isolated (both donors and Pj(t) =elmte ’ ; )
acceptors) and the white spheres represent non luminescent cen- . o .

ters; b) energy level diagram for a simple UPET processs the both fuffill the initial conditionp; (0) = p;(0) = 1.

intrinsic decay rate for the donor centes,and~s analog rates for Since Egs. (4) still retain an explicit coupling between
the acceptor center (intermediate and upconversion states, respep;(t) and p;(t), an appropriate analytic solution will be at-
tively) andk“? is the upconversion energy transfer rate. tempted. For that purpose, the second exponential is ex-

panded in a series and the fundamental theorem of integral
| calculus is used, permitting an easier algebraic handling:

, 2 , t3
pi(t")dt = <—pk3”t + k¥ {qk? + 2} o7 —pko” {qk‘?”z [p+a] + qks"(m1 +272) + v%} ET ) (6)

—pkUpP

S—_ .

t

12 3

—qkg? / pi(t)dt' = (qké‘pt + qko? {pks? +m o —ako” {pké‘p2 [P+ q] + pk,P (271 +92) + vf} gt > )
0
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TABLE |. p;(t) andp; (¢) factors:

A.1) Four firstp; (t) factors:

a; = pky?

Bi = pko® (v2 + qko")

8 = pk&? (3 + (292 +71)aks? + (p + q)qks??)

i = pki? (73 + kiP5 + q(k4P) (0 + 4pg + ¢°) + q(kiP)? [(2p + 3¢)71 + (4p + 3q)72]
+qksP (7 + 37172))

A.2) Four firstp; (¢) factors:

a; = qkg?

Bi = aks® (71 + pko*)

85 = qki® (7 + (271 + 12)pks® + (p + @)pkiP?)

gj = qki? (43 + 3pkiPAt + p(kiP)3 (® + 4pg + ¢°) + p(k4P)? [(3p + 4g) v + (3p + 2q)72]
+pks? (V3 + 37172))

The series expansion has been made arotind O, Approximate analytic solutions fgr; (¢) can be obtained
since at that instant there is complete information onby truncating the polynomials up to theh order in timet
both p; and p; and their derivatives:p;(0)=p;(0)=1,  and introducing (8) and (9) into (3). This leads to an uncou-
Pi(0)= — (m + pkg?), pj(0)= — (2 + q¢k;"),  pled differential equation fop,(t). For a first order correc-
ol(0)=pk™3(p + q) + pk"(2yv1 + ) + ~%,  tionint,the equation and the solution are remarkably simple:
P (0) = qklur(p + q) + gkiP (1 + 272) + 73, etc. For

bothp; andp; we get: P (t) = —v3ps(t) + qks?
+2 +3 4 U
pi(t) = e(_{71+(1i}t+ﬁ1‘,j—(si3ﬁ+5if—...) 8) x exp{—(v1+ 72+ (p+ @) kiP)t}
. kup
1y — (a8 G —6s e =) () = %o
pilt) = e ®) P s+ ot R
A restri_cted listing ofa;, 5, 0;... andaj, B, ;... IS y {e"“"t _ e_(mﬂﬁkgp(pﬂ))t} (10)

presented in Table I. :

Microscopic solutions (8) and (9) are exact: they satisfy
differential Egs. (3) for each of the&' terms of the polyno- Solution (10) shows a behavior similar to the isolated pair
mial expansion as well as for the complete series, and thesnodel, but properly corrected for the actual number of inter-
resemble a simple exponential decay, having specific rategcting pairs at a microscopic leveld, explicitly dependent
~1 and-., respectively, modified by smaller perturbations of on the doping of the macroscopic sample, as shown in the
ordern in t, which depend on combinations of the numbersnext section). The derivation of analytic solutions with higher
of coupled pairg, ¢ and ratesy;, v» andk?. order corrections in is only possible by including terms up
| tot?inthe differential equation (3):

(t) - rho” ><
PR =\ 2(gm + p(ra + 2qk27)) ~ 1

— up _ _ _ up up .up
Erfl.< Y1+ 72 — 73 + (p+ @)k ))>+Erfi< 1 =72 + 73 = (P + Qky? + (g71 + py2 + 2pgky? )k t)]

X
up up up up
\/2]% (g7 + p(72 + 2qkT \/2]60 (gm + p(y2 +2gko"))
_ ntv2-73) 2+ 0+ 02 kEP 2 42(v1 +ra —v3) () k6P +2v3 ke (2pak s +pya+avy )t
< e 2kg P (qv1+p(v2+2qkgP)) (11)

Even though better agreement is seen with the numerical
results early in the system’s evolution, Eqg. (11) shows stron
divergence at longer times due to the properties inherent to
the imaginary error functio&rfi[28]. This problem is prop-
erly shown and analyzed in Sec. 3.

So, for the sake of simplicity and better accuracy of so-
lutions, we choose Eq. (10) as the analytic expression for

pr(t).
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The situation depicted in the previous paragraphs correcupation allowed by stoichiometry. Moreover, for a given
sponds to donor and acceptor species of different nature araverage concentration, the microscopic situation shown in
to upconversion processes that occur only from the donor tthe previous section is obviously variable within the sample,
neighboring acceptors. For systems with one kind of optisince both numberg,andq, change from one site to another
cal center, upconversion processes can occur if the energy of the crystal lattice.
the up-converted state is equal (resonant process) or close to - ' S

P qu ( proc ) Then it is useful to define two macroscopic indices,
(quasi-resonant, phonon assisted process) twice the energy of . .

. . . . . —.>2andY’, which account for the average concentration of donor

the intermediate excited state. In this case there is no distinc- : _
. : . gmd acceptor centers, respectively. If an average numbger
tion between donor and acceptor; upconversion processes (0 . . _ max
e nearest neighbors surrounding the dong(s\() = n™**X)
not have a preferential direction, and the results are formally _
similar, although considering = g andv, = s and an average numbeiof donors around the acceptors are
’ ' considered{(Y) = n™#*Y")[19,20,24], wherex»™2* is the
Macroscopic solutions maximum number of next neighbors surrounding each donor
in the crystal matrix (for example;™** = 6 in the cubic
In a macroscopic sample, the concentration of luminescergtase that will be studied in Sec. 3, up to onl§** = 2 in
centers is an average figure that goes from the dilution limithe case of a one-dimensional system such as some nanos:
(few luminescent centers without neighbors) to the full oc-tructured organic systems [29]), the evolution of the donors
| intime is established by (see Ref. 20),

pi(t) = As(X, Y 1) x O PR PR (2 GkSP) bt —Phi? (3 (114202 TKET+ (PHD)TRE??) )
1 - 1 9 9
— Aft‘” (X, Y" t)

1 P 2 1 1 3
—('yl-‘,-nmaxXk’gp)t—O—nmaxX{kgp("/z—i-nmaxYk’gp)tzj—kgp(’yg-F(’yl—0—2"/2)nmaxYkgp-F(nmax)z(X+Y)Ykgp2)g—!—‘,-...})

X e( (12)

Equation (12) is analogous to Eg. (2) and in formal correspondence to previous results, whkf&*thg, Y, ¢) includes
all the information on the statistical fluctuatioA® andAgq (obtained fronp = p+ Ap andq = ¢+ Agq, respectively) over the
complete optical center’s population within the sample, and has been calculated using the same procedure developed in €
work (see Appendix A.). The large second contribution is an average quantity that shows the effect of the coupled acce
centers in the temporal evolution of the donors.

To summarize, Eq. (12) corresponds to a non-single exponential decay in which the first order contributic
—(m + n™**XEkYP)t is modulated explicitly over time by the processes in the donor ceritgrarfd acceptor center(),
both for upconversiori(“?) as for intra-center decay{ andy: ), as well as by the statistical fluctuations of the optical center’s
population.

Similarly, for p;(,) the macroscopic average would be:

L Srupyt2 _ pu P - S\ spup2y 3
pi(t) = AS(X, Y, t) x e(*(vﬁék;”’)t+f?ké”("/1+pk},“’)37quf,p(vf+(271+w)pk2‘”+(p+q)pk;’”)g—,+--.)
J - =y 4

stat
= ASY(X,Y,t)

- B 2 B - A 3
v 6( — (Y2 NP KEP) 4 XY REP (y, 4n X Xk P) tzf!—nm“XYkap{’yf+(271+'yg)nm“XXkap+(nm“X)2(X+Y)Xk:fp2}g—!+...)

(13)

With respect tgy(y), in Eq. (10) the denominator includes thet ¢)k;? term. Since bott\p andAq are small variations
inp=p+ Apandq = g+ Ag, respectively, then a single and trivial simplification has been made:

Mt —13+@+Ap+7+AQET — 1+ 72— 3+ (D + QRS

This choice has the advantage of preserving the formalism in Eq.(14) and does not affect calculations in the low and mode
doping concentration regime. Finally, fpf ;) we have:

(XY 1) qky" { st (n+72+(BHDEEP)E o, 1 % 1 % (Ap+Aq)kirt
pr(X, Y1) = oy €T e SRS YOI DIy ’
! Mty =73+ P+ q)ko? Na 4 No 4
Ny Np
I o Agkg? —y3t _ o= (vi+v2+(P+DRIP)E —(Ap+Aq)kyPt
+ ~a 21: Np 21: Tt TR € —em xe }

Ry fup

Astat(Z) (X7 Y, t)
:71+’72_73+nmdx(X+Y)kgp {6 y3t __ - - 7

Astat(l) X. V.4 — f
f ( ’ ’) pmaxy”

e(m+w+nm“(X+Y)k;”’>t}. (14)
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(a) The statistical factors Astt(M(X,Y,t) and
Of Astet(2) (XY, t) have been listed in the Appendix A. The
~ 1} problem of find the magnitude &/ from the experimental
= data, may be solved either from the initial slopes of Egs. (12)
2 -2y and (13) or from the maximum of the macroscopic probabil-
] ity 57(X,Y,t). In this last case for instance, the maximum
% (ﬁ’f(X, Y,tx) = 0) leads to an approximate quadratic equa-
> 4} tion in k7 with a non-negative solution (see Appendix B):
- pore €00 +9) oy (t) 15)
61 © T (W = et (X +Y) py(tx) nmex
¢ re O'Z.me/mso'ﬁ 6 ! a magnitude easy to calculate once they, and~s; intrin-
(b) sic decay rates have been determined experimentally from

Log pi(t), Log p(®)

0.4 0.6 0.8
time/ms

(©)

0.2

time/ms

FIGURE 2. Microscopic temporary evolution of the probabilities
pi(t), p;(t) andps(t). a)The upper straight line is thevy, slope
of isolated intra-ion donor decay. Donor center (upper triplet of
lines) decaying fromdx) intermediate state show almost indis-
tinguishable decay rates fop,§) = (1,3); (1,2); (1,1)local envi-
ronments and2? = 1400(s~'), whereas acceptor center (lower
triplet of lines) decaying fronjax) intermediate state show faster
decays ag increases ((,q) = (1,1); (1,2); (1,3) local environ-
ments andk“? = 1400(s™')). b)same case for a higher upcon-
version ratek“? = 5600(s~!) allow to identify that the donor
decay rate lower ag increases ({,q) = (1,3); (1,2); (1,1) lo-
cal environments) and c) acceptor center if&ff) up-converted

state. The solid lines represents temporal evolution of the up-
converted state at different local environments: upper triplet of

lines ((p,q) = (1,3); (2,3); (3,3) in descendent order), intermedi-
ate triplet of lines (9,9) = (1,2); (2,2); (3,2) in descendent order)
and lower triplet of lines (§,9) = (1,1); (2,1); (3,1) in descendent

order) the dotted line corresponds to kinetic type equations [for all

casesry; = 3600(s™ 1), v2 = 5000(s™*),~v3 = 1000(s*) and
k4P = 1400(s™1) 1.

independent experiments carried out at the isolation limit
for the luminescent system, and as the remaining parameters
X, Y, n™2* depend on the preparation of the sample and
and p;(t+) established from the experimental decay curve.
The k¥P*figure can be used as an initial guess for the sub-
sequent fit of the experimental data to the model Egs. (12),
(13), and (14).

3. Results

Using cubic elpasolites doped with optical centers as the
model system, microscopic solutions (8), (9) and (10) have
been plotted in Fig. 2 for an adequate set of rate val-
ues[19,20,22]. Figures 2a and 2b show relaxations from in-
termediate staté$«) and|ax) that follow the expected tem-
porary behavior of optical centers decaying under the effect
of energy transfer processes. For local environments with
low donor and acceptor populationg p = ¢ =1), de-
cay curves are single exponential with expected initial slopes
(—y1 — k¥P) and (2 — k7)), respectively, but slightly mod-
ified by the higher ordet™ terms in the expansion. The so-
lutions also recover the; and~, rates (intra-center decay
rates at the limit of dilution) at long times after the initial
excitation, which is in agreement with the experimental ev-
idence. Figures 2a and 2b also include the effect produced
by the increase of andp, which leads to more marked de-
viations of the single exponential behavior from the excited
states, because the upconversion processes become competi-
tive and eventually more important than the intrinsic decays
~1 and~s at higher donor and acceptor concentrations.

Differences between full numerical solutions of the set
of differential equations (3) and series expansion dgit)
[Eq. (6)] andp;(t) [Eq. (7)] were negligible for a low con-
centration of luminescent centers except for very long times
after excitation: in most of the cases a third or fourth order
correction int for the series expansion is enough to describe
extremely well the initial temporary evolution of the system,
but for extended temporal ranges or if the number of interact-
ing optical centers is increased, higher order corrections in
time are required.

A simple criterion may be stated to find the time in-
terval in which the series is appropriate for anth order
in the expansion. Convergence is achieved if thel(th
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term in the polynomial series is smaller than the precedfor the sake of simplicity, a first order approximation like (10)
ing nth term. Both have a binomial form that can be is chosen as the representative formalism of a further inclu-
approximated by excess from the higher rate contributiorsion of statistical effects.

(rmax = maximum {y1,72, ko, ¢ko}): Finally, in Fig. 4, macroscopic decays have been plot-
m gt ted asLog(Intensity vs. time in the case of centers relaxing
2" (rmax)" — > 2”“(rmax)”“7' from intermediatddx) and|ax) states, or directly akiten-
n‘ (n+1)! sity vs. time curves for acceptors relaxing from th&?)
o<t ” +1 . up-converted state, due to the direct proportionality between
- 2 max p(X,Y,t) and the intensity of the luminescence. Macro-

As a consequence and far< 5, a good agreement be- scopic decay curves frofd«) and|ax) states show that con-

tween the numerical and analytic results can be found in ?d’eranon Of. the statistical fluctuatu_)ns of the optl_cal cen-
time interval er's population enhances the non-single exponential behav-

ior, although the effect is small, in agreement with previous
0<t< 2 (rmax) ™" works[20,22]. A similar effect occurs for relaxations from
the up-convertedu“?) state, slightly flattening the shape of
while validity for longer time ranges can only be achievedthe macroscopic curve and changing the time t* for the max-
for series with larger.. Computation of such expansions canimum of the luminescent intensity, compared to the micro-
easily be done in a recursive way usivigthematic28]. scopic one.

However, we stress that most of the physically relevant
information of the process (intra-center decay and energy
transfer rates) is contained in the initial slope of the decay
curves and, in order to obtain these rate values from experi- 0.12
mental decay curves, we need only the early temporary evo- 41
lution of the system.

Figure (2.c) includes information on the temporary evo- 0.08 |
lution of p;(t)or, in other words, relaxation from the up- &
converted statén“?) at the microscopic scale, for different 5:0'06
numbersp andq of interacting donors and acceptors. Vari- 0.04|
ation in the local environment of optical centers shows clear
effects on both the shape and the absolute value of the max 0.02 |
imum of the curve decay, a result that is in agreement with
what is suggested by the general trends of experimental data 0 0'5 1 1'5 5 2'5 3
Limitations of the kinetic-type solution are evident as it is a ’ time/ms ’
unique curve, not dependent on the concentration of donor (b)
and acceptor centers (drawn as a dotted line in Fig. 2c). 0.25 —

Figure 3 shows the differences between first-order
[Eq. (10)] and second-order [Eqg. (11)] microscopic analytic 0.2}
solutions forp(¢)in the case of low concentration of lumi-
nescent centerp (= ¢ = 1). Both solutions are in agreement 0.15
for early temporal evolution, accurately reproducing the ris- g_
ing slope of the up converted state. However, the term includ- < 0.1t
ing the imaginary error functiorgrfi(x), (which in spite of its
name is actually a real number) increases strongly some time 0.05
after the maximunp(¢«) of the up converted probability,
and darkens the behavior of the remaining two other terms of , , , , ,
Eg. (11)[28]. Solving Eqg. (3) including higher order terms 0 0.5 1 1.5 2 2.5 3
3, t* should compensate for this problem, but there is no sim- time/ms
ple way of integrating the differential equation and obtaining _ _ ) __
simple analytic solutions such as (10) or (11). Figure 3 alsd '¢URE 3. Microscopic temporary evolution of the probability
includes a full solution fop (t) obtained from direct numeri- ##(1): First and second order analytic solution compared to nu-
cal integration of the set of differential equations (3), which ismencﬁII SE'““O”S- ,al) d'lmgd local env'ronmemp’_(m = (41)

. . . nd k5P = 1200(s™ "), b) increment on q f{ q) = (1,2) and
located between flrst and second order analytic gquauon_s (1 kv — 1200(s~1). Upper solid line corresponds to second or-
and (11). The differences between full numerical solutionsyer analytic solution (note divergencetat- 1 (ms)); dashed line
and the analytic expression (10) are small, an outstanding res the full numerical solution and lower solid line the first order an-
sult that shows how robust the method is in particular for thealytic solution. [For all casesy; = 3600(s "), y2 = 5000(s '),
study of relaxation from the up converted stai¥’) even if, 3 = 1000(s™1)].

0
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38 S.0. VASQUEZ

crystallographic details of a given donor center and its en-
vironment, and proving the limitations of the widely used
kinetic-type equations. On the other hand, at the macroscopic
level, and as shown in Fig. 4, consideration of the statistical
fluctuations of the optical center’s population improves the
understanding of the shapes of the decay curves and make it
possible to fit better values for transfer rates from experimen-
tal data.

Log pi(?), Log p,(t)

4. Discussion and conclusions

0 0.02 0.04 0.06 0.08 0.1 The microscopic polynomial solutions found fpr(¢) and
time/ms p;(t) are mathematically exact for each order of correction
(b) in the time variable and of course for the complete series.
' Plotting their results for a set of values representative of de-
cay and transfer rates show non-single exponential curves
that are dependent on the particular environment of a donor
center, mostly due to the effect of considering that the prob-
abilities of all the states involved in the process are time-
dependent. The observed behavior of the initial slopes is
dependent on microscopic donors’ and acceptors’ local en-
vironment; —(y; + pk¥?) and —(y2 + ¢k¥?) for p;(¢) and
p;(t), respectively, followed by long term(y1) and — (vy2)
. . . ] slopes, are in perfect agreement with the experimental evi-
0 0.2 0.4 0.6 0.8 1 dence[20,21].
time/ms Analytic solutions to microscopiey (t) are possible trun-
) cating polinomials; (t) andp;(t) up to thenth order in time
FIGURE 4. Decay curves for a cubic system.|d) — [d°) early  ang solve the differential equation (3.c) fo(¢). Although

temporary decay for the donor centers _amd_) - |ao>_ aceeptor e solution chosen for the temporal evolution of the up con-
centers (in both cases upper dashed line is the microscopic type

solution ((p,q) = (1,1))and lower full line corresponds to macro- verted statg (#) is the simplest one (first order irfor p; (f)
scopic averaged solution for an analogous doping concentratior‘iind Pj (t))’, there is ,St'" a considerable 'mpfove,me”t over
of X = Y = 0.167 and b)|a"?) — |a®) decay for the acceptor early solutions provided by models of the kinetic type, be-
centers from the up-converted state near the maximum: the curv€ause it explicitly includes the actual local environment of
is flattened. For all caseg, = 3600(s!),72 = 5000(s~), luminescent centers in the sample and has a behavior that
s = 1000(s™1), k¥? = 5600(s~ '), the dashed line is the mi- closely approaches that of the numerical solutions. Improved
croscopic type solutio((p,q) = (1,1))and the full line corresponds  analytical solutions fop(t) are limited to second order in
to macroscopic averaged solution for an analogous doping concent for p;(¢) andp;(t)), but results are more complex and less
tration ofX =Y = 0.167. stable from the mathematical point of view than the simplest
case.

The macroscopic formalisms (12), (13) and (14) make it At a higher stage, the macroscopic solutions include the
possible to study the whole concentration range of opticabffect of the statistical distribution of optical centers in the
centers in the host crystal, since the equations are expressgfstal lattice. This consideration has the effect of increas-
in terms of unrestricted doping values(0 < X +Y <1).  ing the slope of the early temporary decay for the case of
However, we are ||m|t|ng the model’s Valldlty range to low bothﬁz(t) andﬁj (t)’ aswell as a S||ght increasing of the non-
doping, less than 20%, to avoid the use of very large polysingle exponential behavior, and of flattening the shape of the
nomials in the microscopic solutions (¢) and p;(t), and decay curve of the up converted statgt).

ConSidering that most of the eXperimental evidence is ob- To Summarize, the inclusion of non-isolated pairs per-
tained within this concentration range. There is also anoth%its a more elaborate Study of the experimenta| decay curves
fact that supports this upper limit: doping higher than 20%gf UPET-type upconversion processes than those approxima-
increases substantially the possibility of finding clusters oftjons based on kinetic models that are commonly found in
pairs, which would make possible the appearance of three ghe |iterature. In contrast with the latter, the master equa-
more centers microscopic mechanisms for the upconversiofjpns (12), (13) and (14) developed in this paper are nonpara-
processes. metric and contain explicit information on the microscopic

At the microscopic level, we have shown that the pro-intra-center decay and energy transfer rates (which can be
posed formalism produces more general equations with excalculated from first principles) of the crystallographic char-
plicit information on the microscopic rates, composition andacteristics of the particular crystal matrix that contains the

pr(t)
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NON-ISOLATED PAIR MODEL FOR UPCONVERSION ENERGY TRANSFER PROCESSES 39

optical centers (through™2*), and of their actual concentra- processes in systems of different symmetry and/or lower di-
tion (throughX andY’). This allows a much more detailed mensionality can be easily extended from this work and will
analysis of experimental data and, if the objective of the studype made elsewhere.
is to calculate the rates from them, a more precise estimate.

This approach is useful for samples with low to mOderateACknOWIedgements
dopings, since ifXand oir” are high, eventually three-center
upconversion processes can be achieved. The study of UPEhe author wished to acknowledge financial support for this
| research through Fondecyt Grant 1030662.

Appendix A. Expressions for the statistical termsA*“( XY’ )

The Astat(X,Y,t) terms are the result of averaging the deviatidpsand Aq from the mean valuegandg, of the number

of acceptor centers surrounding the donor, and of the number of donor centers surrounding a generic acceptor, respective
order to obtain an appropriate formalism (though with a somewhat slower convergence), the exponential terms which incl
fluctuationsAp and Ag have been expanded in a series and have been averaged directly over the popWNafians,V 4,

of donors and acceptors, respectively. The distribution of optical centers in the appropriate sites of the crystal lattice is of
binomial type, and in the equations below,

1 N
n =2 (@A)t and = (Ag)*

correspond to théth central moments of the binomial distribution of the pairs.[19,20] The final results consides tha
always nil.

Na
1 1 3 B wp _ up - upyt2 _ N
5ilt) = Z Ze( (1 +(P+AP) kP )t +(P+Ap) kT (v2+(T+AQKT) & ) = AS"(X, Y, t)
s ol PR X K (YR K (R 2 YR T YR S ) gy

where:

Np Na 2

sta 1 1 n up [= u 1 u u t
SHCS RS D93 {1 - {‘Apko”t K [DAGHEP + Apahi? + Aphi® (12 + Aqki?)] o — }

12 2
+ [Apkgpt KL [BAGRL? + Apghi? + ApkiP (12 + Agky?)] o ] - }

or, in terms of the central momenﬁé’“) andu,gk),

sta u t2 U — t3
AT = {1 ) P = 200 [+ 2]

_ B t4
+(kyP)? [(p)zuff) + 1P {(2)? + 2472 + uff)}] T }

_ {1 + (k)2 pmax x (1 — X)g — (k%P)3n™ax [ X (1 — X)(1 — 2X) + ™™ XY (1 — V)] v

3!

t4
+ (k2P)? [(n™™)3X2Y (1= Y) + n™ ™ X (1 — X) { (v2)% + 2n™Y 70 + ™Y (1 — V) }] 3 } )

Na
1 1 (2 (G u g u 5 upy 2 _ ‘
pi(t) = 2 : 2 :e( (2 (@HAQ RSP+ (T+AQ RS (71 +(P+AD) kT &y ) _ A;tat(X7 Y, 1)

2 < 3
(=t n™=Y k) 4 0y (K22 (™ X REP) 7 kP (34 (21 492 n ™ XKL () (XY ) XK G 4. )

X e (A.2)
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where:
sta u max t2 u max max tS
Ajt X, Y t) = {1+(kop)2n Y(l—Y)g—(kop)?’n Y1-Y)1-2Y)+n YX(l—X)]5

+ (k,gp)2 [(nrnaxYkgp)2nrnaxX(l _ X) + (nmaxXk_gp)2nmaxy(1 _ Y)

t4
+ (kSR Y (1= V) 4 20 X (k2P )2y n™ X (1 — X)) T } )

N N _ w .
pr(X, Y t) = < f 1 i (@+Da)ks” {emmst — e~ (M Ar2+ BRI e_(AerAQ)kgpt}
VACLERE) Na 4 Np & yity2—vs+(+a)ks”

qup { —y3t
= — — up e
Y1 +92 =3+ (P + Dko

, Na
—(nre PR o 13
e e ° X N

Np
1 S e—(Ap-i-Aq)klfpt}
P

Na Np

1 1 Agkg? st _ o= (it H(EH) kL) —(Ap+Aq)k Pt
+ Na 21: Np Z Y1+v2—v3+(P+Q)ko” {e ¢ xe }

AStat(Q) (X Y t)
Astat(l) X.Y.4)— f sy Ly
f ( ’o ) pmaxy”

maxqup ' max x4 V) eUP)t
e (X R ¢ R E R )
YiTY2—Y3TN o
then,

Na

u 1 t2
A (XY 1) e~ (BprAQkTt _ 1= (Ap+ AQKPt + {(Ap + Aq)k™P¥2 = —
f ( NAZNDZ NAXI:NDXI: ( p+ Q)o +{( p+ q)o} 2

_ [H(kgp)z{ <2>+M<2>}t — (kup)3 {@s) “(3)}§+“‘]

tQ

_ [1 + (kg7 (™ X (1= X) +n™™Y (1= Y)}

—(kuPY3 {(n™ X (1 — X)(1 — 2X) +n™>Y (1 - Y)(1 - 2Y) tg }

3!
and
stat(2) 1 Na 1 Np —(Ap+Aq)kiPt
Ay (X’th):mgl:ﬁ;AQ'e o
_ L % - % {Aq — Aq(Ap + AQKPt + Ag(Ap + Ag)?(krr)2L — }
-NA 1 Np 1 o o 2!
[ @ ) (pupy2t @, 4 @) (puryst
= {_Mq kopt+uq (kop) 5 - (SM;D Hq +Mq )(kop) 5 + }:|
_ 2
- {_nmaxyu —Y)REPE+ 0" (1= V) (1= 2Y) (k) 5 — H .
Appendix B

The shape of the luminescent intensity from the macroscopic average of upconverted luminescent states shows a maximum a
t* (i.e. p) (X, Y, tx) = 0) and considering Eq. (14):

. Astut(2) (t*) o -
ﬁ/f(X7 Y, t6) =0 = {_,y:se—'ygt* F v+ e+ (X + Y)Y Aft t(l)(t*) _ fanY e~ My +nTH (XY ) kP tx
stat(2) )’
{Astat(l)}/ (t+) — {Af—}(t*) e~y +n (XY e (B.1)
f nmaxy’ ’
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where:

AS) (1) — 1)

V(1) = 2(

Replacing and reordering in terms-af, v2, s,

stat(1)
{Af t*

o

—yst*x __

Y142 — 3 + (X 4+ Y)kEP

41

keP X, Y, etk andpy (t):

—vze B 4 e

nmaxy ko

and, ag* is not far fromt = 0,

{A;tat(l)(t*) - 2}

~

1
X v+ F (X Yk - — —

pmaxy”

{A;tat(l) (t*) B A;tat(?)(t*)

and finally, Eq. (B.3) becomes quadraticki}y

Y1+ 92 — vz + (X + V)P

—y3t* —7y3t*
—7s€ + |e - up
nmaxyko

with solutions:

10.

11.
12.

13.

e (y1 4+ v2) py(tx)

upk __
kJP* =

(Y = (X + 1) py 1))

Astat(Q) (t*)
stat(2) ! ~ f
and {Af } () = =L ———. (B.2)
pr(t)]
{Ajf‘“(”(t*) - 2}
t* tat(1) AP (1e) - (:3)
{A;a (t*) — f:nxnmx)/}t*
-1 1
=~ i B.4
} tx (1 — (1 = Y)nmaxkoPx) tx T (B4)
pr(t)| [n + 72 + ™ (X + Y)kP] = (B.5)
(71 +72 —3)
wpr — AN T V2T W) B.
andk} (1= nos (B.6)

Phone: 56(2) 978 44 88, Fax:
e-mail: ovasquez@dgb.uchile.cl

56(2) 699 41 19, 14.
15.

. F. Auzel,C.R. Acad. Sci. (Parisp63(1966) 819.

F. Auzel, inSpectroscopy and Dynamics of Collective Excita-
tions in Solids ed. B. Di Bartolo (Plenum, NATO ASI Series 17.
356, 1997) p. 544.

. F. Auzel, inOptical Properties of Excited Statesd. B. Di Bar-  18.
tolo (Plenum, NATO ASI Series 301, 1992) p. 339. 1.
. G.M. Salley, R. Valiente, and H.U. i@lel, Phys. Rev. B57
(2003) 134111. 20.
. X. Chen, T. Nguyen, Q.Luu, and B. Di Bartold, Lumin.85 21.
(2000) 295. 29
. D.R. Gamelin and H.U. Gdel, Top. Curr. Chem214(2001) 1. 93,
. M.Yin, M.F. Joubert, and J.C. Krupd, Lumin 75(1997) 221.
. M.F. Joubert, S. Guy and B. Jacquihys. Rev. BI8 (1993) 2.
10031. 25.
. U. Scrafer, J. Neukum, N. Bodenschatz, and J. Helhdrmmin
60&61 (1994) 633. 26.

R. Balda, J. Ferandez, A. de Pablos, and J.M. Fdez-Navarro,
J. Phys.: Condens. Mattdrl (1999) 7411.

L.E.E. de Araujoet al,, Phys. Rev. B50(1994) 16219.

S. Tanabe, K. Suzuki, N. Soga, and T. Hanad@pt. Soc. Am.
B 11(1994) 933.

J.C. Vial, R. Buisson, F. Madeore, and M. Poiridr, Phys.
(Paris)40(1974) 913.

27.

28.

29.

R. Buisson and J.C. Vial. Physiquet2(1981) L-115.
R. SchepsProg. Quantum Electrar0 (1996) 271.

16. M.F. JoubertOpt. Mater.11(1999) 181.

T. Trupke, M.A. Green, and P. Wurfell. Applied Phys92
(2002) 4117.

F. Auzel,Chem Rev104(2004) 139.

S.0. VasquezJ. Chem. Physl04(1996) 7652.

S.0. Vasquez,). Chem. Physl06(1997) 8664.

S.0. Vasquez,). Chem. Physl08(1998) 723.

S.0. VasquezPhys. Rev. B60(1999) 8575.

C.Z. Hadad and S.O.4a5quezPhys. Rev. B0 (1999) 8586.
S.0. VasquezPhys. Rev. B64 (2001) 125103.

C.Z. Hadad and S.O. &squez,Phys. Chem. Chem. Phys
(2003) 3027.

P.N. Prasad, ilNanophotonicqWiley Interscience, 2004) p.
153.

D.L. Andrews and R.D. Jenkins]).Chem.Phys114 (2001)
1089.

S. Wolfram, inThe Mathematica Book*" ed. (Wolfram Me-
dia, University Press, Cambridge, 1999).

G. Bongiovannkt al, Chem. Phys. LetB845(2001) 386.

Rev. Mex. .53 (1) (2007) 31-41



