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Time dependent quantum harmonic oscillator subject to a
sudden change of mass: continuous solution
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We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximai
analytic solution to the time-dependent harmonic oscillator equation with a subperiod function parameter. This continuous treatment differs
from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc
transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations.
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Mostramos que un oscilador abmico sujeto a un cambio repentino de masa produce estados comprimidos. Nuestro estusisaski

en una soludin anaitica aproximada para el oscilador @nico dependiente del tiempo. El tratamiento continuo que estudiamos difiere de
estudios anteriores en los cuales se igualan las soluciones en la discontinuidad. Nuestro formalismo requiere una ttarsfbhoed:s:

la ecuaddn diferencial original y es aplicable tangi para variaciones de masgidas, no solo instameas.

Descriptores:Soluciones an#licas; meénica ciéntica; invariantes exactos.

PACS: 03.65.La; 03.65.Ge; 02.30.1k

1. Introduction ing another transformation that produces a monotonic time-
dependent parameter. The transformed equation can then be

The oscillator differential equation with a sudden change okolved with the continuum approach, leading to squeezing of
mass has been tackled by considering two time regions witthe momentum variables at certain times. An interesting ad-
constant parameters and matching the solutions at the timgntage of this method is that the change of mass need not be
where the abrupt change takes place [1]. This procedure ig step function in the strict mathematical sense. The require-
analogous to the problem of an oscillator with constant masgent, which is physically more plausible, is that the change
but a sudden change in frequency due to an abrupt changg mass should take place in a time span much shorter than
in the potential. In quantum optics, the time dependent masge characteristic period of the oscillator.
is particularly relevant because it describes an external influ- The plan of the manuscript is the following: in Sec. 2, we
ence on the quantized electromagnetic field, a decaying  rite the quadratic and linear invariants for a time-dependent
or driven Fabry-Rrot cavity [2]. mass and exhibit their relation with the Hamiltonian. In

The harmonic oscillator equation with time-dependentsec. 3, we discuss two transformations that translate the clas-
parameters [3-7] has been solved for a sudden frequengjcal time-dependent mass equation into the time dependent
change using a continuous treatment based on an invariaffequency problem. The analytic solution for a rapid varia-
formalism [8]. This analytic treatment requires that the time-tion of the time dependent mass using the appropriate trans-
dependent parameter be a monotonic function whose varidormation is then presented. In Sec. 4, we exhibit how a
tion is short compared with the typical period of the systemsuydden change of mass in the quantum oscillator produces
This procedure allowed us to obtain analytic solutions thakqueezing. Section 5 is left for conclusions.
may or may not exhibit squeezing depending on time when
departing from an initial coherent state. )

In this communication, a continuous treatment of a har2-  1ime dependent mass
monic oscillator whose mass suddenly changes is considere _ — L
This continuous approach is not as s)t/raight?orward asinth he harmonic Hamiltonian with time-dependent masg/)
case where two solutions are matched at the abrupt inteFSaads 1 2
face, the reason being that the transformation leading to a ==L 4+ M@)Q* () ¢, Q)
differential equation without involving first derivatives yields 2 [ M)
a time-dependent parameter that is no longer a monotoniwhereQ? (t) is a time-dependent parameter. It is well-known
finite function. This hurdle must be overcomed by invok- that a quantum invariant for this type of interaction has the
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form [9] with an effective time-dependent parame®ér given by
. 1([/Gg\° . o s o 1M 1M
=== - Q. =0"—-—— +-—.
I=3 ( pv) + (pob — M(t)pud)” | ) % 5 T 13 )

where the overdot represents derivative with respect to time. For a st2e P fun.ctlon .t|me-dependent mass, this effective
The amplitudep, obeys the Ermakov-type equation parametef)Z acquires divergent values, as may be seen from

the mass derivatives involved in the above expression. This
2py M dp, ) G issue is not a problem if piecewise integration is used to ob-
a2 + M At + Q%py = MTpg ) tain the solution. However, since the paramétérobtained

Y under the transformation is no longer a monotonic function
and G is a constant often set equal to one in the literatureor a step function in the appropriate limit, this procedure is
This equation forms an Ermakov pair with the classic harnot suitable if the continuous analytical approach is to be in-

monic oscillator equation for the coordinate variablesith  voked.

time dependent mass There is however an alternative approach that involves the
. derivative of the time-dependent harmonic oscillator equation
b+ %U + 020 =0. (4)  With constant masg§ + Q% = 0 together with the substitu-
M tionv = dy/dt:
The orthogonal function procedure leads to the classical &
invariant b — 2=+ Q% =0. (10)
G = M (010 — vaiy), (5) Q

Let the time-dependent parameter be written in terms of stiff-

where the functions;, andwv, are linearly independent so- ) :
yness and time-dependent mass in the usual way

lutions to the time-dependent mass differential equation (4

The quantum orthogonal functions’ linear invariants may k(1)
. . ) 2 _ g
then be obtained using an analogous procedure to a previous Q°(t) = W’ (11)
derivation [15] with the identifications; — ¢, Mv; — p,
for j =1 or2yielding where stiffness: (t) may also be a time-dependent function.

A . o A . o The above equation then reads
G1 = v1p — Mnq, Gy = —vop + Mi2g.  (6)

Mk
The quadratic Ermakov Lewis invariant is related to the U+ (M - k;) v+ Q%0 = 0. (12)
these linear invariants by

But this is the time-dependent mass equation (4) that
needs to be solved, provided that stiffness is constant. There-
) fore the transformatiom = di/dt and first integration of
The constant mass resul{s\l = 0) , albeit with a time-  the resulting equation also eliminates the first order deriva-
dependent parameter, are then modified by the change of vative term. However, it maintains the same functional de-
ables pendence on the paramet@? rather than introducing an

effective parametef??. The inverse of a monotonic time-
(7)  dependent mass function is then also a monotonic function
without infinite values, provided that the mass is not zero. A
) . ) . decreasing (increasing) mass as a function of time produces
3. Differential equation transformation an increasing (decreasing) time-dependent pararfigtetf
a step functio?? = k/M is considered, then it remains a
step throughout the transformation without nasty divergences
involved.

Therefore, the time-dependent mass problem that in-
volves first-order derivatives may be translated into a time-
dependent frequency case that does not involve such terms.
. : . i : -~ However, the above derivations show that there are distinct
differential equations [10]. Equation (4) with the function transformations leading to the desired equation form. The
h(t) = M /M then transforms to latter is in fact a particular form of a Darboux transforma-

25 tion [11]. These results have been abridged in the table be-

2z T Q23 =0, 8)  low:

[=1/2 (G§+G§).

G (w10
G ir=0) ~ % A(xr=0) = MA(srz0)-

The transformation
v = %exp[—l/Q/hdt]

is commonly invoked in order to eliminate terms of the
form h (t) o that involve a first derivative in second-order
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conventional transformation

derivative approach

original equation U+ Mu + Mu =0 U+ M” + v =0

i _ k _day dv __ k
transformation U= /17 v="T8 =Y
transformed equation 3+ Q2x=0 D+ Q%) =0

time dependent parameter?, = - (k: —1nr+ ﬁ%) Q==L

From a physical point of view, it is interesting to consider the relationship between these results. Let a perturbation (
displacement)) obey a TDHO equation with a time-dependent parameter but constant mass. The equation governing the time
derivative of such a perturbationd. velocity) is given by the time derivative of the perturbation equation. If the system has
a time-dependent mass, the perturbatioa (displacement) now obeys an equation that is identical to that fulfilled by the
velocity in the case of constant mass with time-dependent stiffness.

A. Analytic solution

An analytic approximate solution to the TDHO has been obtained for a time-dependent pafmejethat varies mono-
tonically in a time span much shorter than the characteristic period of the system [12]. The solution in amplitude and phase

variables) = pexp (iy) is given by
02 02 /
_ a1 1 1 y /
p(t)—\/§ 1+92(t)+( t)>cos Z/Q(t)dt , (13)
and
q t
¢ (t) = arctan Qi(;) tan /Q () dt" | + (ts —to) (14)

a1 and$); are the initial amplitude and frequency at a time well before the transient behaviour takeg piatiee time where
the variation is maximum ang is an arbitrary initial time. The frequency, defined as the derivative of the phase is given by

O
( L] ) sin (ft

(t") dt’) + cos? ( f Q) dt’)
The solution for the displacementn the classical time-
dependent mass problem is then

¢ = (15)

model a step function in the limit when the slopg — oo as
shown in Fig. 1. Itis interesting to note that the approximate
analytic solution that is being used is adequate even if the
time-dependent parameter does not vary in a strictly abrupt
fashion. The solution is appropriate in the so-called subpe-
riod regime that requires variations of the time-dependent pa-
rameters in an interval much shorter than the period of the
system although not necessarily infinitesimal. The amplitude
p, for this function is plotted in Fig. 2 using Egs. (16) to-
gether with (13) and (14).

v =1 = pe'? + ippe’? = (Z +ic,'9> ¥

. N2 ,
L p= (p) + @2 exp {z arctan (W>} .
p p p

Therefore, in polar variables = p, exp (iy, ), the am-
plitude and phase are given by

po = VP22 +p%,  py = ¢+ arctan (p;f) . (16)
The Ermakov-Lewis invariant may be related to the Hamil-

Allow for the time-dependent parameter to be giventonjan with time-independent mass by a unitary transforma-
by (11) with constank and let the function tion of the form (for simplicity we sek = 1)

T=exp (z ln(;v) (dﬁ+ﬁﬁ)) exp (—z]\/;(;ip.vf) , (18)

but

4. Quantum oscillator

M(t)=M; 1+M2JW]1W (1+ tanh o (t— t)])] (17)
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FIGURE 1. The massM (t) evolution as a function of time for
M, =1landM; = 0.5; as = 20 andts = 2.

t

FIGURE 2. The amplitudep,, (¢) as a function of time foAf; = 1,
Ms = 0.5, as = 20 andt, = 2.

with
» AP o 2452\ -
H=TIT = (7" +G**) =G (a+5 ), (19

with 7 the so-called number operator with eigenstatgs
States of the formin); = 7|n) are eigenstates of the Er-
makov Lewis invariant. This invariant plays in the time-

45

We can obtain coherent states of the TDHO with time-
dependent mass as

o) = Dy(a)[0)s,
with

Dy(a) = exp(aa’ — a*a)
and

ala); = ala);.

Recently we have shown that the Satlinger equation for

the one-dimensional time-dependent harmonic Hamiltonian
has a solution of the form [15]

ot
—if [

0

w(t')dt’

[p(t)) = e
with w(t) = 1/p2.

T17(0)[2(0)), (21)

A. Squeezed states

Consider that, at time= 0, the system is in the initial coher-
ent statga). The initial statey)(0))=7"(0)|a)=|a)o=|a)
then evolves according to (21) as

t

/w(t)dt 7|

0

(1)) = exp | —if

7’L‘f‘ w(t)dt
0

t
. —i [ w(t)dt
=TT|ae =lae 0

)i

Therefore, coherent states remain coherent throughout
the system’s time evolution. This statement has been made
before regarding an oscillator with constant mass but time-
dependent frequency [8]. This result is now being extended
to an oscillator with time dependent mass. From Fig. 2 we
can see tha(f“(o) = 1, sincep, = 0 andlnp, = 0. It may
thus be seen how ideal squeezed states may be generated: th
maxima of the function tell us when squeezing occurs, since

as for such timeg,, (t,nq) = 0 andln p, (tnq2) # 0, SO that
we obtain

% (tmas))

exp(

(22)

tmax
—i [ w(t)dt
0

t1n py (tmaz) (

5 ), (23

i+ 90 lac )

dependent case, the role that the quantized Hamiltonian doggere the operator
in the time-independent case [13, 14]. The Ermakov Lewis )
invariant can be written in terms of annihilation and creation exp[ﬁ I py (tmaz ) (@D + H)]
operators ag = ata + G/2 with 2

is the well-knownsqueeze operatdi6, 17]. The squeezed

a= % {iq +i(pup - M(t)pyq)} : state t
ot 1 @ VP . [(tmaz)) = |exp | —i w(t)dt | 51n py (tmaz))
@' =7 [ o i(pup — M (f)pvq)} : (20) /

0
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is then generated. Squeezed states, like as coherent states,iarthe constant mass case. The transformed time dependent
also minimum uncertainty states. However the uncertaintieparametef2? (¢) then remains monotonic and finite, provided

for ¢ andp are not equal; in particular, we have that the time-dependent mass is monotonic and finite, even if
it varies in an abrupt fashion.
AqA:f’v(tmw), Ap= 1 , AQAﬁzl (24) The problem has been solved using an approximate
V2 V200 (tmaz) 2 analytical solution whose validity holds when the time-

e.th o 1 dependent parameters vary monotonically in a time span that
I.e. the momentum uncertainty is squeezedddemas) > 1, is much shorter than the period, although it need not be in-

;eefFlg. dzf). Tr:"s_lfgzug shhouldhbefcompareq W'tzghe Isq(;‘ee%'tantaneous. This feature, which describes a more realis-
ing found for the when the frequency Is suddenly doU-;. gcenarig of parameter variations with finite duration, is

bled, thus yielding squeezing in the coordinate variable [8]. clearly unattainable when the problem is solved using the two
steady-state solution approach.
5. Conclusions A sudden change of mass beginning with a mass
produces squeezing in the momentum variable provided that
The real linear quantum invariants or orthogonal function in-there is a loss of mask/s < M;. In contrast, a variation of
variants have been generalized for the one dimensional hathe potential front2; to Q5 with Q5 > Q; produces squeez-
monic oscillator with time-dependent mass [Eq. (6)]. ing in the coordinate variable [8]. These results are consistent
The TDHO with time-dependent magd (¢) has been with the view described above that the coordinate transforma-
translated into a problem with constant mass but timedtion is formally equivalent to the role played by the velocity
dependent parameté€l? (). The transformation has been variable when the mass is constant. Coherent states have been
shown not to be unique. A Darboux type transformationshown to keep their form throughout the system’s evolution,
yields an equation for the perturbation with time-dependentvhether or not the mass and/or the potential are time depen-
mass that is formally identical to that fulfilled by the velocity dent.
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