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On the cooling law of a non-dilute granular gas

H. Dominguez and R. Zenit
Departamento de Reologia y Mecánica de Materiales, Instituto de Investigaciones en Materiales,

Universidad Nacional Autónoma de Ḿexico,
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The cooling law of a granular gas was investigated using a three-dimensional MD simulation code, which allowed us to include both
inelasticity and frictional effects of the particle contacts. It was found that the kinetic energy decays in time asE(t) ∼ t−n; the exponentn
of the cooling law changes significantly with the solid fraction,α, and the coefficient of restitution,ε. For dilute gases, for times greater than
tc, we found thatn ≈ 1, in agreement with the results reported by Nieet al. [10]. As α and/orε increase, the cooling coefficient increases
to an asymptotic value ofn ≈ 2.2, which is slightly higher than the prediction made by Haff [3]. We interpret this increase in the cooling
exponent as a possible re-homogenization of the granular state.
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Estudiamos la ley de enfriamiento de un gas granular de manera computacional utilizando un programa de tipo MD, el cual permite considerar
tanto la inelasticidad como la rugosidad de las partı́culas. Encontramos que la energı́a cińetica del sistema decae en el tiempo de acuerdo a
E(t) ∼ t−n; el exponenten de enfriamiento cambia de manera significativa para cambios en la fracción śolida del sistemaα, y el coeficiente
de restitucíon,ε, que caracteriza la inelasticidad de los choques. Para gases diluidos, para tiempos mayores quetc, encontramos quen ≈ 1, lo
cual concuerda con lo reportado por Nieet al. [10]. Sin embargo, conformeα y/o ε se incrementan, el exponente de enfriamiento crece hasta
alcanzar un valor asintótico den ≈ 2.2, que es un poco mas grande que el valor predicho por Haff [3]. Especulamos que este incremento de
la tasa de enfriamiento se debe a la rehomogeneización del sistema granular.

Descriptores: Gas granular; enfriamiento; ley de Haff.

PACS: 45.70.Mg; 47.70.Nd; 05.40.-a; 81.05.Rm

1. Introduction

The understanding of rapid-dilute granular flows has ad-
vanced significantly in the last few years [1]. For this par-
ticular configuration, the system is amenable to theoretical
treatment using the kinetic theory of gases [2]. Also, such
systems have been extensively studied by means of molec-
ular dynamics computer simulations, also known as discrete
element simulations (see also Ref. 1). However, the quan-
titative characterization of many features of rapid granular
flows remain yet to be fully resolved (clustering regime, typ-
ical length and velocity scales, particle velocity distributions,
etc., to name just a few).

Of particular interest, due to its simplicity, is the so-called
homogeneous cooling state (HCS): thegranular temperature
of a granular gas consisting of homogeneously distributed
particles with zero mean velocity willcool off in time as a
result of the inelasticity of the collisions. The granular tem-
perature is the mean kinetic energy of the system.

A prediction for the cooling rate of a granular gas was
first reported by Haff [3], and has been studied by many oth-
ers since then [4–11]. By considering that the kinetic energy
of the gas is dissipated solely by collisions, the energy con-
servation equation reduces to
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αρp〈v2〉

)
= (∆Ec)ĊN, (1)

whereα is the particle solid fraction,ρp is the particle den-

sity, 〈v2〉 is the variance of the particle velocity,∆Ec is
the energy dissipated during each collision,Ċ is the colli-
sion rate andN is the number density. The details of the
derivation of this equation can be found in the original refer-
ence. The energy dissipation per collision can be written as
∆Ec ≈ −(1 − ε2)(1/2)m〈v2〉, whereε is the coefficient of
normal restitution. For a dilute gas of equal particles of diam-
eterd, the collision rate isĊ = N(πd2)

√
〈v2〉. The particle

massm can also be written asm = ρp(π/6)d3. Similarly,
the number densityN can be written in terms of the particle
volume fraction,α, as:α = N(π/6)d3. Hence, Eq. (1) can
be written as
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Haff solved this equation by considering thatα was constant,
leading to
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which implies that the kinetic energy of the system de-
cays asE(t) ∼ t−2. It has been shown [8, 10] that
the initial decay of kinetic energy is predicted correctly by
Haff’s cooling law. From Eq. (1), it can be inferred that
the characteristic time for which the distribution of parti-
cles is expected to remain homogeneous is proportional to
(1 − ε2)

√
〈v2〉o/d. As time progresses, the assumption that
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α remains constant no longer holds, due to the formation
of clusters [5, 9, 11, 12]. Nieet al. [10] showed that, for
2-D dilute systems (α = 0.071) the kinetic energy decays as
E(t) ∼ t−1. For dense systems, which have not been fully
explored to date, the evolution of particle cluster leads to a
different cooling behavior. Clearly, for dense systems, Eq. (1)
would have to be solved simultaneously with a concentration
evolution equation,

∂α

∂t
+∇(〈αv〉) = 0. (4)

Since the mathematical solution to this system is not yet
possible, we opted for numerical experimentation to investi-
gate the behavior of non-dilute cooling granular gases.

In this paper, we report the variation of the cooling rate
exponent found by MD numerical simulations. In particular,
we explore the influence of the contact properties of the colli-
sions (normal coefficient of restitution,ε, and friction coeffi-
cient,µ) and the concentration of the system (particle volume
fraction,α).

Simulations of the granular system consisted of 1000
spheres randomly placed in a cubic box, at a fixed homo-
geneous initial solid fraction (α=0.05, 0.1, 0.2 and 0.4), with
initial velocities chosen from a Gaussian distribution. There-
fore, with the definition of the solid fraction given some para-
graphs above, we can also find the volume of the simulation
cell (V = L3) used for eachα, V = M(π/6)d3/α, where
M is the number of spheres. Therefore, the size simulation
cells wereL = 21.878d, 17.365d, 13.783d and 10.939d for
α=0.05, 0.1, 0.2 and 0.4, respectively. Thus, the MD simula-
tions were performed by solving the equations of motion of
all the particles in the system.

Moreover, the simulation parameters were chosen to
be those of particles commonly used in experimental re-
search,i.e. the sphere radius of r=0.5×10−3m and mass
m= 1.308×10−6 kg using different restitution (ε= 0.49, 0.85
and 0.97) and friction (µ= 0.0, 0.1, 0.2) coefficients. A few
tests were performed for 5000 and 10000 particles to check
the validity of the results; no significant differences were ob-
served.

All simulations were performed for 3×106 δt
(δt = 4×10−7 s). The code used in this study considers parti-
cle contacts with both inelasticity and frictional effects. The
contact forces are modelled for both the normal and tangen-
tial directions. For the normal direction the linear hysteretic
spring model proposed by Walton and Braun [14] was used,
which accounts for the collision energy loss using a spring
with two different stiffnesses. The loading stiffness is chosen
to match Hertzian contact parameters; the unloading stiffness
is calculated from the loading stiffness and the coefficient
of restitution. For the tangential direction, a linear spring in
series with the Coulomb sliding friction element model was
used as proposed by Cundall and Strack [13]. In this man-
ner it was possible to test the effects of both inelasticity and
friction on the behavior of cooling granular gases.

FIGURE 1. Velocity distributions at different times (top) (the inset
shows distributions at short times, see the x-scale difference) with
their respective pair distribution functions,g(r) (bottom). The re-
sults are forε = 0.85 andα = 0.05. Each graph is the average over
2×105 δt after 1.4×106 δt (light solid line), 2×106 δt (dark solid
line) and 2.8×106 δt (dashed line). For the inset also is the average
over 2×105 δt after 2×105 δt (solid line) and 4×105 δt (dashed
line).

FIGURE 2. The same as Fig. 1 forε = 0.85α = 0.2.

2. Results

Figures 1, 2, and 3 show typical velocity distributions of the
particles along the simulation time. Each distribution repre-
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sents the average over 2×105 δt independent blocks. It can
be observed that the velocity distribution becomes sharper at
low velocities. The pair distribution function,g(r), was also
calculated in each block, for all the times tested (i.e. long
times).

Since the pair distribution function did not evolve with
time, it can be argued that particles are already in the cluster-
ing regime, as pointed out by Nieet al.; however, it must be
noted that the observedg(r)-structure isweak. As the volume
fraction increases, a second peak appears around two particle
diameters (Fig. 3),i.e. the g(r) presents a structure more
similar to that of a dilute liquid.

Figure 4 shows typical graphs ofE(t)/Ek0 as a function
of time for different restitution coefficients and solid fractions
where Ek0 is the initial kinetic energy. As discussed by

FIGURE 3. The same as Fig. 1 forε = 0.85α = 0.4. Each graph
is the average over 2×105 δt after 1×106 δt (light solid line),
1.2×106 δt (dark solid line) and 1.4×106 δt (dashed line).

FIGURE 4. Dimensionless kinetic energy as a function of time.
Solid fractions ofα = 0.05 (•), 0.1 (¥), 0.2 (̈ ) and 0.4 (N) for
restitution coefficientsε = 0.49 (top) 0.85 (middle) and 0.97 (bot-
tom).

FIGURE 5. The cooling exponentn as a function of solid frac-
tion, α, for a range of values of the coefficient of restitution: (♦),
εn = 0.49; (¤), εn = 0.85; (•), εn = 0.97. For all simulations the
friction coefficient isµ = 0.1. The dashed line shows the predic-
tion of Haff [3], n = 2. The asterisk (*) shows the result of [10].

several authors before, the energy decayed algebraically with
time as

E(t)
Ek0

∼ t−n. (5)

Clearly, the rate of energy decay increases with the solid frac-
tion and also the restitution coefficient. Simulations were also
performed for friction coefficients ofµ =0.0, 0.1 and 0.2; the
results (not shown) were nearly the same for all the cases.
Hence, for these systems the main contribution on cooling
comes from the normal collisions between particles and the
friction forces between particles can be neglected.

From the results shown in Fig. 4, the cooling exponent,
n, was calculated by fitting an algebraic function to the dif-
ferent curves. The results are shown in Fig. 5, as a func-
tion of the particle concentration and for several values of the
restitution coefficient. At low solid fractions,α = 0.05, the
cooling exponent is lower than 2, regardless of the restitution
coefficient. However, forε = 0.97, the exponent is nearly one
(n = 0.90). For a 2-dimensional system, at a low solid frac-
tion, Nieet al. [10] found a cooling exponent ofn = 1.

As the solid fraction increases, the cooling exponent also
increases to reach an asymptotic valuen ≈ 2.2. Note that
this value is closer to that Haff’s law [3].

These results indicate that asα increases the granular gas
dissipates its energy at a rate which is closer to that predicted
for a homogeneous state. It has been claimed by others that
the appearance of clusters reduces the cooling rate. Based on
our results, we can argue that cluster reduction of the cooling
rate may only be valid for dilute gases. For non-dilute gases,
the inhomogeneities in the particle concentration may not be
as strong as those in the dilute case. It is also important to
note that most of the studies that have reported slower cool-
ing rates than Haff’s prediction are for dilute 2D gases [8,10].
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Since our results are 3D, we can also argue that, as the di-
mensionality of the system increases, the cooling rate also
increases: for a 1D gas, the cooling rate has been reported
to ben = 2/3 [15]; for 2D, Nie et al. [10] report a value of
n = 1.

In summary, our MD simulations performed on frictional
inelastic 3D granular gases showed that the cooling rate in-
creases with the particle volume fraction, reaching values
which are slightly higher that those predicted for homoge-
neous gases. This is an indication that, for denser 3D gases,
the system become more homogeneous. We also found that

the frictional properties of the particle contacts have a negli-
gible effect on the cooling rate of the granular gas. A more
in-depth investigation should be performed to further investi-
gate the homogenization of the particle distribution for non-
dilute granular gases.
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