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Time dependent quantum harmonic oscillator subject to a
sudden change of mass: continuous solution
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We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximate
analytic solution to the time-dependent harmonic oscillator equation with a subperiod function parameter. This continuous treatment differs
from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc
transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations.
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Mostramos que un oscilador armónico sujeto a un cambio repentino de masa produce estados comprimidos. Nuestro estudio está basado
en una solucíon anaĺıtica aproximada para el oscilador armónico dependiente del tiempo. El tratamiento continuo que estudiamos difiere de
estudios anteriores en los cuales se igualan las soluciones en la discontinuidad. Nuestro formalismo requiere una transformación ad hocde
la ecuacíon diferencial original y es aplicable también para variaciones de masa rápidas, no solo instantáneas.
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1. Introduction

The oscillator differential equation with a sudden change of
mass has been tackled by considering two time regions with
constant parameters and matching the solutions at the time
where the abrupt change takes place [1]. This procedure is
analogous to the problem of an oscillator with constant mass
but a sudden change in frequency due to an abrupt change
in the potential. In quantum optics, the time dependent mass
is particularly relevant because it describes an external influ-
ence on the quantized electromagnetic field,e.g., a decaying
or driven Fabry-Ṕerot cavity [2].

The harmonic oscillator equation with time-dependent
parameters [3–7] has been solved for a sudden frequency
change using a continuous treatment based on an invariant
formalism [8]. This analytic treatment requires that the time-
dependent parameter be a monotonic function whose varia-
tion is short compared with the typical period of the system.
This procedure allowed us to obtain analytic solutions that
may or may not exhibit squeezing depending on time when
departing from an initial coherent state.

In this communication, a continuous treatment of a har-
monic oscillator whose mass suddenly changes is considered.
This continuous approach is not as straightforward as in the
case where two solutions are matched at the abrupt inter-
face, the reason being that the transformation leading to a
differential equation without involving first derivatives yields
a time-dependent parameter that is no longer a monotonic
finite function. This hurdle must be overcomed by invok-

ing another transformation that produces a monotonic time-
dependent parameter. The transformed equation can then be
solved with the continuum approach, leading to squeezing of
the momentum variables at certain times. An interesting ad-
vantage of this method is that the change of mass need not be
a step function in the strict mathematical sense. The require-
ment, which is physically more plausible, is that the change
in mass should take place in a time span much shorter than
the characteristic period of the oscillator.

The plan of the manuscript is the following: in Sec. 2, we
write the quadratic and linear invariants for a time-dependent
mass and exhibit their relation with the Hamiltonian. In
Sec. 3, we discuss two transformations that translate the clas-
sical time-dependent mass equation into the time dependent
frequency problem. The analytic solution for a rapid varia-
tion of the time dependent mass using the appropriate trans-
formation is then presented. In Sec. 4, we exhibit how a
sudden change of mass in the quantum oscillator produces
squeezing. Section 5 is left for conclusions.

2. Time dependent mass

The harmonic Hamiltonian with time-dependent massM(t)
reads

Ĥ =
1
2

[
p̂2

M(t)
+ M(t)Ω2 (t) q̂2

]
, (1)

whereΩ2 (t) is a time-dependent parameter. It is well-known
that a quantum invariant for this type of interaction has the
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form [9]

Î =
1
2

[(
Gq̂

ρv

)2

+ (ρv p̂−M(t)ρ̇v q̂)2
]

, (2)

where the overdot represents derivative with respect to time.
The amplitudeρv obeys the Ermakov-type equation

d2ρv

dt2
+

Ṁ

M

dρv

dt
+ Ω2ρv =

G

M2ρ3
v

(3)

andG is a constant often set equal to one in the literature.
This equation forms an Ermakov pair with the classic har-
monic oscillator equation for the coordinate variablev with
time dependent mass

v̈ +
Ṁ

M
v̇ + Ω2v = 0. (4)

The orthogonal function procedure leads to the classical
invariant

G = M (v1v̇2 − v2v̇1) , (5)

where the functionsv1 andv2 are linearly independent so-
lutions to the time-dependent mass differential equation (4).
The quantum orthogonal functions’ linear invariants may
then be obtained using an analogous procedure to a previous
derivation [15] with the identificationsvj → q̂, Mv̇j → p̂,
for j = 1 or 2 yielding

Ĝ1 = v1p̂−Mv̇1q̂, Ĝ2 = −v2p̂ + Mv̇2q̂. (6)

The quadratic Ermakov Lewis invariant is related to the
these linear invariants by

Î = 1/2
(
Ĝ2

1 + Ĝ2
2

)
.

The constant mass results
(
Ṁ = 0

)
, albeit with a time-

dependent parameter, are then modified by the change of vari-
ables

G(Ṁ=0) →
G(Ṁ 6=0)

M
, q̂(Ṁ=0) → Mq̂(Ṁ 6=0). (7)

3. Differential equation transformation

The transformation

v = κ exp[−1/2
∫

hdt]

is commonly invoked in order to eliminate terms of the
form h (t) v̇ that involve a first derivative in second-order
differential equations [10]. Equation (4) with the function
h(t) = Ṁ/M then transforms to

d2κ
dt2

+ Ω2
κκ = 0, (8)

with an effective time-dependent parameterΩ2
κ given by

Ω2
κ = Ω2 − 1

2
M̈

M
+

1
4

Ṁ2

M2
. (9)

For a step function time-dependent mass, this effective
parameterΩ2

κ acquires divergent values, as may be seen from
the mass derivatives involved in the above expression. This
issue is not a problem if piecewise integration is used to ob-
tain the solution. However, since the parameterΩ2

κ obtained
under the transformation is no longer a monotonic function
or a step function in the appropriate limit, this procedure is
not suitable if the continuous analytical approach is to be in-
voked.

There is however an alternative approach that involves the
derivative of the time-dependent harmonic oscillator equation
with constant mass̈ψ + Ω2ψ = 0 together with the substitu-
tion v = dψ/dt:

v̈ − 2
Ω̇
Ω

v̇ + Ω2v = 0. (10)

Let the time-dependent parameter be written in terms of stiff-
ness and time-dependent mass in the usual way

Ω2 (t) =
k (t)
M (t)

, (11)

where stiffnessk (t) may also be a time-dependent function.
The above equation then reads

v̈ +

(
Ṁ

M
− k̇

k

)
v̇ + Ω2v = 0. (12)

But this is the time-dependent mass equation (4) that
needs to be solved, provided that stiffness is constant. There-
fore the transformationv = dψ/dt and first integration of
the resulting equation also eliminates the first order deriva-
tive term. However, it maintains the same functional de-
pendence on the parameterΩ2 rather than introducing an
effective parameterΩ2

κ. The inverse of a monotonic time-
dependent mass function is then also a monotonic function
without infinite values, provided that the mass is not zero. A
decreasing (increasing) mass as a function of time produces
an increasing (decreasing) time-dependent parameterΩ2. If
a step functionΩ2 = k/M is considered, then it remains a
step throughout the transformation without nasty divergences
involved.

Therefore, the time-dependent mass problem that in-
volves first-order derivatives may be translated into a time-
dependent frequency case that does not involve such terms.
However, the above derivations show that there are distinct
transformations leading to the desired equation form. The
latter is in fact a particular form of a Darboux transforma-
tion [11]. These results have been abridged in the table be-
low:
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conventional transformation derivative approach

original equation ü + Ṁ
M u̇ + k

M u = 0 v̈ + Ṁ
M v̇ + k

M v = 0

transformation u =
√

k
Mκ v = dψ

dt , dv
dt = − k

M ψ

transformed equation κ̈ + Ω2
κκ = 0 ψ̈ + Ω2ψ = 0

time dependent parameterΩ2
κ = 1

M

(
k − 1

2M̈ + 1
4

Ṁ2

M

)
Ω2 = k

M

From a physical point of view, it is interesting to consider the relationship between these results. Let a perturbation (i.e.
displacement)ψ obey a TDHO equation with a time-dependent parameter but constant mass. The equation governing the time
derivative of such a perturbation (i.e. velocity) is given by the time derivative of the perturbation equation. If the system has
a time-dependent mass, the perturbation (i.e. displacement) now obeys an equation that is identical to that fulfilled by the
velocity in the case of constant mass with time-dependent stiffness.

A. Analytic solution

An analytic approximate solution to the TDHO has been obtained for a time-dependent parameterΩ2 (t) that varies mono-
tonically in a time span much shorter than the characteristic period of the system [12]. The solution in amplitude and phase
variablesψ = ρ exp (iϕ) is given by

ρ (t) =
a1√
2

√√√√√1 +
Ω2

1

Ω2 (t)
+

(
1− Ω2

1

Ω2 (t)

)
cos


2

t∫

ts

Ω(t′) dt′


, (13)

and

ϕ (t) = arctan


 Ω1

Ω (t)
tan




t∫

ts

Ω(t′) dt′


 + (ts − t0)Ω1


 . (14)

a1 andΩ1 are the initial amplitude and frequency at a time well before the transient behaviour takes place.ts is the time where
the variation is maximum andt0 is an arbitrary initial time. The frequency, defined as the derivative of the phase is given by

ϕ̇ =
Ω1(

Ω1
Ω(t)

)2

sin2
(∫ t

ts
Ω(t′) dt′

)
+ cos2

(∫ t

ts
Ω(t′) dt′

)
.

(15)

The solution for the displacementv in the classical time-
dependent mass problem is then

v = ψ̇ = ρ̇eiϕ + iϕ̇ρeiϕ =
(

ρ̇

ρ
+ iϕ̇

)
ψ

but

ρ̇

ρ
+ iϕ̇ =

√(
ρ̇

ρ

)2

+ ϕ̇2 exp
[
i arctan

(
ρϕ̇

ρ̇

)]
.

Therefore, in polar variablesv = ρv exp (iϕv), the am-
plitude and phase are given by

ρv =
√

ρ2ϕ̇2 + ρ̇2, ϕv = ϕ + arctan
(

ρϕ̇

ρ̇

)
. (16)

Allow for the time-dependent parameter to be given
by (11) with constantk and let the function

M(t)=M1

[
1+

M2−M1

2M1
(1+ tanh [αs (t−ts)])

]
(17)

model a step function in the limit when the slopeαs →∞ as
shown in Fig. 1. It is interesting to note that the approximate
analytic solution that is being used is adequate even if the
time-dependent parameter does not vary in a strictly abrupt
fashion. The solution is appropriate in the so-called subpe-
riod regime that requires variations of the time-dependent pa-
rameters in an interval much shorter than the period of the
system although not necessarily infinitesimal. The amplitude
ρv for this function is plotted in Fig. 2 using Eqs. (16) to-
gether with (13) and (14).

4. Quantum oscillator

The Ermakov-Lewis invariant̂I may be related to the Hamil-
tonian with time-independent mass by a unitary transforma-
tion of the form (for simplicity we set~ = 1)

T̂=exp
(

i
ln(ρv)

2
(q̂p̂+p̂q̂)

)
exp

(
−i

M(t)ρ̇v

2ρv
q̂2

)
, (18)
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FIGURE 1. The massM(t) evolution as a function of time for
M1 = 1 andM2 = 0.5; αs = 20 andts = 2.

FIGURE 2. The amplitudeρu(t) as a function of time forM1 = 1,
M2 = 0.5, αs = 20 andts = 2.

with

Ĥ = T̂ ÎT̂ † =
1
2
(p̂2 + G2q̂2) ≡ G

(
n̂ +

1
2

)
, (19)

with n̂ the so-called number operator with eigenstates|n〉.
States of the form|n〉t = T̂ †|n〉 are eigenstates of the Er-
makov Lewis invariant. This invariant plays in the time-
dependent case, the role that the quantized Hamiltonian does
in the time-independent case [13, 14]. The Ermakov Lewis
invariant can be written in terms of annihilation and creation
operators aŝI = â†â + G/2 with

â =
1√
2

[
Gq̂

ρv
+ i(ρvp̂−M(t)ρ̇v q̂)

]
,

â† =
1√
2

[
Gq̂

ρv
− i(ρvp̂−M(t)ρ̇v q̂)

]
. (20)

We can obtain coherent states of the TDHO with time-
dependent mass as

|α〉t = D̂t(α)|0〉t,
with

D̂t(α) = exp(αâ† − α∗â)

and

â|α〉t = α|α〉t.
Recently we have shown that the Schrödinger equation for
the one-dimensional time-dependent harmonic Hamiltonian
has a solution of the form [15]

|ψ(t)〉 = e
−iÎ

t∫
0

ω(t′)dt′

T̂ †T̂ (0)|ψ(0)〉, (21)

with ω(t) = 1/ρ2
v.

A. Squeezed states

Consider that, at timet = 0, the system is in the initial coher-
ent state|α〉. The initial state|ψ(0)〉=T̂ †(0)|α〉=|α〉0=|α〉
then evolves according to (21) as

|ψ(t)〉 = exp


−iÎ

t∫

0

ω(t)dt


 T̂ †|α〉

= T̂ †|αe
−i

t∫
0

ω(t)dt
〉 = |αe

−i
t∫
0

ω(t′)dt′

〉t. (22)

Therefore, coherent states remain coherent throughout
the system’s time evolution. This statement has been made
before regarding an oscillator with constant mass but time-
dependent frequency [8]. This result is now being extended
to an oscillator with time dependent mass. From Fig. 2 we
can see that̂T (0) = 1, sinceρ̇v = 0 andln ρv = 0. It may
thus be seen how ideal squeezed states may be generated: the
maxima of the function tell us when squeezing occurs, since
as for such timeṡρv(tmax) = 0 andln ρv(tmax) 6= 0, so that
we obtain

|ψ(tmax)〉

= exp
(

i ln ρv(tmax)
2

(q̂p̂ + p̂q̂)
)
|αe

−i
tmax∫

0
ω(t)dt

〉, (23)

where the operator

exp[
i

2
ln ρv(tmax)(q̂p̂ + p̂q̂)]

is the well-knownsqueeze operator[16, 17]. The squeezed
state

|ψ(tmax)〉 = |α exp


−i

tmax∫

0

ω(t)dt


 ; ln ρv(tmax)〉

Rev. Mex. F́ıs. 53 (1) (2007) 42–46



46 H. MOYA-CESSA AND M. FERNÁNDEZ GUASTI

is then generated. Squeezed states, like as coherent states, are
also minimum uncertainty states. However the uncertainties
for q̂ andp̂ are not equal; in particular, we have

∆q̂=
ρv(tmax)√

2
, ∆p̂=

1√
2ρv(tmax)

, ∆q̂∆p̂=
1
2

(24)

i.e. the momentum uncertainty is squeezed (asρv(tmax) > 1,
see Fig. 2). This result should be compared with the squeez-
ing found for the TDHO when the frequency is suddenly dou-
bled, thus yielding squeezing in the coordinate variable [8].

5. Conclusions

The real linear quantum invariants or orthogonal function in-
variants have been generalized for the one dimensional har-
monic oscillator with time-dependent mass [Eq. (6)].

The TDHO with time-dependent massM (t) has been
translated into a problem with constant mass but time-
dependent parameterΩ2 (t). The transformation has been
shown not to be unique. A Darboux type transformation
yields an equation for the perturbation with time-dependent
mass that is formally identical to that fulfilled by the velocity

in the constant mass case. The transformed time dependent
parameterΩ2 (t) then remains monotonic and finite, provided
that the time-dependent mass is monotonic and finite, even if
it varies in an abrupt fashion.

The problem has been solved using an approximate
analytical solution whose validity holds when the time-
dependent parameters vary monotonically in a time span that
is much shorter than the period, although it need not be in-
stantaneous. This feature, which describes a more realis-
tic scenario of parameter variations with finite duration, is
clearly unattainable when the problem is solved using the two
steady-state solution approach.

A sudden change of mass beginning with a massM1

produces squeezing in the momentum variable provided that
there is a loss of massM2 < M1. In contrast, a variation of
the potential fromΩ1 to Ω2 with Ω2 > Ω1 produces squeez-
ing in the coordinate variable [8]. These results are consistent
with the view described above that the coordinate transforma-
tion is formally equivalent to the role played by the velocity
variable when the mass is constant. Coherent states have been
shown to keep their form throughout the system’s evolution,
whether or not the mass and/or the potential are time depen-
dent.
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