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04510 Ḿexico D.F., Ḿexico.
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The term “embedded soliton” was coined in 1999 to describe a new type of soliton (discovered in 1997) whose internal frequencies lie within
the spectrum of the radiation modes of certain nonlinear systems. In 2005 it was discovered that “embedded lattice solitons” (ELS) can also
exist in discrete systems. The present communication shows that a discrete higher-order NLS equation with exact ELS leads naturally to
a four-dimensional dynamical system that can be cast in the formφn+4 = F (φn, . . . , φn+3), where F is a nonlinear function. In all the
particular cases studied in this communication, at least two of the four Lyapunov coefficients associated with the system are positive, thus
indicating a chaotic behavior.
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En 1997 se decubrió un nuevo tipo de solitones, los cuales fueron bautizados en 1999 con el nombre de “solitones embebidos” (SEs). A
diferencia de los solitones normales, los SEs tienen frecuencias internas que están dentro del espectro de los modos de radiación de ciertos
sistemas no lineales. Recientemente se descubrió que tambíen existen “solitones embebidos discretos”, tanto estables como inestables. En el
presente trabajo se muestra que una versión discreta de una ecuación no lineal de Schrodinger generalizada conduce de manera natural a un
sistema dińamico no lineal en cuatro dimensiones. Este sistema dinámico generáorbitas sumamente interesantes y de particular belleza. En
todos los casos que estudiamos en este trabajo encontramos que al menos dos de los cuatro coeficientes de Lyapunov calculados resultaron
ser positivos, sugiriendo ası́ la existencia de soluciones caóticas.

Descriptores: Solitones embebidos; solitones discretos; sistemas dinámicos; ecuación NLS discreta; ecuación no lineal de Schrodinger.
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1. Introduction

The discretization of soliton equations leads in a nat-
ural way to nonlinear mappings (NMs) with interesting
properties. In particular, NMs associated with differential-
difference versions of the Korteweg-de Vries (KdV), modi-
fied KdV, isotropic Heisenberg spin chain (IHSC) and non-
linear Schr̈odinger (NLS) equations have been shown to pos-
sess interesting structures [1–3]. These equations have, as
a common feature, the possession of standard soliton solu-
tions. There exist, however, nonlinear equations with non-
standard solitons, which can also lead to interesting NMs. In
particular, the present communication focuses on the study of
the NMs associated with a novel type of soliton christened in
1999as embedded solitons(ES).

The ES can be described by real or complex functions.
When ES are complex, they are characterized by possessing
internal frequencies which lie within the range of frequen-
cies permitted for radiation modes. In the case of real ES, the
embedded quantity is the velocity of the solitons, which lie
among the phase velocities permitted for linear waves. Usu-
ally this feature would imply that this type of soliton should
decay into radiation, due to a resonance between the soliton
and the radiation modes. In fact,all standard complex soli-
tons have internal frequencies which lieoutsidethe spectrum
of the radiation modes in order to avoid this resonance. How-
ever, in the case of ES, a delicate balance between nonlinear-
ity and dispersion prevents the resonant emission of radiation,
thus permitting the existence of these solitons.

In the beginning ES were only found in continuous sys-
tems occurring in nonlinear optics [4–7], hydrodynamics [8]
and liquid crystal theory [9]. However, it was recently found
that ES can also exist in discrete systems [10,11], and in these
cases we speak ofembedded lattice solitons(ELS).These dis-
crete systems with ELS lead immediately to new NMs which
have not been studied previously. In the present commu-
nication, we will study the NMs which arise from the first
differential-difference equation which was shown to possess
explicit ELS. This equation is a discrete version of a higher-
order nonlinear Schrödinger (NLS) equation:
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∂x2
+ ε4

∂4u

∂x4
+ γ1 |u|2 − γ2 |u|4 u = 0, (1)

which is useful in describing the propagation of ultrafast opti-
cal pulses in fibers doped with two appropriate materials [12].
In this caset represents the propagation distance,x is the re-
tarded time,εn and γn are real constants, andu(x, t) is a
complex function. In Ref. 10 it was shown that a discrete
version of (1) which has ELS has the form:
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wherern (t) = u(n∆x, t) is a complex-valued function of
time defined at the lattice sites, the coefficientsεn, γn andα
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are real, and the finite-difference operators∆2 and∆4 are:

∆2 rn ≡ rn+1 − 2 rn + rn−1

(∆x)2
, (3)

∆4 rn ≡ rn+2 − 4 rn+1 + 6 rn − 4 rn−1 + rn−2

(∆x)4
, (4)

where∆x is the lattice spacing. An interesting feature of
Eq. (2) is that it not only involves the nearest neighboring
interactions, but also the next-nearest contributions, and this
feature implies that the NMs associated with this equation
will be four-dimensional (4D).

The soliton solutions of Eq. (2) are particular solutions of
the form:

rn(t) = φne−iω t, (5)

whereφn = A sech(B n4x), and the values of the constants
A, B andω can be found from a complex system of alge-
braic equations. These soliton solutions were studied else-
where [10], and in the present communication we will focus
our attention on other solutions of the form (5). Substitut-
ing (5) into (2) it is easily found thatφn must satisfy the fol-
lowing equation:
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+
(
εo
2 − 4 εo
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1φ2
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where:
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Equation (8) can be rewritten as the following first-order sys-
tem in a 4D space, withan = φn:

an+1 = bn, (8)

bn+1 = cn, (9)

cn+1 = dn, (10)

dn+1 = [(ω − 2 εo
2 + 6 εo

4) cn

+
(
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2 − 4 εo
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1c2
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2 c4

n
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2c4
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)
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] ∗ (
γo
2c4
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4

)−1
. (11)

In the present communication we shall explore the rich va-
riety of solutions of this 4D dynamical system. In Sec. 2
we shall calculate the fixed points of this system in two dif-
ferent cases (ω = 0 andω 6= 0), and the behavior of the
solutions close to and far away from these points will be in-
vestigated. Then, in Sec. 3, we shall study what is the influ-
ence of the coefficientsα, εo

n, γo
n andω on the solution of the

system (8)-(11). Finally, Sec. 4 concludes the paper.

2. Behavior close to and far away from the
fixed points

2.1. Fixed points

To simplify the notation, let us rewrite the system (8)-(11) in
the compact form:

xn+1 = f (xn) , (12)

wherexn = (an, bn, cn, dn) ∈ R4, andf :R4 → R4 is the
function:

f (xn) = (f1(xn), f2(xn), f3(xn), f4(xn)) , (13)

andfi:R4 → R are defined as follows:

f1 (an, bn, cn, dn) = bn, (14)

f2 (an, bn, cn, dn) = cn, (15)

f3 (an, bn, cn, dn) = dn, (16)

f4 (an, bn, cn, dn) = [(ω − 2 εo
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+
(
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2 c4
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+
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2c4
n

)
an

] ∗ (
γo
2c4

n − εo
4

)−1
. (17)

Now let us find the fixed points of system (12). These
points are the solutions to the equationx = f (x), and
from this equation it follows that these points have the form
x = (p, p, p, p), wherep is any of the real roots of the equa-
tion:

2(4α + 1)γo
2 p5 − 2γo

1 p3 − ωp = 0. (18)

This equation may have one, three or five roots, depending on
the values of the coefficientsγo

1 , γo
2 , α andω. One of these

roots isp1 = 0 [which is associated with the soliton solutions
to Eq. (2)], and the remaining four roots (when they exist) are
defined by the equations:

p2,3 = ±
√

4γo
1 +

√
4(γo

1)2 + 8γo
2ω(4α + 1)

8γo
2(4α + 1)

, (19)

p4,5 = ±
√

4γo
1 −

√
4(γo

1)2 + 8γo
2ω(4α + 1)

8γo
2(4α + 1)

. (20)

To determine the stability of each of these fixed points,
we need the eigenvalues of the equation:

Det [R− λI] = 0, (21)

whereI is the identity matrix andR is the jacobian of the
system (12), which has the form:

R =




0 1 0 0
0 0 1 0
0 0 0 1
−1 s t s


 , (22)
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wheres andt depend onγo
1 , γo

2 , α, ω andp in the following
way:

s =
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2 p4
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4

, (23)
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(
γo
2 p4 + εo

4
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−16γo
2 εo
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. (24)

From Eqs. (21) and (22), it follows that the four eigen-
values are the roots of the equation:

λ4 − sλ3 − tλ2 − sλ + 1 = 0. (25)

Once these values are known, the stability of each of the fixed
points is determined by the norm of the matrixR, which is
defined as:

||R|| = max {|λ1| , |λ2| , |λ3| , |λ4|} . (26)

The fixed point will be stable if||R|| 〈1, unstable if||R||〉1,
and the stability of the point remains undefined if||R|| = 1.

We shall now study the behavior of the system (12) close
to and far away from the fixed points in two different cases
defined by the parameters shown in Table I.
In Case 2, the parametersε2, ε4, γ1, γ2, ∆x, α andω were
chosen in order for Eq. (2) to have ELS. On the other hand,
in Case 1 the mapping (8)-(11) is simpler becauseω = 0, but
in this case Eq. (2) has no ELS.

As we shall see below, interesting patterns are obtained
in the phase plane(φn, φn+1) when the sequence of values
{φn} is obtained by means of Eq. (6). The nature of these
patterns (periodic, quasiperiodic, chaotic, etc.) will be ana-
lyzed by calculating the fast Fourier transform (FFT) and the
Lyapunov exponents corresponding to these sequences{φn}.
As Eq. (6) defines a fourth-order dynamical system, there
will be four Lyapunov exponents, which we will calculate
by means of the procedure explained in Refs. 13 and 14.

TABLE I. Parameters used in the cases studied.

Case 1 Case 2

ε2 1 1

ε4 24/49 24/49

γ1 1 1

γ2 1 1

∆x 1 1

α -0.066599269 -0.066599269

ω 0 -0.212026829

FIGURE 1. Solution corresponding to Case 1 (ω = 0) with the ini-
tial conditiona0 = b0 = c0 = d0 = 0.001 , which is close to the
fixed pointx(1). (a) Values ofφn for n = 0, ...32767, (b) phase
portrait of the points(φn, φn+1), (c) Lyapunov exponents.

2.2. Case 1(ω = 0)

In this case, system (12) has three fixed points:

x(1) = (0, 0, 0, 0)

x(2) = (p2, p2, p2, p2) ; p2 = +1.011114

x(3) = (p3, p3, p3, p3) ; p3 = −1.011114.

Rev. Mex. F́ıs. 53 (1) (2007) 47–57
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FIGURE 2. Solution corresponding to Case 1 (ω = 0) with the
initial conditiona0 = b0 = c0 = d0 = 0.1, which is close to the
fixed pointx(1). (a) Values ofφn for n = 0, ..., 32767, (b) phase
portrait of the points(φn, φn+1), (c) Lyapunov exponents.

The linear stability analysis indicates that pointsx(2,3) are
unstable, and gives no information concerning pointx(1).
The numerical tests show that the behavior of the solutions

near pointx(1) is simple. In Fig. 1a, for example, we can
see a periodic solution corresponding to the initial condition
a0 = b0 = c0 = d0 = 0.001. The phase portrait of this so-
lution in the plane(φn, φn+1) is trivial, and can be seen in
Fig. 1b. Figure 1c shows the Lyapunov exponents associated
with this solution. If the initial condition is moved a little bit
farther fromx(1), quasiperiodic solutions are obtained. For
example, the initial conditiona0 = b0 = c0 = d0 = 0.1
leads to the quasiperiodic solution shown in Fig. 2a. The
phase portrait and the Lyapunov exponents corresponding to
this solution are shown in Figs. 2b and 2c.

The behavior of the solutions near pointsx(2,3) is
more interesting. In Fig. 3 we can see, for exam-
ple, the solution corresponding to the initial condition
a0=b0=c0=d0=1.011112, which is close tox(2). Fig. 3a
shows that the sequence{φn} seems to have different sec-
tions. In each of these sections the value of|φn| re-
mains bounded,i.e., |φn| 〈Bn within the n-th section. The
phase portrait corresponding to the movement of the point
(φn, φn+1) is shown in Fig. 3b, and the Fourier transform is
presented in Fig. 3c. This solution is quite sensitive to the
initial conditions, as shown by the increasing positive Lya-
punov exponents shown in Fig. 3d. The different sections
of the sequence{φn} seen in Fig. 3a correspond to different
quasiperiodic orbits. The “jumps” from one quasiperiodic or-
bit to another shown in Fig. are spurious, and occur when the
denominator of expression (17) comes too close zero and the
computer is not enough to evaluate the quotient accurately
enough. Therefore, the position of the jumps changes if we
increase the computers precision.

Far from the fixed points, the solutions behave similarly
to the solution shown in Fig. 3. In Fig. 4, for example, we
can see the behavior of the solution corresponding to the ini-
tial condition a0 = c0 = 1.394 and b0 = d0 = 1.393.
Figure 4a shows that the solution also seems to evolve by
steps. However, as in Fig. 3, the jump from one step to
the next is a spurious result due to the finite accuracy of
the computer. The phase portrait of the solution is shown
in Fig. 4b. We can see two well-defined elliptical struc-
tures in this figure. These structures correspond to two of
the steps shown in Fig. 4a. In Fig. 4c we can see that the
FFT of this solution exhibits four well-defined wavenumbers
(±2.267 and ± 0.677), which are associated with elliptical
rings seen in Fig. 4b. This solution is also rather sensitive to
the initial conditions, as shown by the Lyapunov exponents
shown in Fig. 4d.

2.3. Case 2(ω 6= 0)

Now let us consider Case 2. In this case, system (12) has five
fixed points:

x(1) = (0, 0, 0, 0) ,

x(2,3) = ± (p2, p2, p2, p2) ; p2 = 0.547853

x(4,5) = ± (p4, p4, p4, p4) ; p4 = 0.849828
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FIGURE 3. Solution corresponding to Case 1 (ω = 0) with the initial conditiona0 = b0 = c0 = d0 = 1.011112 , which is close to the fixed
pointx(2). (a) Values ofφn for n = 0, ...32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov exponents.

FIGURE 4. Solution corresponding to Case 1 (ω = 0) with the initial conditiona0 = c0 = 1.394 and b0 = d0 = 1.393 , which is far from
the fixed points. (a) Values ofφn for n = 0, ..., 32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov
exponents.
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FIGURE 5. Solution corresponding to Case 2 (ω 6= 0) with the initial conditiona0 = b0 = c0 = d0 = 0.001 , which is close to the fixed
point x(1). (a) Values ofφn for n = 0, ...32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov exponents.

FIGURE 6. Solution corresponding to Case 2 (ω 6= 0) with the initial conditiona0 = b0 = c0 = d0 =0.85, which is close to the fixed point
x(4).(a) Values ofφn for n = 0, ...32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov exponents.
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FIGURE 7. Solution corresponding to Case 2 (ω 6= 0) with the initial conditiona0 = b0 = c0 = d0 = 0.55 , which is close to the fixed point
x(2). (a) Values ofφn for n = 0, ..., 32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov exponents.

FIGURE 8. Solution corresponding to Case 2 (ω 6= 0) with the initial conditiona0 = c0 = 0.25 andb0 = d0 = 0.3 , which is far from
the fixed points. (a) Values ofφn for n = 0, ..., 32767, (b) phase portrait of the points(φn, φn+1), (c) Fourier transform, (d) Lyapunov
exponents.
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FIGURE 9. Influence of a small change in the initial conditions which leads to Figs. 1, 2, 7 and 8. A small change (∆φ = 10−6) was added to
the initial conditions which produced these figures, and the distances between the initial and the modified solutions are shown on the vertical
axes of the graphs (a), (b), (c) and (d) shown above.

The linear stability analysis shows that pointx(1) is unstable
(as expected, since this point is associated with soliton so-
lution), the stability of pointsx(2,3) remains undefined, and
pointsx(4,5) are also unstable. The behavior of the solutions
near these points can be seen in Figs. 5-7.

The graphs shown in Figs. 5a and 6a show that the upper
bound of the solutions whose initial conditions are close to
the unstable fixed pointsx(1) andx(4) also change by steps
[in a form similar to the solution shown in Fig. 4a]. The
Fourier transforms shown in Figs. 5c and 6c present four
dominant wavenumbers [±0.681 and±2.270 in case 5c, and
±0.681 and±2.270 in case 6c]. The Lyapunov exponents
shown in Figs. 5d and 6d indicate that the solutions are also
sensitive to initial conditions in these two cases.

In Figs. 7a and 7b, we can see a quasiperiodic solution
whose initial condition is close to pointx(2). The Fourier
transform presented in Fig. 7c shows that there are 12 dom-
inant wavenumbers. Fig. 7d shows that the Lyapunov expo-
nents are almost constant, and one of them is clearly greater
than zero, indicating that the solution is sensitive to the initial
conditions.

Far from the fixed points, the solutions are more complex.
In Fig. 8, for example, we can see the solution correspond-
ing to coefficientsεo

2 = 1, εo
4 = 24/49, γo

1 = 0.468750,
γo
2 = 0.640625, α = −0.07 andω = −0.212027. With

these coefficients, there are five fixed pointsx = (p, p, p, p)

defined byp = 0,±0.672308,±0.751173. If we consider
the initial condition,a0 = 0.25, b0 = 0.3 , c0 = 0.25 and
d0 = 0.3 (which is far from the fixed points), the solution be-
haves as shown in Figs. 8a and 8b. The dominant wavenum-
bers can be seen in Fig. 8c, and the Lyapunov exponents are
shown in Fig. 8d.

2.4. Sensitivity to initial conditions

In all of the examples examined in this section, some of the
Lyapunov coefficients turned out to be positive, thus indi-
cating that some of the solutions to the 4D dynamical sys-
tem (8)-(11) are rather sensitive to the initial conditions. To
appreciate how the solution changes when the initial con-
ditions are slightly modified, let us add a tiny increment
(∆φ = 10−6) to the initial conditions which produced the
results shown in Figs. 1, 2, 7 and 8.

To measure the “distance”‖X −X ′‖ between the origi-
nal (“old”) solution (X) and the “new” solution (X ′) corre-
sponding to the modified initial condition, we shall consider
the following measure:

‖X (n)−X ′ (n)‖ =
(
(φ (n)− φ′ (n))2

+(φ (n + 1)− φ′ (n + 1))2 + (φ (n + 2)− φ′ (n + 2))2

+(φ (n + 3)− φ′ (n + 3))2
)1/2

(27)
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The effect of the small variation in the initial conditions lead-
ing to Figs. 1, 2, 7 and 8 can be seen in Fig. 9. Notice
that, on the vertical axis of the graphs shown in this figure,
we havethe logarithmof the distance between the “old” so-
lution and the “new” solution (i.e. the solution correspond-
ing to the modified initial condition). The graphs shown in
Figs. 9a and 9b indicate that in these cases the distances be-
tween the old and new solutions oscillate, but remain small.
These results show that these solutions are very stable, which
is in agreement with the small Lyapunov exponents seen in
Figs. 1c and 2d. In the case of Fig. 9c, the distance increases
rapidly, but the small Lyapunov exponents seen in Fig. 7d
do not indicate a chaotic behavior. In the case of Fig. 9d,
the distance remains small but changes erratically. This er-
ratic (chaotic) behavior explains the high positive Lyapunov
exponents seen in Fig. 8d.

3. Influence of the coefficients

If we observe the form of the dynamical system (6), it is not
evident what the influence is of each of the coefficients{ εo

n,
γo

n, α, ω} on the form of the solution{φn}. In order to clar-
ify this issue, let us vary the values of these coefficients one
by one to see how these changes affect the solution{φn}.

In order to appreciate the influence ofεo
2, Fig. 10 shows

the evolution ofφn whenεo
2 = 0, the remaining coefficients

of Eq. (6) are the same as in Case 1 (see Table I), and the ini-
tial condition is close to the pointx(1) = (0, 0, 0, 0), which
behaves as a stable critial point, as we saw earlier. The re-
sult depicted in Fig. 10 shows thatφn grows extremely fast if
εo
2 = 0, thus indicating that the coefficientεo

2 has a stabilizing
influence on the solution{φn}.

A similar result is obtained if we takeεo
4 = 0. As shown

in Fig. 11, the values ofφn also become very large when
εo
4 = 0, thus implying thatεo

4 also helps to stabilize the solu-
tion {φn}.

FIGURE 10. Solution corresponding toε o
2 =0 and the re-

maining coefficients as in Case 1. The initial condition is:
−φ (0) = φ (1) = φ (2) = φ (3) = 0.01.

FIGURE 11. Solution corresponding toε o
4 =0 and the re-

maining coefficients as in Case 1. The initial condition is:
−φ (0) = φ (1) = φ (2) = φ (3) = 0.01.

FIGURE 12. Minimum and maximum values of the set{
φn : n = 0, ..., 214

}
. Except forα, the parameters as those of

Case 2, and the initial condition is the fixed pointx(2).

The effect ofα on the solution{φn} reveals itself if we
plot the minimum and maximum values taken on byφn dur-
ing a fixed number (N) of iterations, as functions ofα. If we
take the parameters corresponding to Case 2 (Table 1), as the
initial condition the fixed pointx(2) andN = 214, we arrive
at Fig. 12. This figure shows that the range of values spanned
by φn during a fixed number of iterations is a linear function
of α (for small variations ofα); an interesting result, sinceα
occurs within one of the nonlinear terms of Eq. (2).

The influence of the nonlinear coefficientsγo
1 andγo

2 is
more complicated. In Fig. 13 we can see the minumum and
maximum values attained byφn duringN = 214 iterations,
as a function ofγo

2 . The initial condition used was the fixed
point x(2) in Case 2, and the remaining coefficients were
those of Case 2. As we can see in this figure, the range of val-
ues spanned byφn varies linearly withγo

2 for small changes
in this coefficient, but it increases greatly forγo

2 > 0.7 or
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γo
2 < 0.55. In particular, forγo

2 > 0.7, the dependence of this
range onγo

2 seems to be quite irregular and unpredictable.
The effect ofγo

1 is similar. In Fig. 14 we can see that
the range of values spanned byφn varies linearly withγo

1 for
small changes in this coefficient, but it may increase greatly
if the value ofγo

1 drops below 0.45. As in Fig. 13, the initial
condition used to generate Fig. 14 was the fixed pointx(2)

of Case 2,N = 214, and the other parameters were those in
Case 2.

The graphs shown in Figs. 13 and 14 reveal that the over-
all dependence of the range of values spanned byφn on the
coefficientsγo

1 andγo
2 is complicated and irregular, but this

dependence becomes linear for small changes in these two
coefficients.

FIGURE 13. Minimum and maximum values of the set{
φn : n = 0, ..., 214

}
. Except forγ2, the parameters are those of

Case 2, and the initial condition is the fixed pointx(2).

FIGURE 14. Minimum and maximum values of the set{
φn : n = 0, ..., 214

}
. Except forγ1, the parameters are those of

Case 2, and the initial condition is the fixed pointx(2).

FIGURE 15. Examples of the different types of trajectories which
can be generated in the phase plane(φn, φn+1) whenφn evolves
according to Eq. (6). Different coefficients and /or initial condi-
tions were considered to generate these graphs.

FIGURE 16. Examples of Fourier transforms corresponding to dif-
ferent initial conditions.

4. Discussion and conclusions

In this paper, we have studied the behavior of some of so-
lutions of the nonlinear mapping (6), which is equivalent to
the 4D dynamical system (8)-(11). This system is obtained
by substituting a separable solution of the form (5) into the
nonlinear differential-difference Eq. (2), which is a discrete
version of the generalized NLS equation (1). The interest on
the solutions of Eq. (2) arises from the fact that this is one

Rev. Mex. F́ıs. 53 (1) (2007) 47–57



FROM EMBEDDED SOLITONS TO 4D DYNAMICAL SYSTEMS 57

of the two unique systems known to date that possessexplicit
and exact embedded lattice solitons [10–14].

The behavior ofφn [governed by the NM (6)] corre-
sponding to initial conditions close to an unstable fixed point,
or far from the fixed points, leads to interesting trajectories
in the phase plane(φn, φn+1), as can be seen in Figs. 3-8.
Many other types of trajectories can be obtained by chang-
ing the coefficients of the equation, or the initial conditions.
In Fig. 15 we can see some examples of the rich variety of
trajectories generated in this way.

The evaluation of the four Lyapunov exponents associ-
ated with the trajectories in 4D space of a point whose coor-
dinates(an, bn, cn, dn) evolve according to the 4D dynamical
system (8)-(11) shows that two of these coefficients (and in

many cases three of them) are positive, thus implying that the
system is chaotic. However, quasiperiodic orbits are possible,
as shown by the phase portraits shown in Figs. 3-8 and 15. In
these cases, there are four dominating wavenumbers which
appear in the Fourier transforms shown in Figs. 3-8. For
other initial conditions, different from the ones used to gen-
erate Figs. 3-8, the Fourier transforms may be more compli-
cated. In Fig. 16, for example, we can see the structure of the
Fourier transforms associated with other initial conditions.

The numerical results indicate that the sequences of val-
ues{φn} are very sensitive to changes in the nonlinear coef-
ficientsγo

1 andγo
2 . The effect of changing the linear coeffi-

cientsεo
2 andεo

4 is less dramatic.
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