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The term “embedded soliton” was coined in 1999 to describe a new type of soliton (discovered in 1997) whose internal frequencies lie wil
the spectrum of the radiation modes of certain nonlinear systems. In 2005 it was discovered that “embedded lattice solitons” (ELS) can
exist in discrete systems. The present communication shows that a discrete higher-order NLS equation with exact ELS leads natural
a four-dimensional dynamical system that can be cast in the form = F (¢n, ..., ¢n+3), Where F is a nonlinear function. In all the
particular cases studied in this communication, at least two of the four Lyapunov coefficients associated with the system are positive,
indicating a chaotic behavior.
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En 1997 se deculiriun nuevo tipo de solitones, los cuales fueron bautizados en 1999 con el nombre de “solitones embebidos” (SEs)
diferencia de los solitones normales, los SEs tienen frecuencias internasauderstro del espectro de los modos de radiade ciertos
sistemas no lineales. Recientemente se deszghe tambin existen “solitones embebidos discretos”, tanto estables como inestables. En €
presente trabajo se muestra que una derdiscreta de una ecuaaino lineal de Schrodinger generalizada conduce de manera natural a un
sistema diamico no lineal en cuatro dimensiones. Este sistem@ndlitco generérbitas sumamente interesantes y de particular belleza. En
todos los casos que estudiamos en este trabajo encontramos que al menos dos de los cuatro coeficientes de Lyapunov calculados re:
ser positivos, sugiriendo Bls existencia de soluciones@ataas.

Descriptores: Solitones embebidos; solitones discretos; sistemaslzos; ecuadin NLS discreta; ecuatn no lineal de Schrodinger.

PACS: 05.45.Yv; 05.45.-a; 42.65.Tg

1. Introduction In the beginning ES were only found in continuous sys-
tems occurring in nonlinear optics [4—7], hydrodynamics [8]
The discretization of soliton equations leads in a natand liquid crystal theory [9]. However, it was recently found
ural way to nonlinear mappings (NMs) with interesting that ES can also exist in discrete systems [10,11], and in these
properties. In particular, NMs associated with differential-cases we speak embedded lattice solitorfELS). These dis-
difference versions of the Korteweg-de Vries (KdV), modi- crete systems with ELS lead immediately to new NMs which
fied KdV, isotropic Heisenberg spin chain (IHSC) and non-have not been studied previously. In the present commu-
linear Schédinger (NLS) equations have been shown to posmication, we will study the NMs which arise from the first
sess interesting structures [1-3]. These equations have, gfferential-difference equation which was shown to possess
a common feature, the possession of standard soliton solgxplicit ELS. This equation is a discrete version of a higher-
tions. There exist, however, nonlinear equations with nonorder nonlinear Sckidinger (NLS) equation:
standard solitons, which can also lead to interesting NMs. In
particular, the present communication focuses on the study of gy, a2u N 9 4
the NMs associated with a novel type of soliton christened in 5, + €255 + g5+ ful” = ful u =0, (1)
1999as embedded solitol{ES).

The ES can be described by real or complex functionswhich is useful in describing the propagation of ultrafast opti-
When ES are complex, they are characterized by possessiggl pulses in fibers doped with two appropriate materials [12].
internal frequencies which lie within the range of frequen-In this case represents the propagation distancés the re-
cies permitted for radiation modes. In the case of real ES, thtarded time,e,, and~,, are real constants, andz,t) is a
embedded quantity is the velocity of the solitons, which liecomplex function. In Ref. 10 it was shown that a discrete
among the phase velocities permitted for linear waves. Usuversion of (1) which has ELS has the form:
ally this feature would imply that this type of soliton should 5
decay into radiation, due to a resonance between the soliton. 07» 1 2
and t)rqe radiation modes. In factl standard complex soli- 9t Feebatateafa ot gylrnl (a4 )
tons have internal frequencies whichdietsidethe spectrum 2 4
of the radiation modes in order to avoid this resonance. How- ~ 372 [l [rns2 + 4 (ragy +7m1) +702] =0, (2)
ever, in the case of ES, a delicate balance between nonlinear-
ity and dispersion prevents the resonant emission of radiationyherer,, (t) = u(nAz, t) is a complex-valued function of
thus permitting the existence of these solitons. time defined at the lattice sites, the coefficients, anda



48 E. CABRERA, S. GONALEZ-PEREZ-SANDI, AND J. FUJIOKA

are real, and the finite-difference operatarsandA, are: 2. Behavior close to and far away from the
fixed points
rn+1 - 2'rn + Tn—1
Ay rn = 2 ’ 3 . .
(Ax) 2.1. Fixed points
Ayr, = 2 Arpp + 6%4, drp_1+ n=2 = (4)  Tosimplify the notation, let us rewrite the system (8)-(11) in
(Az) the compact form:
where Az is the lattice spacing. An interesting feature of X1 =f (%), (12)

Eg. (2) is that it not only involves the nearest neighboring

interactions, but also the next-nearest contributions, and thigherex,, = (a,, by, cn,dn) € R*, andf :R* — R* is the
feature implies that the NMs associated with this equatiorfunction:

will be four-dimensional (4D).

The soliton solutions of Eq. (2) are particular solutions of £(xn) = (f1(xn), f2(xn), f5(3n), faxn)) (13)

the form: andf;: R* — R are defined as follows:
Tn (t) = ¢n67iw t’ 5) i (am ns Cns d ) (14)

whereg,, = Asecl{ Bn Az), and the values of the constants fa(an, bn,s ey dn) = (15)
A, B andw can be found from a complex system of alge- F3 (ans by ey dn) = dn, (16)
braic equations. These soliton solutions were studied else- b s
where [10], and in the present communication we will focus ~ fi (an, bns Cn,dn) = [(w — 254+ 6€9) ¢p
our attention on other solutions of the form (5). Substitut- n ( _4e0 4 ) (dy + bn)
ing (5) into (2) it is easily found thag,, must satisfy the fol- ed +afen —dongen) (da
lowing equation: (5 =8t an] ¥ (9t —£9) 7. (@)
Onta = [(w—25 +6e3) Pnia Now let us find the fixed points of system (12). These

o 404 042 0 .4 points are the solutions to the equatian = f (x), and
+ (€5 —4ef + 17 0n12 — 4073 dia) (bnts + dnt1) from this equation it follows that these points have the form

o o o o -1 = i -
+ (54 _ 72¢i+2) %] « (72 ¢ﬁ+2 _ 54) . () X (p,p,p,p), Wherep is any of the real roots of the equa

tion:
where: 2(da+ 1989 —290p* —wp=0. (18
o €2 o €4 o N o 2 . . . .
52=W7 &4= A )4 o M= =302 (7)  This equation may have one, three or five roots, depending on
* v the values of the coefficients’, 79, o andw. One of these

Equation (8) can be rewritten as the following first-order sys- roots isp; = 0 [which is associated with the soliton solutions
tem in a 4D space, with,, = ¢, to EqQ. (2)], and the remaining four roots (when they exist) are

defined by the equations:

k= b ©® 47+ VA(19)? + 893w(da +1)
71 71 Taw(FQ
— =+ 19
bn+1 = Cnp, (9) D23 \/ 8’)/3(401 n 1) ) ( )
Cna1 = dp, 10
“ o N R G N
dyps1 = [(w—2e5+6¢9) cn P45 = 875(da + 1) :

+ (5 —4ef + 7y, —4ars e, (dn + by) To determine the stability of each of these fixed points,
(63— 79ch) an] ¥ (1862 — 52)71 (11) we need the eigenvalues of the equation:

o ) Det[R — M| =0, (21)
In the present communication we shall explore the rich va-
riety of solutions of this 4D dynamical system. In Sec. 2wherel is the identity matrix andR is the jacobian of the
we shall calculate the fixed points of this system in two dif-system (12), which has the form:
ferent cases( = 0 andw # 0), and the behavior of the

solutions close to and far away from these points will be in- 0 100
vestigated. Then, in Sec. 3, we shall study what is the influ- R = 0 0 10 7 (22)
ence of the coefficients, £, v2 andw on the solution of the 01 0 (2 1

— S S

system (8)-(11). Finally, Sec. 4 concludes the paper.
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wheres andt depend oy, 79, o, w andp in the following
way:

oo €9 — 4e§ + 9 p* — 4aryg pt

0 4 o (23)
Yo P — &4

t=(vep* —eg) " [~ (w— 265 +623) (€5 + 395 )
—2p* {4193 + 29% (V9 p* +€9)
—1675e5 (e + 1) p*}] .  (24)

From Egs. (21) and (22), it follows that the four eigen-
values are the roots of the equation:

M= A3 =t —sA+1=0. (25)

Once these values are known, the stability of each of the fixed
points is determined by the norm of the matRx which is
defined as:

[IR|| = max {[Ax],[Aaf  [As]; [Aal}- (26)

The fixed point will be stable ifiR|| (1, unstable if||R||)1,

and the stability of the point remains undefinef B || = 1.
We shall now study the behavior of the system (12) close

to and far away from the fixed points in two different cases

defined by the parameters shown in Table I.

In Case 2, the parametets, ¢4, 71, 72, Az, o andw were

chosen in order for Eq. (2) to have ELS. On the other hand,

in Case 1 the mapping (8)-(11) is simpler because 0, but

in this case Eq. (2) has no ELS.

As we shall see below, interesting patterns are obtained
in the phase planép,,, ¢,,+1) when the sequence of values
{¢,} is obtained by means of Eq. (6). The nature of these
patterns (periodic, quasiperiodic, chaotic, etc.) will be ana-
lyzed by calculating the fast Fourier transform (FFT) and the
Lyapunov exponents corresponding to these sequericgs
As Eqg. (6) defines a fourth-order dynamical system, there
will be four Lyapunov exponents, which we will calculate
by means of the procedure explained in Refs. 13 and 14.

x10°

¢(n)
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FIGURE 1. Solution corresponding to Casedt & 0) with the ini-
tial conditionag = bg = cog = dop = 0.001 , which is close to the

fixed pointx(!). (a) Values ofp,, for n = 0,...32767, (b) phase

TABLE |. Parameters used in the cases studied.

Case l Case 2
€2 1 1
€4 24/49 24/49
Y1 1 1
Y2 1 1
Ax 1 1
@ -0.066599269 -0.066599269
0 -0.212026829
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2.2. Caselw =0)

xM = (0,0,0,0)

x? = (2, p2,pa,p2) ;

x®) = (P37P3,P3,P3);

portrait of the pointg¢,, ¢»+1), (C) Lyapunov exponents.

In this case, system (12) has three fixed points:

po = +1.011114
ps = —1.011114.
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FIGURE 2. Solution corresponding to Case & (= 0) with the

initial conditionag = by = co = do = 0.1, which is close to the
fixed pointx™. (a) Values ofp,, for n = 0, ..., 32767, (b) phase
portrait of the pointg¢,, ¢»+1), (C) Lyapunov exponents.

near pointx(!) is simple. In Fig. 1a, for example, we can
see a periodic solution corresponding to the initial condition
ag = by = ¢ = dy = 0.001. The phase portrait of this so-
lution in the plane&(¢.,, ¢,+1) is trivial, and can be seen in
Fig. 1b. Figure 1c shows the Lyapunov exponents associated
with this solution. If the initial condition is moved a little bit
farther fromx(!), quasiperiodic solutions are obtained. For
example, the initial conditiomy = by = ¢ = dg = 0.1
leads to the quasiperiodic solution shown in Fig. 2a. The
phase portrait and the Lyapunov exponents corresponding to
this solution are shown in Figs. 2b and 2c.

The behavior of the solutions near point$>?) is
more interesting. In Fig. 3 we can see, for exam-
ple, the solution corresponding to the initial condition
ao=bo=co=dy=1.011112, which is close tox(®). Fig. 3a
shows that the sequende,,} seems to have different sec-
tions. In each of these sections the value |¢f| re-
mains boundedi.e. |¢,| (B, within the n-th section. The
phase portrait corresponding to the movement of the point
(¢n, dn+1) is shown in Fig. 3b, and the Fourier transform is
presented in Fig. 3c. This solution is quite sensitive to the
initial conditions, as shown by the increasing positive Lya-
punov exponents shown in Fig. 3d. The different sections
of the sequencée,, } seen in Fig. 3a correspond to different
quasiperiodic orbits. The “jumps” from one quasiperiodic or-
bit to another shown in Fig. are spurious, and occur when the
denominator of expression (17) comes too close zero and the
computer is not enough to evaluate the quotient accurately
enough. Therefore, the position of the jumps changes if we
increase the computers precision.

Far from the fixed points, the solutions behave similarly
to the solution shown in Fig. 3. In Fig. 4, for example, we
can see the behavior of the solution corresponding to the ini-
tial conditionag = ¢y = 1.394 andby = dy = 1.393.
Figure 4a shows that the solution also seems to evolve by
steps. However, as in Fig. 3, the jump from one step to
the next is a spurious result due to the finite accuracy of
the computer. The phase portrait of the solution is shown
in Fig. 4b. We can see two well-defined elliptical struc-
tures in this figure. These structures correspond to two of
the steps shown in Fig. 4a. In Fig. 4c we can see that the
FFT of this solution exhibits four well-defined wavenumbers
(£2.267 and £ 0.677), which are associated with elliptical
rings seen in Fig. 4b. This solution is also rather sensitive to
the initial conditions, as shown by the Lyapunov exponents
shown in Fig. 4d.

2.3. Casedw #0)

Now let us consider Case 2. In this case, system (12) has five
fixed points:

x1 =(0,0,0,0),

. age . - . - 73)
The linear stab|I.|ty anaI¥S|s |nd|c_ates that po_|m<§ _age x(23) — 4 (P2s P2, D2, P2) ; s = 0.547853
unstable, and gives no information concerning poift).
The numerical tests show that the behavior of the solutions x5 = 4+ (P4, P4, P4, P4) ; ps = 0.849828
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FIGURE 9. Influence of a small change in the initial conditions which leads to Figs. 1, 2, 7 and 8. A small chenge {0~°) was added to
the initial conditions which produced these figures, and the distances between the initial and the modified solutions are shown on the vertical
axes of the graphs (a), (b), (c) and (d) shown above.

The linear stability analysis shows that paiit) is unstable  defined byp = 0,40.672308,+0.751173. If we consider

(as expected, since this point is associated with soliton sathe initial condition,ay = 0.25, by = 0.3, ¢ = 0.25 and
lution), the stability of points<(>®) remains undefined, and dy = 0.3 (which is far from the fixed points), the solution be-
pointsx(*®) are also unstable. The behavior of the solutionshaves as shown in Figs. 8a and 8b. The dominant wavenum-
near these points can be seen in Figs. 5-7. bers can be seen in Fig. 8c, and the Lyapunov exponents are

The graphs shown in Figs. 5a and 6a show that the uppe&ihown in Fig. 8d.
bound of the solutions whose initial conditions are close to o o .
the unstable fixed pointe) andx(¥) also change by steps 2-4- Sensitivity to initial conditions
[in a form similar to the solution shown in Fig. 4a]. The
Fourier transforms shown in Figs. 5c and 6c present fou
dominant wavenumbers).681 and+2.270 in case 5c, and
+0.681 and £2.270 in case 6c]. The Lyapunov exponents

In all of the examples examined in this section, some of the
[yapunov coefficients turned out to be positive, thus indi-
cating that some of the solutions to the 4D dynamical sys-
- S : tem (8)-(11) are rather sensitive to the initial conditions. To
Sh°W.rT n F|gs..-5d and .G.d |nq|cate that the solutions are aIS81ppreciate how the solution changes when the initial con-
sensitive to initial conditions in these two cases. ditions are slightly modified, let us add a tiny increment

In Figs. 7a and 7b, we can see a quasiperiodic solutiofing — 10-°) to the initial conditions which produced the
whose initial condition is close to point>). The Fourier  resuits shown in Figs. 1, 2, 7 and 8.

transform presented in Fig. 7c shows that there are 12 dom- 1o measure the “distancd”™y — X’|| between the origi-
inant wavenumbers. Fig. 7d shows that the Lyapunov expong) (“old”) solution (X) and the “new” solution X’) corre-

nents are almost constant, and one of them is clearly greatgponding to the modified initial condition, we shall consider
than zero, indicating that the solution is sensitive to the initiakhe following measure:

conditions. ,
!/ /
Far from the fixed points, the solutions are more complex.|X (7) = X" (n)[| = ((¢’ (n) —¢' (n))
In Fig. 8, for example, we can see the solution correspond-

2 2
ing to coefficientssy = 1, € = 24/49, 79 = 0.468750, +(@n+1)—¢' (n+1)" +(¢(n+2) - ¢ (n+2))
79 = 0.640625, « = —0.07 andw = —0.212027. With ) o\ 1/2
these coefficients, there are five fixed poirts= (p, p, p, p) +(¢(n+3)—¢'(n+3)) ) (27)
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The effect of the small variation in the initial conditions lead- 05

55

ing to Figs. 1, 2, 7 and 8 can be seen in Fig. 9. Notice o Foay + *
: : : o 2r + * * ot L 1
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: e St - ) L S P ST
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do not indicate a chaotic behavior. In the case of Fig. 9d, i u# +%us ¥ T & 4
the distance remains small but changes erratically. This er- LA A T
ratic (chaotic) behavior explains the high positive Lyapunov ~ *% 100 200 300 400 500 500
exponents seen in Fig. 8d. n
FIGURE 11. Solution corresponding te&/=0 and the re-
fl fth ffici maining coefficients as in Case 1. The initial condition is:
3. Influence of the coefficients —$(0) = (1) = ¢ (2) = ¢ (3) = 0.01.

If we observe the form of the dynamical system (6), it is not
evident what the influence is of each of the coefficignt§,
~¢, a, w} on the form of the solutiod¢,, }. In order to clar-
ify this issue, let us vary the values of these coefficients one
by one to see how these changes affect the soldtiar.

In order to appreciate the influenceadf, Fig. 10 shows
the evolution ofp,, whens$ = 0, the remaining coefficients
of Eq. (6) are the same as in Case 1 (see Table 1), and the ini- =
tial condition is close to the point™ = (0,0,0,0), which ‘© 064r
behaves as a stable critial point, as we saw earlier. The re&
sult depicted in Fig. 10 shows that grows extremely fast if
€9 = 0, thus indicating that the coefficiegf has a stabilizing
influence on the solutiofig,, }.

A similar result is obtained if we take} = 0. As shown
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in Fig. 11, the values ob,, also become very large when
g9 = 0, thus implying that§ also helps to stabilize the solu-

tion {4y, }.

FIGURE

DAB 1 1 1 1 1 1 1 1 ]
-0.09 0085 -008 0075 007 0065 -0.06 -D.055 -0.05 -0.045

oL

12. Minimum and maximum values of the set

{¢n:n=0,..,2"}. Except fora, the parameters as those of

3000 -

2000

1000 take the

¢(n)

e | of « (for

-2000

-3000

1 1 ]
300 400 600

n
FIGURE 10. Solution corresponding tes=0 and the re-
maining coefficients as in Case 1. The initial condition is:

—¢(0) =6 (1) =¢(2) = ¢ (3) = 0.01.

1 1
0 100 200

those of

Case 2, and the initial condition is the fixed pokt’.

The effect ofa on the solution{¢,, } reveals itself if we
plot the minimum and maximum values taken onggydur-
ing a fixed number (N) of iterations, as functionscoflf we
parameters corresponding to Case 2 (Table 1), as the
initial condition the fixed poink(? and N = 2'4, we arrive
at Fig. 12. This figure shows that the range of values spanned
by ¢,, during a fixed number of iterations is a linear function

small variations ofy); an interesting result, since

occurs within one of the nonlinear terms of Eq. (2).

The influence of the nonlinear coefficient$ and~$ is
more complicated. In Fig. 13 we can see the minumum and
maximum values attained by, during N = 24 iterations,
as a function ofy$. The initial condition used was the fixed
point x(?) in Case 2, and the remaining coefficients were
Case 2. As we can see in this figure, the range of val-
ues spanned by, varies linearly withyg for small changes
in this coefficient, but it increases greatly fof > 0.7 or
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~5 < 0.55. In particular, fory§ > 0.7, the dependence of this

range ony§ seems to be quite irregular and unpredictable.
The effect ofy{ is similar. In Fig. 14 we can see that

the range of values spanned dy varies linearly withy? for

small changes in this coefficient, but it may increase greatly

if the value ofy¢ drops below 0.45. As in Fig. 13, the initial
condition used to generate Fig. 14 was the fixed prift

of Case 2, N = 2'4, and the other parameters were those in

Case 2.

The graphs shown in Figs. 13 and 14 reveal that the over-

all dependence of the range of values spanned,pgn the
coefficientsyy and~$ is complicated and irregular, but this

dependence becomes linear for small changes in these tw £

coefficients.
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FIGURE 13. Minimum and maximum values of the set

{¢n:n=0,..,2"}. Except fory,, the parameters are those of
Case 2, and the initial condition is the fixed paift).
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FIGURE 14. Minimum and maximum values of the set

{¢n:n=0,..,2"}. Except fory;, the parameters are those of
Case 2, and the initial condition is the fixed paii® .
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FIGURE 15. Examples of the different types of trajectories which
can be generated in the phase plé#g, ¢.+1) wheng,, evolves
according to Eq. (6). Different coefficients and /or initial condi-
tions were considered to generate these graphs.
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FIGURE 16. Examples of Fourier transforms corresponding to dif-
ferent initial conditions.

4. Discussion and conclusions

In this paper, we have studied the behavior of some of so-
lutions of the nonlinear mapping (6), which is equivalent to
the 4D dynamical system (8)-(11). This system is obtained
by substituting a separable solution of the form (5) into the
nonlinear differential-difference Eq. (2), which is a discrete
version of the generalized NLS equation (1). The interest on
the solutions of Eq. (2) arises from the fact that this is one
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of the two unique systems known to date that possggkcit =~ many cases three of them) are positive, thus implying that the
and exact embedded lattice solitons [10-14]. system is chaotic. However, quasiperiodic orbits are possible,

The behavior ofp,, [governed by the NM (6)] corre- as shown by the phase portraits shown in Figs. 3-8 and 15. In
sponding to initial conditions close to an unstable fixed pointthese cases, there are four dominating wavenumbers which
or far from the fixed points, leads to interesting trajectoriesappear in the Fourier transforms shown in Figs. 3-8. For
in the phase plané,,, ¢,+1), as can be seen in Figs. 3-8. other initial conditions, different from the ones used to gen-
Many other types of trajectories can be obtained by changerate Figs. 3-8, the Fourier transforms may be more compli-
ing the coefficients of the equation, or the initial conditions.cated. In Fig. 16, for example, we can see the structure of the
In Fig. 15 we can see some examples of the rich variety ofourier transforms associated with other initial conditions.
trajectories generated in this way.

The evaluation of the four Lyapunov exponentg associ- The numerical results indicate that the sequences of val-
ated with the trajectories in 4D space of a point whose coorl€s{¢, } are very sensitive to changes in the nonlinear coef-
dinates(a,,, by, ¢, d,,) evolve according to the 4D dynamical ficients~7 and~3. The effect of changing the linear coeffi-
system (8)-(11) shows that two of these coefficients (and ifientse$ andey is less dramatic.
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