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We present both the estimations of main parameters and the experimental data related to the modeling of algorithms and components for
all-optical digital processors-multipliers, exploiting the spatio-temporal optical solitons or light bullets as bit carriers. The modern approach,
based on the concept of arranging light beams in space and time using the regime of spatio-temporal solitons is examined from the viewpoint
of arresting the collapse of light bullets in a graded-index self-defocusing medium with normal group-velocity dispersion. To perform all-
optical computations, the beams of picosecond optical pulses, whose parameters were in one to one coincidence with previously estimated
light bullets, have been shaped and employed. Two all-optical algorithms for binary data multiplication in a mixed binary format as well
as the corresponding components are designed and experimentally tested with an array of non-collinear second-harmonic generation based
optical AND-gates arranged in a square-law optically nonlinear medium.

Keywords:Spatio-temporal soliton; light bullet; all-optical digital multiplication; non-collinear second harmonic generation.

En este artı́culo se presentan tanto la estimación de los paŕametros principales como los datos experimentales en relación al modelaje de
algoritmos y los componentes de un procesador-multiplicador digital todo-óptico, explotando los solitones temporalesópticos o balas de luz
como portadores de información. Esta moderna aproximación se basa en el concepto de arreglar haces de luz en el espacio y tiempo, usando
el régimen de solitones espacio-temporal; estos son examinados desde el punto de vista de detener el desplome de las balas de luz en un
medio cońındice-graduado de auto-desenfocamiento con dispersión normal de la velocidad de grupo. Para realizar cómputos todo-́optico, se
formaron y se emplearos haces de pulsosópticos de picosegundos de duración, cuyos paŕametros coincid́ıan uno a uno con las balas de luz
previamente estimadas. Dos algoritmos para la multiplicación todo-́optica de datos binarios en un formato binario mezclado, como también
los componentes correspondientes, han sido diseñados y probados experimentalmente con un arreglo de generación de segundo-arḿonico
no-colineal basado en las compuertas-ANDópticas arregladas en un medioóptico no lineal con ley cuadrática.

Descriptores:Solitones espacio-temporal; balas de luz, multiplicación todo-́optica; generación de segundo arḿonico no colineal.

PACS: 42.65.Pc; 42.65.Re; 42.65.Tg.

1. Introduction

There is great interest in exploiting all-optical devices for
digital information processing with a high-bit-rate. Such de-
vices combine the ultrafast parallel processing capabilities of
optical systems with the high accuracy of digital computa-
tions. The ultimate limit of the processing rate can be an-
ticipated from all-optical parallel architectures that are based
on networks of all-optical logic gates using materials exhibit-
ing electronic nonlinearities with response times as low as
10−15 second. On the one hand, such a high-bit-rate digital
processing needs to invoke the modern concepts based, for
example, on the application of spatio-temporal optical soli-
tons or light bullets [1,2] for designing the streams of natural
bit carriers. Exploiting light bullets for the purposes of digi-
tal data processing may give us, evidently, an opportunity to
avoid a few essential difficulties with arranging rather com-
plicated optical schemes and to improve the performance data

of such processors first of all, due to the natural stability of
light-bullet bit carriers in space and time. On the other hand,
an all-optical digital processor-multiplier may be effectively
implemented with an array of non-collinear second-harmonic
generation (SHG) based AND logic gates in a crystalline ma-
terial. Functional capabilities of such a multiplier are deter-
mined by the architecture of the array processor. Here, we
describe two global algorithms and experimental proof-of-
principle results related to the use of the corresponding com-
ponents for all-optical devices the provide the parallel-input
multi-bit digital multiplication, and we discuss other related
problems. With the understanding that vector-matrix multi-
plication is the primary operation, which can be used, for ex-
ample, to find the unequivalency function an for associative
search in a memory system, or can be applied in the basic pro-
cessor of a digital computing system, we consider the feasi-
bilities of exploiting arrays of non-collinear second harmonic
generation (SHG) based AND logic gates in bulk materi-
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als exhibiting a low-power square-law nonlinearity. For this
purpose two opportunities, digital multiplication via the ana-
logue convolution algorithm (DMAC) and the outer-product
algorithm [3,4], are inspected theoretically, estimated practi-
cally, and tested experimentally. These two cases need rather
different post-processing arrangements for the conversion of
intermediate mixed-binary format results to a completely bi-
nary format. The schemes of components for an all-optical
parallel-input processing, data of the experiments carried out,
and estimates of potential performance data for the compo-
nents considered and each of multipliers as a whole, rep-
resent the obtained results. To design an extremely high-
bit-rate all-optical element for post-processing, it is possible
to select a phenomenon that has a fast response time such
as, for example, the non-resonant Kerr effect in silica fibers
that has a femtosecond response time. However, the post-
processing will not be discussed here. To model all-optical
computations experimentally, the streams of picosecond op-
tical pulses, whose spatial and temporal widths are into one-
to-one correspondence with previously estimated stable light
bullets, have been exploited although a graded-index medium
has not been yet used at this stage of our experiments. At first,
in Secs. 2 and 3, we describe the needed items related to the
existence of spatio-temporal solitons in optically nonlinear
media from the viewpoint of arresting the collapse of light
bullets in a graded-index self-defocusing medium with nor-
mal group-velocity dispersion selected for our experimental
modeling at this time. In Sec. 4, the algorithms for all-optical
parallel-input multiplication are discussed. In the following
two sections, 5 and 6, processors based on digital multiplica-
tion algorithms via an analogue convolution (DMAC) algo-
rithm and on an outer-product algorithm are considered, in-
cluding the experimental data. Section 7 represents our con-
cluding remarks related to both theoretical and experimental
aspects of the work presented.

2. Spatio-temporal solitons, stable light bullets

Well-known temporal and spatial optical solitons are only
special cases of a more general class of nonlinear phenomena
in which the spatial and temporal effects are coupled and oc-
cur simultaneously. When a pulsed optical beam propagates
through a bulk nonlinear medium, it is affected by diffrac-
tion and dispersion at the same time and place, and in parallel
these two effects become coupled through the medium’s non-
linearity. Such a space-time coupling leads to the existence of
a group of nonlinear effects, including the formation of light
bullets. The starting point for discussion of spatio-temporal
solitons is the(3 + 1)-dimensional nonlinear Schroedinger
equation, capable of accounting for the diffractive and disper-
sive effects occurring simultaneously within the cubic nonlin-
ear medium [5]. For the beginning, it is useful to write this
equation in the form

i

(
∂A

∂Z
+ β1

∂A

∂T

)
+

1
2 β0

(
∂2A
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Physically, β0 = n0 (ω0) k0 is the propagation con-
stant, so thatn0 (ω) describes the chromatic dispersion in a
medium;β1 = (dβ/dω)ω=ω0

= 1/νg , whereνg is the group
velocity associated with a pulse;β2 =

(
d2β/dω2

)
ω=ω0

is the
group-velocity dispersion parameter withβ = n0 (ω)ω/c
andk0 = ω0/c; the nonlinear parameterγ = k0n2 is re-
sponsible for the self-phase modulation due ton2, which is
the Kerr coefficient. The parametersβ2 andγ, can be pos-
itive or negative, depending on the nature of the nonlinear
medium. The presence of the above-mentioned effects may
lead to shaping optical wave packets that remain confined in
all three spatial directions (a finite pulse width corresponds to
a finite pulse length along the propagation direction). Such a
confined wave packet is often referred to as a light bullet,
and it represents an extension of self-trapped optical beams
into the temporal domain. To find self-preserving solutions
to Eq. (1), it is useful to rewrite it in a normalized form by
introducing

z = Z / LD, x = X / w0, y = Y / w0,

τ = (T − β1Z) /
√

LD |β2|, u = A
√
|γ|LD, (2)

wherew0 = (2k0 |n1|β0)
−1/4 is the transverse beam width

andLD = β0w
2
0 is the diffraction length. In terms of nor-

malized amplitudeu, Eq.(1) can be written as

i
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− (signβ2)
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+(signn2) |u|2 u = 0. (3)

This equation exhibits the total equivalence among the
spatial and temporal coordinates when dispersion is anoma-
lous in behavior(β2 < 0). One can focus on the anomalous
dispersion self-focusing case and exploit this symmetry in
solving Eq. (3) with signβ2 = −1 and signn2 = +1 Such
a restriction is motivated by the fact that, up until now, the
stable light bullets have been found in a normal dispersion
regime, and maybe even the normal group-velocity disper-
sion does not permit spatio-temporal localization in the form
of light bullets. Let us introduce a three-dimensional vector
R with componentsx, y, andτ to write Eq. (3) in a compact
form

i
∂u

∂z
+

1
2
∇2

R u + |u|2 u = 0, (4)

where∇2
R is the transversal Laplacian operator. The shape

preserving solutions to Eq. (4) can be found by looking for a
solution with the property

u (x, y, τ, z) = U (x, y, τ) exp (ik0z) , (5)

wherek0 is the propagation constant. SinceU (x, y, τ) does
not depend onz, such a pulse would propagate without any
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change in its spatial or temporal shape, resulting in an opti-
cal bullet. If one writes the Laplacian in Eq. (4) in spherical
coordinates and focuses on the radially symmetric solutions,
U (x, y, τ) depends only onR =

√
x2 + y2 + τ2 and satis-

fies an ordinary differential equation,

1
2

[
d2U

dR2
+

(D − 1)
R

dU

dR

]
− k0U + U3 = 0. (6)

This equation should be solved with boundary condition
U (R →∞). The parameterD takes values 1, 2, or 3 de-
pending on the dimensionality of the vectorR. The one-
dimensional case(D = 1) corresponds to the purely spatial
or temporal solitons. The two-dimensional case(D = 2) ap-
plies to the self-acting beams. The three-dimensional case
gives short optical pulses, propagating inside a bulk nonlinear
medium, and is related to light bullets. An analytic solution
to Eq. (6) in the formU = sechR can be easily found for
D = 1, and corresponds to either a spatial soliton(R = x)
or a temporal soliton(R = τ). For D > 1, one can solve
this equation only numerically. Of course, the lowest-order
solutions are of primary interest, because they reflect opti-
cal bullets. Figure 1 shows these solutions by plotting the
ratio U (R) /U (R = 0) versus the normalized radiusR for
three cases [1]. The propagation constantk0 is different in
each case:k0 (D = 1) = 0.500, k0 (D = 2) = 0.206, and
k0 (D = 3) = 0.053; the peak amplitudes are also different.
The stability of any shape-preserving solutions in anomalous
dispersion regime should be examined by performing a lin-
ear stability analysis. Such an analysis shows that the shape-
preserving solution is stable only in an the caseD = 1. When
D > 1, small fluctuations in the intensity, beam size, or pulse
width can grow and lead to spatio-temporal collapse. A con-
sequence of this instability is that, if the pulse energy ex-
ceeds a critical valueE0, the pulse collapses in such a way
that the intensity|u|2 becomes infinitely large at a finite dis-
tance as the size of a beam diminishes and shrinks to zero
both spatially and temporally. The results of numerical solu-
tions to Eq. (6), illustrating the spatio-temporal collapse with
D = 3 and revealing an important role of the temporal chirp
in such a process, are presented in Fig. 2 [6]. The normalizad
intensity |U (z,R = 0)|2 /U2

0 is plotted as a function of the
distancez for three values of the normalized initial tempo-
ral chirpC. An unchirped pulse withC = 0 collapses after
a distancez ≈ 0.15, while the same pulse collapses sooner
with C = +5 and much later withC = −5. Nevertheless,
it should be noted that such a conclusion is based on an ideal
consideration of the above model.

A few theoretical opportunities have been found for sup-
pressing the collapse via so-called collapse-arresting mecha-
nisms such as self-steepening, saturable nonlinearity, or non-
linear absorption [7]. Moreover, potential perspective exists
undoubtedly from the practical point of view. Recent exper-
iments have shown [8,9] that the collapse does not occur in
nonlinear Kerr-type media, because of the higher-order ef-
fects and that spatio-temporal solitons resembling light bul-
lets can be shaped in a certain range of the optical power.

Here, nevertheless, we shall exclude any higher-order effects
which are important already for optical pulses of a width be-
low 1 ps, restrict ourselves by the(3 + 1)-dimensional equa-
tion (3), valid for just a picosecond temporal range, and con-
sider the possibility of arresting spatio-temporal collapse us-
ing an inhomogeneous Kerr medium, whose linear part of the
refractive index depends on the spatial coordinates.

3. Arresting the spatio-temporal collapse of
light bullets

We take a graded-index nonlinear medium whose refractive
index can be written as

FIGURE 1. Shapes of light bullets inherent in the(3 + 1)-
dimensional nonlinear Schroedinger equation in anomalous group-
velocity dispersion regime with:D = 1 (solid line),D = 2 (dotted
line), D = 3 (dashed line) [1].

FIGURE 2. Dynamics of collapsing the peak intensity for various
chirped Gaussian pulses during their propagation through a Kerr
medium with anomalous group-velocity dispersion [6].
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n (x, y, ω) = n0 (ω) + n1

(
x2 + y2

)
+ n2 |A|2 , (7)

wheren1 governs variations in the refractive index in the
transverse dimensionsx andy reflecting the regimes of guid-
ing (n1 < 0) or anti-guiding(n1 > 0), andn2 is the nonlin-
ear Kerr coefficient responsible for self-focusing(n2 > 0) or
self defocusing(n2 < 0). Then Eq. (3) can be rewritten as
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Further insight can be gained by using the variational
method [10,11], because Eq. (8) can be cast as a variational
problem for Lagrangian density
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Noting that the one-dimensional nonlinear Schroedinger
equation supports a chirped hyperbolic secant bright soli-
ton in temporal dimension, while a graded-index supports a
Gaussian spatial mode with a chirp, an appropriate trial func-
tion can be chosen in the form

u (x, y, z, τ) =

√
E WT

2 πW 2
S

exp
[
−x2 + y2

2 W 2
S

]
sech(τ WT )

× exp
[
iφ + iCS

(
x2 + y2

)
+ iCT τ2

]
, (10)

whereE =
∫ |u|2 dx dy dτ is the constant pulse energy. The

parametersWS , WT , CS , CT , andφ are allowed to be var-
ied with the distancez and represent the spatial and temporal
widths, spatial and temporal chirp, and phase associated with
a pulse, respectively. One can create the effective Lagrangian
L =

∫ ∫ ∫
Λ dx dy dτ and use the Euler-Lagrange equations

to obtain a set of evolution equations for these five pulse pa-
rameters. The equation for the phaseφ turns out to be de-
coupled from the others and can be ignored. The remaining
equations are given by

a)
dWT

dz
= 2 (signβ2)CT WT , b)

dWS

dz
= 2CSWS , (11)
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12 πW 4
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≡ J (CT ,WT , CS ,WS) . (13)

The stationary states corresponding to an optical bul-
let can be found by setting thez-derivatives to zero.
There are two meaningful solutions, both chirp-free due to
CT =CS=0 [see Eqs. (11)]. One of them(WS = 1,WT = 0)
gives a CW beam. The other one corresponds to the spatio-
temporal soliton, whose temporal and spatial widths can be
estimated from Eqs. (12) and (13); they are related by

a)WT = − E (signn2)
4 πW 2

S (signβ2)
,

b)(signn1)W 6
S + W 2

S +
E2 (signβ2)

24 π2
= 0. (14)

It can be seen from Eq. (14a) that the medium must have
signβ2 = −signn2 to form a stable solution.

Now, to describe our experiments, we focus hereafter
only on self-defocusing media with normal group-velocity
dispersion and guiding graded index. For such media, we
need to take signn1 = signn2 = −1 and signβ2 = 1. In this
case, there exists a physically meaningful root

(
W 2

S > 0
)

of
the polynomial equation (14b); in particular it can be esti-
mated byW 2

S ≈ 1+E2/
(
48 π2

)
whenE ≤ 2π, so thatWT

can be found from Eq. (14a) asWT = E/
(
4π W 2

S

)
. The

normalized energy isE = Ep/E0, where the energy scale is
defined asE0 =

√
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k0 |n2|

√
LD

)
.

The stability of this light bullet can be examined by
linearizing Eqs.(11) - (13) in terms of small perturbations
around the steady-state solution. A linear stability analysis
of this type shows that the four eigenvaluesλ of a 4× 4 -
stability matrix are determined by

λ = ±
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The spatio-temporal soliton will be stable ifλ has no positive real part. It can be seen from Eq. (15) thatλ will be purely
imaginary whenWS

∂J
∂WS

+ WT
∂G

∂WT
< 0. Using Eqs. (12) - (14), one can find that

WS
∂J

∂WS
+ WT

∂G

∂WT
= −2W 2

T

(
6 π2

E2
+

4 π WS

3 E
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W 2
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)
, (16)

is indeed negative, and the considered spatio-temporal soliton becomes to be stable.
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FIGURE 3. Parallel-input N-bit digital multiplication based on the
DMAC algorithm.

FIGURE 4. Parallel-input N-bit digital multiplication based on the
outer-product algorithm.

As an example, one can consider a graded-index glass
doped with CdS/Se-semiconductor nanoparticles [12,13].
To estimate the parameters of spatio-temporal solitons
for such a medium we assume an operating wavelength
near 1 µm where β2 ≈ 50 ps2/km is positive, while
n2 ≈ −10−16 m2/W is negative. The negative waveguiding
parametern1 sets the beam-size scalew0 and can be varied
over a wide range. Let us takew0 = 1 mm andn0 = 1.45,
so thatβ0 ≈ 9 µm−1 andLD ≈ 0.9 m. The energy scale
E0 will be 400 pJ, and the spatial and temporal widths of the
optical bullet are thus aroundX0 ≈ 1 mm andTS = 8.5 ps,
respectively. The formation of a stable light bullet in this
Kerr medium is guaranteed by the inhomogeneous nature of
the nonlinear medium. From now on, we will use these es-
timates, bearing in mind the experimental modeling of var-
ious all-optical computations in the spatio-temporal soliton
regime.

4. Algorithms for all-optical parallel-input
digital multiplication

Vector-matrix multiplication is the primary operation which
is exploited, for example, in finding the unequivalency func-
tion for an associative search in a memory system or which
is applied in the central processor of a digital computer. All-
optical components for multiplication can be implemented by
using various nonlinear phenomena via non-collinear SHG
in square-law nonlinear crystalline material [14]. Depending
on the algorithm, two architectures for parallel-input digital

multiplication can be considered, namely the DMAC and the
outer-product processors. These two cases need rather dif-
ferent post-processing arrangements for analogue-to-digital
conversion of intermediate mixed-binary format results to a
binary format. Schematic arrangements for the DMAC and
outer-product processors are presented in Figs. 3 and 4, re-
spectively. These figures show that the DMAC algorithm re-
quires a smaller number,log2 (N + 1) − 1, of adders and a
smaller number,log2 log2 (N + 1), of summation steps, but
the need for analogue-to-digital conversion limits the applica-
tion of this algorithm. The outer-product algorithm requires
a greater number,N − 1, of parallel adders, achieving sum-
mation in a greater number,log2 N , of steps. However, in the
alternative case there is no analogue-to-digital conversion,
which seems to be preferable for the creation of all-optical
components because it preserves the binary format and so re-
moves a dynamic range problem.

The full adder is the key component in all-optical post-
processing of intermediate results. Such an adder may be
designed to use only the basic AND and EXCLUSIVE-OR
logic gates, so implementation of a multiplier is conditioned
by the feasibility of realizing high-speed all-optical logic
gates. It is well-known that performing, for example, NOR
and NAND logic operations as well as creating AND and
NOT or NOT and OR logic gate pairs is sufficient for the
arrangement of any arithmetic device, in particular for binary
number multipliers. To achieve an extremely high speed of
operation and ease of fabrication, it seems to be more promis-
ing first to obtain results in an intermediate mixed-binary for-
mat by a DMAC, or an outer-product processor, and then to
convert that signal to a completely binary format. The non-
resonant Kerr effect is an ultrafast phenomenon that permits
switching times as low as10−15 second, and makes possible
an extremely high rate of logic operations in comparison with
digital electronic signals. An application of ultrafast response
requires an abnormally high intensity of light beams and the
problem of heat removal becomes more complicated for the
high density of information in the data flow. For this reason,
the optical Kerr effect proves to be acceptable for computing
first of all in low-loss optical fiber, because the heat power,
given its small value, dissipates lengthwise along the opti-
cal fiber and does not lead to any difficulties even for the
top speed of operation. However, the weak Kerr nonlinearity
manifests itself only in a long length of fiber, so the output
signal has a market time delay relative to the input signal.
This time delay, nevertheless, should not be regarded as a
considerable demerit for optical fiber components, because
the data flow arrangement is such that performing each of the
following operations does not depend on the results of all the
previous processing operations.

5. All-optical processing based on the DMAC-
algorithm

At first, shaping the DMAC signal via a non-collinear SHG-
phenomenon in square-law optically nonlinear crystalline
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material is presented. The diagram of a non-collinear SHG-
phenomenon may be considered an all-optical AND logic
gate. Such a gate has a femtosecond time response and does
not need an optical pump beam, so that a widely branched
network of coupled gates with repeated use of initial light
beams may be implemented, because only a small part of
the input signal energy is converted into the SHG output sig-
nals. In fact, each of the partial interactions corresponds to an
undistributed field approximation. The light beam arrange-
ment for the DMAC-algorithm signal shaping is shown in
Fig. 5.

Binary numbers are encoded by a total ofN parallel opti-
cal channels, one channel for each of theN bits that comprise
the following numbers:

A =
N−1∑

i = 0

ai2i and B =
N−1∑

i = 0

bi2i.

FIGURE 5. (a) Configuration of AND logic gates totally perform-
ing DMAC; (b) Experimental results: all-optical shaping of the
DMAC-signals.

Intensities of light beams have magnitudes equal to 0 or 1
in both these channels. There areN2 areas of non-collinear
interaction in a crystal when initial light beams pass through a
crystal under a phase-matching condition. Similar areas play
the parts of partial multipliers or AND logic gate networks,
which are integrated into a single crystal. By providing an
equidistant arrangement of the input optical channels, the in-
tensities of the second-harmonic light beams are summed up
along diagonal lines, so(2N + 1) parallel output channels
prove to be shaped in the output plane. That is to say, the sig-
nals leaving the network arrangement are exactly the partial
DMAC-signals:

ci =
N−1∑

j = 0

ajbi−j,

and consequently,

C = AB =
2N−2∑

i = 0

ci2i. (17)

In view of simultaneous arrival of optical pulses at each
of the interaction areas, the initial optical beam fronts need
to be sloped as shown in Fig.5a. Both the intensity depletion
of the initial signals as a result of repeated interaction in the
convolution network and the diffraction of the optical beams
have an effect on the number of bits, N, that can be handled
in the processing of binary numbers. It may be shown that,
on the one hand, for the processing of 32-bit numbers, the
efficiency of the individual partial interactions ought to be
no greater than1% and, on the other hand side, the maximal
value of bitsNmax is limited by diffraction to

Nmax =
√

nAD sin 2Ψ
8 λ0

, (18)

whereλ0 is the wavelength of the initial light beams,nA is
the average refractive index for a crystal, andD is the geo-
metric size, which is shown in Fig. 5a. In the spatio-temporal
soliton regime, this restriction can be omitted and the value
N = 32 bits may be taken. The speed of operation is usu-
ally described by the timeT for one operation performing as
well as by the productivityS, i.e. the maximal number of bit
operations in unit time:

T =
2nAD

c sin 2Ψ
+ τ , S =

N2

∆T + τ
, (19)

wherec is the velocity of light,τ is the bit pulse width, and
∆T is the spreading time. The productivityS is defined by
the maximum attainable frequency of data input into the op-
erations, which is limited in its turn by the following factors:

a) the time response of the logic gates;

b) the bit pulse width;

c) the path time of one bit multiplication area; and

d) non-simultaneous responses of the logic gates in a con-
volution network.
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FIGURE 6. (a) The DMAC-signal shaping in the case of the inner
product of vectors: (a) a schematic of 2-component 3-bit vectors;
(b) experimental result(101, 111)× (101, 110) = 22411.

The last factor gives the main limitation, which is why the
greatest spreading time∆T has a signal on the central diag-
onal line due to the response non-simultaneity

∆T =
D

c sin 2Ψ

(
nω

0

cosΨ
− n2ω

0

)
, (20)

wherenω
0 and n2ω

0 are the refractive indexes for the input
beams and the SHG-beams, respectively. For example, at
λ0 = 1060 nm, with τ = 1 ps andN = 32, one can ob-
tain ∆T = 16 ps andS = 6 × 1013 bit/s in a LiJO3 single
crystal.

A three-dimensional network of logic gates, formed by
M planes of interaction as that depicted in Fig. 5a, permits
digital inner vector multiplication in mixed-binary format for
M -component vectors withN -bit components using an out-
put cylindrical lens (see Fig. 6a). The numberM of vec-
tor components which can be accommodated within a given
crystal thicknessH is determined by Eq. (18). For instance,
it is possible to haveM = 32 whenH = 8 mm in a LiJO3

single crystal even in the regime free of spatio-temporal soli-
tons. The inner-product processor productivity is equal to
S = M N2(∆T + τ)−1; so forM = N = 32 andτ = 1 ps,
one can get∆T = 16 ps andS = 2× 1015 bit/s.

In the experiments, a LiJO3 plate has been used with di-
mensions27 × 27 × 8 mm cleaved in the (100) crystallo-
graphic plane with the input facet orthogonal to the [010]

axis, soΨ = 20◦ andD = 8 mm. Experimental simula-
tion of the input optical signals withN = 4 for each of the
binary numbers was made by symmetrical diaphragm masks
(d = 1.6 mm, d1 = 0.8 mm). The light source generated
7 ps width pulses atλ0 = 1060 nm. These parameters of
the optical pulse stream have been selected as rather close to
the parameters of light bullets discussed in section 3 to pro-
vide experimental modeling of exploiting the spatio-temporal
optical solitons in all-optical computations. Optical signals
of the second-harmonic beams were detected by means of
a multiple-point photodetector, so the DMAC signals have
been displayed, see Fig. 5b. The timeT to perform one opera-
tion was equal to 130 ps, which corresponded to∆T = 17 ps
andS = 6 × 1011 bit/s. The vector inner-product signal in
mixed-binary format is presented in Fig. 6b. This is the case
for the multiplication of two-component vectors(M = 2)
with three-bit components(N = 3). The same masks were
again exploited,D = 5 mm. The values of∆T = 10 ps and
S = 1× 1012 bit/s have been achieved.

Optical parallel analogue-to-digital conversion can be
simplified by designing the logic network with a different
spatial period of the input channels for both binary numbers.
Figure 7 illustrates the process where the number of opti-
cal pulses of equal amplitudes in each position quantifies the
magnitudes of binary convolution partial products. There-
fore, in post-processing, the analogue-to-digital converters
must be replaced with pulse counters in all the mixed-binary
format positions. In this spatially irregular case, the maxi-
mum number of multiplicand bits has an order of magnitude
equal to the square root ofNmax given above by Eq. (1) or
it can be 32 bits in the spatio-temporal soliton regime, if the
efficiency of an individual interaction is about1% or even
less. Other masks for the bits (d1 = 0.5 mm,d2 = 3.0 mm,
d3 = 2.0 mm, N = 3) were exploited in the next exper-
iment (see Fig. 7a). The corresponding oscilloscope traces
are shown in Fig. 7b.

On the whole, spatially irregular analogue-to-digital con-
version can be successfully applied to mixed-binary format
processing only if the number of multiplicand bits is not very
large. The response non-simultaneity∆t = ∆T N−1 of sig-
nal arrivals from neighboring logic gates placed on the same
diagonal line may be used for mixed-binary format analogue-
to-digital signal conversion as well. For the caseτ < ∆t,
the time resolution of pulses, which are shaping a mixed-
binary format signal, proves to be attainable. The condition
τ < ∆t = 3.5 ps was achieved in the experiment described
above withd = 1.6 mm.

6. All-optical processing based on the outer-
product algorithm

Digital information processing includes the outer-product op-
eration, so several algorithms of linear algebra can be based
on this operation. The outer-product multiplication of two
N -dimensional vectorsA andB is given by
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FIGURE 7. Spatially irregular case of an AND logic gates network:
(a) schematic arrangement; (b) experimental result of multiplica-
tion: 111× 111 = 12321.

FIGURE 8. A scheme of the outer-product processor; SB are the
senior bits of a number, JB are the junior bits.

C = ABT =




a1 b1 . . . a1 bN

. . . . . . . . .
aN b1 . . . aN bN


 , (21)

whereC is anN × N matrix containing only one linearly
independent line or column. In the case of processing binary
data, the outer-product operation is reduced to a shaping of
the partial product matrix, which consists ofN2 optical sig-
nals having intensity magnitudes equal to0 or 1. The prin-

ciple of such a matrix processor arrangement is presented in
Fig. 8.

Light beams, corresponding to binary numbers bits, are
collimated in a vertical or horizontal plane and are then they
are directed at the input facet of a nonlinear crystal for SHG
under the phase matching condition. The interaction of non-
collinear optical beams takes place in a crystal where the full
totality of partial products is carried out. In fact, the matrix
of the SHG signals is the outer product of the initial vectors
with one-bit components. The nonlinear crystal plate thick-
ness must be optimal so that all interaction areas of the first
row are placed inside the plate, with no following interac-
tions taking place. The optimal thickness of the LiJO3 crys-
tal cleaved in the (100)-plane as a30 × 30 mm sized plate
was equal to 1.2 mm for the partial product generation of 32-
bit binary numbers. The number of bits is connected solely
with the quality and geometric size of the plate and with the
capabilities of shaping the input optical signals. Productiv-
ity S of such a processor is determined by a minimal period
T of operating on digital data, which is conditioned in its
turn by a time response of partial logic gates. One can ob-
tain S = N2T−1, so for N = 32, andT = 1 ps we get
S = 1× 1015 bit/s.

The parallel-input outer-product processor based on the
SHG-gate network was built experimentally with the input
light beams collimated in orthogonal directions, encoded
with binary data, and a plate of LiJO3 single crystal placed
perpendicularly to the plane of interaction. An array of4× 4
binary products was generated in such a network using four-
channel masks and 7 ps optical pulses atλ0 = 1060 nm,
being close to the parameters of light bullets estimated in
Sec. 3. After using a cylindrical lens to sum the SHG-signals
over diagonal lines of the matrix, a seven-bit product in
mixed-binary format was obtained. Experimental results of
binary number multiplication by such a processor are shown
in Fig. 9.

The absence of limitations connected with light
intensity exhaustion, diffraction of beams, and response non-

FIGURE 9. Results of multiplication using an all-optical outer-
product processor.
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simultaneity is an advantage of the outer-product multiplier
as compared to the DMAC-processor. At the same time,
the outer-product multiplier contains additional optics and is
not capable of operating with vectors having multibit com-
ponents because of a three-dimensional schematic arrange-
ment. On the whole, the outer-product multiplier seems to be
the most promising, because it needs in addition to the ma-
trix processor only two homogeneous components, namely,
EXCLUSIVE OR and AND logic gates. This property of the
outer-product processor (see Fig.4) can turn out to be deci-
sive since at present it is still not known how to produce an
extremely high-bit-rate all-optical analogue-to-digital con-
verter.

7. Conclusion

In view of parallel-input multiplication, both the DMAC and
the outer-product algorithm could be exploited for primary
binary data processing. The schemes, which use optical SHG
techniques for performing binary multiplication, have been
considered and proof-of-principle experiments have been car-
ried out. Estimations have shown that, through pipelining of
data in an optical network produced in nonlinear crystals, the
processing of 32-bit numbers is possible for a bit rate of up
to 1015 bit/s and an optical energy consumption for each in-
dividual logic AND operation down to a value of10−12 J/bit.
The DMAC-algorithm based device needs an analogue-to-
digital converter or pulse counter in the irregular arrangement
case. The outer product multiplier is free of some of the flaws
enumerated above, but its three-dimensional set does not per-

mit operation by vectors, in contrast to the DMAC multiplier.
In any event, an all-optical full adder is the key component
of post-processing in such devices, so the problem of imple-
menting logic gates becomes significant. For this purpose, for
instance, optical fiber ultrafast logic devices based on Kerr
nonlinearity in Sagnac-effect interferometric configurations
can be applied.

These feasibilities for applications to an all-optical dig-
ital processing can be really improved due to operation in
the regime of spatio-temporal solitons representing optical
bullets. In this case, the negative influence of light diffrac-
tion will be compensated by the corresponding index-graded
contribution, while the width of bit pulses will be stabilized
because of the balance between dispersion and nonlinearity.
Recent experiments have shown that the possibility of shap-
ing the light bullets in a certain range of the optical power is
hardly practical. From the viewpoint of further applications,
optical bullets will be able to play the role of natural ultra-
short bit carriers, well localized in space and time, whose
parameters are matched by the properties of the materials ex-
ploited. Such a statement of the problem for designing the
processor architecture permits potentially optimizing of both
the schematic arrangement and the functional components of
an all-optical high-bit-rate processor-multiplier.
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