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In this paper we study an interacting Bose gas at low temperatures, confined in a one-dimensional potential composed of four wells. In order
to derive and validate the effective Hamiltonian that describes this system, we study the stationary states of a particle confined in the four-well
potential. In particular, we calculate the energies and the corresponding wave functions for the ground state and for the three lowest excited
states. It was established that the effective Hamiltonian of a four-well optical lattice is composed of tunneling terms among all the wells, and
interaction terms between pairs of particles within the same well.
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En este aitulo se estudi un gas de Bose con interacciones a bajas temperaturas, confinado en un potencial unidimensional de cuatro pozos.
Para deducir y validar el Hamiltoniano efectivo que describe este sistema se estudiaron en detalle los estados estacionariokdi una part
confinada en el potencial de cuatro pozos. En particular, se calcularon lamenelas correspondientes funciones de onda del estado base

y los tres primeros estados excitados. Se estdbtpo el Hamiltonaino efectivo del gas de Bose en unsdpdita de cuatro pozos ést
compuesto derminos de tunelaje entre todos los pozosérnyrinos de interacén entre pares de patilas dentro del mismo pozo.
Descriptores:Redespticas; condensamn de Bose-Einstein; gases de Bose ultrafrios con intéracci

PACS: 03.75.Lm, 03.75.Nt, 02.70.Hm

1. Introduction The main purpose of the present work is to derive and val-
idate the effective Hamiltonian that describes a gas of bosons
The experimental realization of the Bose-Einstein condensazonfined in an optical lattice composed of four wells. That is,
tion in 1995, in vapors of rubidium, sodium and potassiumwe shall concentrate on a derivation from first principles of
vapors [1, 2], has given rise to a new field in the study ofthe effective Hamiltonian to appropriately describe the many-
these and other ultracold gases: the control and manipulaody system. To obtain this derivation, we study the states
tion of highly degenerate neutral atoms [3,4], that is, systemsf a single particle confined in the four well potential in de-
composed of a large number of particles in the same quantumail. As we shall see, this analysis justifies the validity of
state. One of the achievements of these degenerate gases @€ Hamiltonian and establishes the applicability limits of the
the so called optical lattices in one dimension [5-7]. Thes&ose-Hubbard (BH) Hamiltonian [10] for a lattice composed
are formed when a Bose gas at temperatures close to the cagf-four wells. The BH Hamiltonian has been widely used for
densation temperature is confined in a one dimensional petescribing highly correlated bosonic systems. The main con-
riodic potential composed of a finite number of wells. Suchtribution of the present study is to consider the modifications
a potential can be produced as a result of the superpositiaa the BH Hamiltonian when the confining potential is com-
of two counter propagating standing laser beams. Thus, thgosed of a finite number of wells, particularly an arbitrary
transport of atoms through the barriers can be controlled expotential composed of four wells. The study of the dynami-
perimentally by modifying the optical potential that confines cal behavior of the Bose gas inside the finite optical lattice is
the atoms [8]. beyond the scope of this work, and it will be considered in a
The creation of the optical lattices by several experimeniater study.
tal groups has motivated the community to study their behav-
ior from a theoretical point of view. A useful tool in the study Due to the fact that the gases confined in the optical lat-
of these systems is the second quantization formalism. Thices are at very low temperatures, the theoretical study of
formalism, supported by the indistinguishable quantum natheir dynamics in the second quantization scheme requires
ture of the atoms, is based on the knowledge of a completenly the calculation of the ground state and the first excited
set of single-particle wave functions, to establish the Hamil-states. Therefore, the complete set of single-particle wave
tonian that describes a many-body system [9]. In this confunctions mentioned above can be safely replaced by a less
text the determination of the energies and their correspondingumerous set. In the particular case of an optical lattice com-
wave functions of a particle confined in a specific potentialposed of four wells in one dimension, itis enough to know the
results relevant. ground state and the three lowest excited states, if their asso-
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ciated energy levels lie below the top of the potential barriersﬁ/(x) can be written in terms of any complete set of single-
This is a consequence of the fact that the energy levels of particle wave functions as
four-well potential split into sets of four levels, so that the . . .
separation among the sets is greater than the separation pe¥' (@) = Z pn(z)al, and W(z) = Z‘P”(x)a"’ ©
tween the levels in each set [11]. To calculate the first set of " "
energy levels and their corresponding wave functions, in thigvhere the operators, anda}, satisfy the usual commutation
work we shall use the Split Operator (SO) method, which isrules for bosons{an, alT = d,,,;. In this work, we model the
applicable to any bounded potential [12]. In this study Wejnteractions among thé particles through a contact interaction
concentrate on symmetrical four well potentials in one di-potential
mension. 4mh%a

As mentioned before, the optical potential produced by Ulz,2') = 8(z — '), ®)
the interference of standing laser beams can be modified witwherea is the scattering length. We should remark that this
the purpose of controlling the transport of atoms inside theanodel potential is valid in the limit of low energies and in the
potential. In other words, by varying the depth and width ofBorn approximation [13]. Due to the fact that in dilute ultra-
the potential barriers, the tunneling of the atoms through theold gases the effect of the interaction among the particles is
barriers can be controlled. Based on the calculation of théully included in the scattering length the specific form of
wave functions of a single particle in the four well potential, the interaction potential does not affect the main qualitative
we determined how the effective Hamiltonian that describegeatures of the many body description.
the many body system is modified when the potential that The energy levels associated with the bound states of a
confines the atoms is varied. one-dimensional potential composednofvells are split into

By using the SO spectral method, we evaluated numerin-tuples of levels such that the separation between the n-
cally the energies and the corresponding wave functions asstuples is much greater than the separation between the levels
ciated with the four lowest bound statgs,, ¢, },n = 0,..,3  in each n-tuple [13]. Therefore, for sufficiently deep wells,
of a particle confined in a four-well potential. To perform the energy spectrum of a particle confined in a potential com-
such an analysis, we proposed a model potential dependeposed of four wells will be formed by several sets of four
on 5 parameters. As we shall see, these parameters allow levels. Due to the fact that the system under study consists of
to consider modifications in the depth and width of the wells.a Bose gas at very low temperatures, the only relevant states

This work is organized in four sections. In Sec. 2, weto describe it are the states associated with the lowest energy
derive the effective Hamiltonian that describes an ultracoldevels in the four-well potential [11]. Then, for the special
Bose gas with interactions, confined to the one-dimensionatase of ultracold bosons, the complete set of single-particle
potential composed of four wells. In Sec. 3, we describewvave functions required in the expressions for the field oper-
briefly the method employed to obtain the energies and thators (2) in the second quantization formalism, can be safely
wave functions of a single particle in the potential. Resultsreplaced by the sefs,, p,}, n = 0,1,2,3 of the single-
for the energies and wave functions considering the deperparticle wave functions in a four-well potential. By adjusting
dence on the depth and width of the wells are also presentethe depths of the potential barriers, one can guarantee that
Finally, in Sec. 4, some conclusions of the present study arenly the first set of energies and its corresponding states is
given. necessary for the description of the Bose gas.

After we substitute the eigenfunctions,(z) in Eq. (1),
the HamiltoniarH that describes the many body system be-
2. Effective Hamiltonian of an interacting comes
Bose gas confined in a one dimensional four

3 3
wells lattice H=> enalan+ Y  galalaan, (4

n=0 k,n,l,m=0

In the second quantization formalism, the most generaj hqre
Hamiltonian that describes a many body system with inter-

2
actions between pairs of particles is g=2ma ok (@) on (2)pr(x)om(z)dz.  (5)
m
H = /dx\iﬁ(a:) (T(z) + V(z)) ¥(a) From this equationlwel see that the part of the Hamiltonign
that involves the kinetic energy and the external potential

1 Jer e PRSP (that is, the four-well potential) is diagonal, as a consequence
+ §/d$dx U)W (2)U (2, 2 )W (2)W(z), (1) of the fact that the field operators (2) were expressed in the
basis{e,, .}, n = 0,1,2,3. The second term ift{ repre-
whereT'(z) is the kinetic energy operatoV/(z) is the ex-  sents the interactions between pairs of particles in different
ternal potential that confines the atoms (in this study it is astatesp,,(x). Thus, the Hamiltonian (4) describes an ultra-
four-well potential), and/ (z, ') is the interaction potential cold gas of bosons with interactions, confined in a potential
between pairs of particles. The field operatﬁfé(z) and composed of a finite number of wells in one dimension.
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In order to study the dynamics in a finite optical lat-
tice, the Hamiltonian (4) can be rewritten in a more appro- A 1 92
priate basis than the extended single particle wave functionsHp = —— {\/§ (1 + -+ )
©n () [11]. This basis is formed by the localized wave func- 8 rod
tions in each well, and can be constructed from the extended i | t Ty, }
wave functionsp,, (z) as follows: 8 {ble - 0ab1 o+ bsba +bibs

3 2
+ (3 + ot q) [b;bg - bgbz]
1
di(0)=— (vo(@)+VBip1(2)+V3pa(2)+¢s(2)) . (6)
8 1 2 N f
. + {1+ ; — g |:b1b4 + b4b1:|
()= (VBpo(a) tor(2)—p2(2)—VBips(a)) . (7) )
+V3 <1 - > [b{bg + blby + blby + bgbg] } . (10)
1 r
va(2)=—= (V3po(a)—1(@) ~p2(2)+V3ps()) . (®) | | |
8 From this expression fd p, we see that the tunneling terms
1 between non-adjacent wells become zero when parameters
1114(1?):*8 (900(1’)*\/5%($)+\/§sﬁ2($)*sﬁ3($)) ®)  , andr are equal to 1, that is, when the energy levels are

equally spaced. In other words, the effective Hamiltonian
_ o o that describes a Bose gas with no interactions, confined in
This transformation is a generalization of the usual transap arbitrary four well potential/(z), will be composed of
formation performed in a two-level system when a rotationynneling terms between all the wells unless such a potential
through 90 degrees is made [13]. For a system of particlegossesses equally-spaced energy levels.
confined in am-well potential, the linear transformation that =~ after we substitute the localized wave functions and their
relates the extended and the localized wave functions is givegorresponding creation and annihilation operators in the sec-

by the Wigner rotation matrix [14] and has been previouslyond term of Hamiltoniark, that is, in the interaction term
used in Ref. 11. Similarly, the transformation that defines the

creation and annihilation operatdr;é andb; of particles in B 3 ot
each well, in terms of the operatar anda,,, is the same as Hi= ) gaalaan,
the transformation that relates the extended and the localized kom,l,m=0

single-particle wave functions. As we shall see in the nexive find the interaction of particles in different wells. How-
section, the linear combination that defineg(x) [Eq. (6)]  ever, if the overlap between the localized wave functions
is the probability amplitude of finding a particle localized in 1;(x) can be neglected, the integral of any arbitrary product
well 1; (), 13 y ¥a(x) are the probability amplitudes of of four localized wave functions

finding a particle localized in the wells 2, 3 and 4, respec-

tively. /wi(x)%(ﬂ?)wk(x)wz(m)dm

Before we write the Hamiltoniaf{ in the basis of the . I
localized wave functions in each well, we want to empha-Ca" be considered to be equal to zero. Thus, the Hamiltonian

size that the energy levels associated with the wave functio @"’}t describes the interaction term of the Hamiltoritamil
©n(z) do not necessarily need to satisfy the condition of be- e Arn2a

ing equally spaced; that is, for a given external potential com- Hr = 2rva Z bszbibi, (11)
posed of four wells, those energy levels can satisfy the gen- mo i3

eralrelationis; —eg = A,e2 —e1 = A/q,e3 —e2=A/r,  thatis, it contains only interactions of particles within the
whereq y r are two parameterg(r > 0) that can be adjusted same well. Considering both contributioks, and;, the

to specify the separation of the four lowest energy levels inqamiltonian that describes bosons with interactions in a four

each potential. As we shall see below, wités expressedin ell potentialV () whose energy levels are equally spaced
the basis of the localized wave functions, the transformatiors-

of the diagonal term

37+

H=-A {‘g [b'lbg + blby + bl + bibg]
3

Hp = anaT an 0 4

" 4dmh*a
— T T Tpin.p.
s n [beg 4 bgbg] } + = ; bibibib,.  (12)

will be modified as a consequence of the non-equal separa- From this Hamiltonian we can conclude that the dynam-
tion between the lowest energy levels n = 0,1,2,3. The ics of a Bose gas confined in a four well potential will be
Hamiltonian{ p, becomes in this case: described by the coefficients anda, that is, the tunneling
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coupling coefficient between adjacent wells, and the coeffithe kinetic energy operat@ /2m, must be divided into two
cienta that modulates the interaction between pairs of partiequal parts, such that the temporal evolution of the initial
cles within the same well. statey(z, 0) after an intervalAt is given by:
In the next section we shall study in detail the wave func- > B

tions of a particle confined in a one-dimensional potential U(z, At) ~ o idm o o—iV(2) 4t e—iffm%w(x,o), (17)
composed of four wells, in particular, the eigenfunctions as-
sociated with the lowest bound states. Such an analysis wilbue to the non-commutation of the operatprs- —ihd/dx
allow us to validate the effective Hamiltonian 12, and to es-andV (z), this equation is valid up to the second order, that is,
tablish the conditions under which the Bose-Hubbard Hamilthe first errors do not appear until the third orde’in The
tonian correctly describesan optical lattice composed of fousuccessive application of the temporal evolution to the initial
wells. This Hamiltonian has been widely used in describingstatey(x, 0) in intervalsAt allows us to obtain the state at a
finite optical lattices in one dimension. As is well known, the posterior time.
Bose-Hubbard Hamiltonian establishes that particles can tun-  The initial wave function)(z, 0) can be chosen in an al-
nel only between adjacent wells with equal probability, andmost arbitrary way. However, in order to obtain an energy
interactions among the particles occur within the same wellspectrum with even and odd values, this function must not
The main purpose of the present work is to establish how thisave a definite parity. For the present analysis, we shall use
Hamiltonian is modified for a finite potential, in particular for as the initial wave function a gaussian function centered in
a potential composed of four wells. the first well.

In order to obtain the energies and their corresponding
3. Wave functions of a particle in a one- Wwave functions, it'is_ necessary to define the cprrelation func-

dimensional four well potential tion between the initial state and the state at tiras:

In this section we determine the energies and the wave func- Pi(t) = (®(0)[(2)). (18)

tions of a particle with mass: described by the Hamiltonian ) ) _ .
By expressing the functiog(z,¢) as a linear superposition

H— % +V (@), (13) of the eigenfunctions off,
where the functional form of (z) is U@ t) = ; cnpn(@)e N, (19)
V(z) = V2! + Aje (I;’a%)z the correlation functiorP; (¢t) can be rewritten as
NPT T P Pu(t) =3 leal?e™ /1, (20)

n

In this equation, parameter; ando; take into account
the possibility of varying the depth and the width of the wells,
while the poefﬁcientVl is used to ensure that the particle Pi(e) = Z lenl28(e = £0). 21)
moves inside the four-well potential. The center of each well -
can be modified through parameter

By using the Split Operator (SO) method introduced byFrom this equation one can read directly the energy eigenval-
M.D. Feit and J.A. Fleck [12] we determine the four lowest Uese,, for a given potential’ ().
energy levels and their corresponding wave functions, asso- Itis important to note that, in the above lines, the knowl-
ciated with the bound states of a particle confined in the poedge ofPy(t)is implicit for all times. In order to take into
tentialV (). The energies and wave functions of those levelsaccount the finite size of our sampling € ¢ < T'), is nec-
will be denoted asz,,, v,,),n =0, 1,2, 3. essary the introduction of a special functie(t), called the

The SO method is based on the spectral decompositionormalized Hanning window function [12]. By multiplying
of an initial wave function)(z, 0) in terms of the eigenfunc- the correlatior, (¢) by w(t)/T", we obtain, in the reciprocal

whose Fourier transform is

tions of the Hamiltonian (13): space, the energy spectrum identifying the “peaks” associated
with different values ot,, for a given potential/ ().
Y(z,0) = ch%(l')- (15) The wave functions associated with the eigenvalyes
n can also be determined from the spectral decomposition
This decomposition can be obtained from the temporal evomethod. To do so, we must perform a numerical integration
lution of the initial wave function as described below. as follows:
In the temporal evolution operator T
o) = esp [#1], ae) P =N [ U0l expliet)dt = Noo,,).
0
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For the potential model (14), we considered 22 different

sets of parametefs4;, V;, 0;, a} to determine the four lowest

energy levels. For purposes of, illustration, we selected three
of these sets to show the dependence of the eigenenergies ¢
the choice of the parameters. From our analysis, we want to
remark first that the separation between these energy level:
is highly dependent on small changes of the parameters. As s
stated above, we illustrate the results obtained for the 3 dif-

ferent sets of parameters. We shall denote these potentials & 0

Vi(x), Va(x) y Vs(x).

In Table I, the parameters associated with each potential(a) ,
are specified. The eigenvalues of the energy for the ground

state and the three lowest excited states are shown in Table
In Fig. 1 we plot the potentialg; (z), V2(z) y V5(z); the hor-

izontal lines in each case indicate the energy levels. As can be
observed, all of these levels correspond to bound states insidi
the four well potential. From this figure, one can also observe

that the energy levels satisfy the following conditions:

I) fOI'Vl({,E),EQ—E1 < €1 —€)=¢€3 — €9,
i) for Va(z),e3 —e9 ~eg —e1 ey — €9, and
III) for Vg(l‘), 9 —E1 > €1 —E) = €3 — €9.

We should point out that it is essential that the potential bar-
riers in each case should be deep enough in order to guar
antee that at least four bound states exist in each potential
This assumption is necessary to justify the use of the basis

{¢n(z), n=0,..3} inthe many body Hamiltonian (1).

In Fig. 1a we illustrate the energy for the case in which
the wells in the center have approximately half of the width
of the wells in the exterior. By using the notation introduced
in the previous section for the separation between levels, we

getq ~ 2.91 andr ~ 1.04. From our analysis, we observe

that, as the width of the central wells is reduced with respect (¢ ) »

to the exterior wells, the levels, ande; tend to the same
value, while the levels, ande3 separate froma; andes in
the same proportion.

TaBLE I. The values of the parameters listed in this table determine

in each case the specific potential of Eq. (2).

Potential 1% A As o1 o2 a
Vi(r) 40x1077 810 6.50 1.118 0.500 2.500
Va(z) 1.9%x1077 4.40 3.30 0.576 0.650 2.625
Va(z)  2.7x1077 4.30 3.70 0.420 0.700 2.625

TABLE Il. Eigenvalues of the energy associated with the four low-
est bound states of the potenti#is(z), Va(z) y Va(z).

Potential €0 €1 €2 €3
Vi(z) 0.7032 0.8846 0.9468 1.1208
Va(z) 0.5672 0.7002 0.8184 0.9483
Va(x) 0.6039 0.7116 0.8957 1.0057
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FIGURE 1. The potentials analyzed with the Split Operator SO
method are shown, Figs. (a), (b) and (c) correspond to the poten-
tials Vi (z), Va(z) y Va(x) of Table | respectively. In each poten-
tial, the horizontal lines indicate the four lowest energy lewgls
€1,€2,Y€3.
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In Fig. 1b, we show the results fdf;(x). In this case
we chose the parametess and V; such that the consecu-
tive energy levels have almost the same spadiegwe get
g = r =~ 1.0. In comparison with the results obtained for
potentialV; (z), we observe that this condition requires that
the widths of the four wells become almost equal, and that
the exterior wells be deeper than the central wells.

For the potential’s(z) (Fig. 1c), the parameters are cho-
sen such that the energy levels have opposite characteristics
than those obtained for the potentidl(z). In order to ob-
serve this effect, we need only vary the width of the wells. In
this case we foung ~ 0.58 andr =~ 0.97.

The wave functions in arbitrary units associated with the
set of energieqde,,n =0,1,2,3} for each potential, are
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FIGURE 2. Figures (a), (b), and (c) show the wave functions in arbitrary units associated with the energydevelss, y €3, of a particle
confined in the potential®; (z), Va(x) andVs(z), respectively.

shown in Fig. 2. The Figs. 2a, 2b and 2c correspond to From the extended wave functions,(x), the localized
potentialsV; (x), Va(z), y Va(x) respectively. wave functions in each welb;(z) can be constructed using
From this analysis, we observe that while the values othe Egs. (6)-(9). In Fig. 3, these localized wave functions
the energy have high sensitivity to the choice of parameter# arbitrary units for the potentidlz(z) are shown. From
{A;, Vi, 0;,a}, the associated wave function, as expectedthis figure, we observe that the overlap between any of these
has the same structure. We found numerically that the ovefunctionsy;(z) and;(x) can be considered to be negligi-

lap between the extended wave functions in the same state¥e. We numerically verified that this overlap is smaller than
at least 95%. 1% in each case. Thus, according to what was established in

In the light of Eq. (10), we see that if the energy levelsth€ Previous section
of a given potential/(x) are not equally spacede. if the
parameterg; andr are different from 1, then in the effec- (if /wi(x)wj(w)dl‘ ~ 0 j
tive Hamiltonian (12) tunneling terms between non-adjacent
wells must be considered. In a previous study for the dy-
namics of a Bose gas confined in a three-well potential [15], then /1/)1' ()¢ (z)r (z)thi (z)dz = 0),
it was demonstrated that the dynamics is substantially mod-
ified when tunneling terms between non-adjacent wells aré is well justified that the effective Hamiltoniak; have in-
included. teractions only between particles within the same well.

Rev. Mex. 5. 53 (2) (2007) 126-132



132 R. MUNOZ-RODRIGUEZ, R. PAREDES, AND R.P. DUARTE-ZAMORANO

functions associated with the lowest bound states. By using
() a linear transformation, the localized wave functions in each
well ¢, (x) were constructed in terms of the extended wave

! functionsy,, ().
%U)n/\/\/ We used as an assumption the fact that, in an ultracold
w w w w w w w Bose gas, only the lowest states are occupied. Then, work-
%(A‘)\/\/\ ing in the second quantization formalism, we considered as a
‘ complete basis the sép,,(z), n = 0,..3}, to derive the ef-

fective Hamiltonian that describes the system of bosons with
¥ (x) interactions. In the basis of the localized wave functions in
’ each well, we found that this Hamiltonian is composed of

' ' ' ' ' terms describing the tunneling between all the wells, and in-
) teraction terms between particles within the same well.
Based on the study of the stationary wave functions, that
A is, the extended wave functions, we demonstrated that, if the
5

four lowest energy levels in the potential are equally spaced,
only tunneling terms between adjacent wells become relevant
in the description of the many body system. From our anal-
ysis, we also concluded that the fact that only interactions

We can conclude that if the confining four-well potential between particles in the same well appear in the effective

is such that the tunneling coupling coefficients are not negli-"""‘m'ltOnlan is a consequence of assuming that the overlap

gible, the dynamics in an optical lattice of four wells using theP&tween the localized wave functions can be neglected.

Bose-Hubbard Hamiltonian is not fully accurate. However, it __1"ansport of ultracold Bose gases confined in potentials
is well justified that in this Hamiltonian only interactions be- ¢0MpPosed of three wells has been studied in previous works
tween particles in the same well be taken into account. [11,15]. In those studies it was observed that the dynamics of

the particles is governed by the tunneling enefgand the
coefficient that modulates the interactigrAlthough the tun-
4. Conclusions neling dynamics in a four-well potential is beyond the scope
of this work, we can safely extrapolate that the temporal evo-
In this work, we have derived and validated the effectivelution of this system will have qualitative features similar to
Hamiltonian that describes a Bose gas with interactions, ahose observed for the three-well system.
very low temperatures, when it is confined in a potential in It is important to note that the dynamics of an arbitrary
one dimension composed of four wells. That is, from firstoptical lattice composed of four wells will be described by
principles we performed a derivation of the effective Hamil- an effective Hamiltonian that contains tunneling terms among
tonian that represents the many-body system. In order to vakll the wells. In other words, the experimental realization of
idate this Hamiltonian, we studied in detail the energies anén optical lattice in which the particles can tunnel only be-
the wave functions of a single particle confined in such a potween adjacent wells requires a precise tuning of the optical
tential (e, vn(x)}). In particular, we obtained the wave potential creating it.

FIGURE 3. The localized wave functions in arbitrary units of a
particle in the potentialz(x) are shown (see Fig. 1).
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