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Diffraction of beams by Ronchi rulings: comparison between two methods for
gaussian spot size measurements
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Two independent methods for Gaussian spot size measurement are experimentally compared. The two methods use a Ronchi ruling
the transmitted total power and the normally diffracted energy are considered. We show that the beam widths obtained by these methoc
very close. The theory of diffraction used is based on the Rayleigh-Sommerfeld integral equation with Dirichlet condition.
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Comparamos experimentalmente dostodos para la determinaci del ancho de una haz gauseano. Los dewdos emplean una red de
difraccion de Ronchi donde se considera la ereetgtal transmitida y la enei@difractada normalmente. La témde la difracdn utilizada
esta basada en la ecuaintegral de Rayleigh-Sommerfeld con las condiciones de Dirichlet.
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1. Introduction first method, attention is focused on the normally diffracted
energy to the grating at maximum and minimum transmitted
For most applications, the size to which a laser beam capower. In the second one, the beam diameter is obtained from
be focused is an important fact. For instance, the opticalhe angular position of the first minimum of the diffraction
data storage in compact discs requires beams withuen1- pattern determined at minimum transmitted power. In pass-
diameter[1]. Several methods for measuring Gaussian beaing we mention that, to our knowledge, the first time that the
diameters have been proposed[2-5]. For - or longer normally diffracted energy was proposed in order to deter-
Gaussian beam diameters, experimental comparisons amongne the width spot of Gaussian beams was in Ref. 4, where
the scanning knife edge method, the scanning slit method, @ single slit was used, and this method was experimentally
method based on the second moment or variance, and the tsted in Ref. 12.
calledTE My, method have been considered by Wright[3], = Experimental comparisons between two different meth-
with the conclusions that although these methods do not prasds based on Ronchi rulings are given. One method con-
duce identical results they are sufficiently close. siders the transmitted power, and the other one the normally

Some other interesting and powerful theoretical methodéliffracted energy to the ruling, both of them under conditions
have been proposed, based on the properties of the light trar@t maximum and minimum transmitted power. The theory of
mitted by rulings. Thus, Ronchi rulings[6] (grating with al- diffraction is obtained from the two-dimensional Rayleigh-
ternate transparent and opagque regions per period) could @mmerfeld integral equation[4,11,13,14] with Dirichlet
used to estimate the 1/e Gaussian beam ragiuas long as conditions; this theory can be applied to the cases of Gaus-
0.2 < ro/d < 1.2, whered is the period of the ruling. The sian beams, Hermite-Gaussian beams, and to other general
lower or upper limits fixed by Ronchi rulings are consider- beams.
able improved by means of Ronchi-sinusoidal[6,7], Ronchi-
trie}ngula_r[6,7], periodic exponential rulings[8,9], and aperi-zl Diffraction theory
odic gratings[10].

In all the above mentioned techniques using rulings[6-10We have a ruling made of alternate transparent and opaque
the beam diameters have been determined by means of tkenes. The period of the ruling is= ¢, + /5, where/; is
maximum and the minimum transmitted power. Howeverthe width of the opaque zone aiigl the width of the trans-
an exception is given in Ref. 11, where two different meth-parent zone. We fixed a cartesian coordinate system with
ods based directly on the diffraction properties of Gaussiathe Oz-axis parallel to the ruling as shown in Fig. 1. The
beams through a lamellar grating have been proposed. In threling is illuminated by a beam wave independent of the
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coordinate (cylindrical incident wave). The time dependence
exp(—iwt) is used and omitted in the following explanation.
Let E(z), E;(x), andt(z) be the transmitted field, the in- THé(kr)
put field or incident field, and the grating transmittance func- . )
tion, respectively, related as follows: ~ —i\/2k/7 exp(—im /4) explik(ro — xsin 0)] cosb; (4)

1/2
To

E(z) = t(z)E;(z). Q) ) . .
where for our ruling we have used= r( in the denomina-

tor, r ~ ro[l — (zxo/rd)] in the exponentiakin 6 = z /7o,
ea§1dcos9 = —yo/ro (see Fig. 1). It is important to note that,
in taking the partial derivative of Eq. (3), we have retained
the1/r!/? term and neglected thig'r3/2 term. After substi-
tuting Eq. (4) into Eq. (2), we get the expression for the far

From this equation, the field(x) just below the ruling can
be obtained. Since we are interested in incident beam wav
of finite cross section, then the functids(z) will be differ-
ent from zero within a finite intervdk, b] and zero outside
it (or very close to zero). The functiof{z) is null in the :
opaque zones, and has the unit value in the transparent zongg.ld

However, it is interesting to note that the theory presented in E — £(0 i 5
this paper can be utilized not only for the particular case of (0,90) = J(8) exp(ikro)/ Vo, ©)
Ronchi rulings but also for holographic gratings. which is the expression of a cylindrical wave with the oblique

From the field E(z), it is possible, by means of factorf(6) given by:
the two-dimensional Rayleigh-Sommerfeld integral equation )
[4,11,13,14] with Dirichlet conditions, to get the total field £(0) = Vkexp(—im/4) cos§ E(ksin), (6)

E(x0,y0) at any point(zg, yo) below the grating R
with E(«) the Fourier transform of ()

[e.°]

7 0 1 +oo
E(wo, yo) = QZO E(x)TmHO (kr)da E(a) = \/% / E(z) exp(—iaz)dx
_ ! i z)E;(z ! r)dz e
B QZO ) Bl )a?JOHO(k o, @) = \/% / t(z)E;(z) exp(—ia x)dx @)

wherek = 27/, with X the wavelength of the incident radi-
ation,r? = (z — x¢)? + y3 with P(z¢,yo) the observation
point as illustrated in Fig. 1, and} is the Hankel function
of the first kind and order zero.

From Eq. (2), the far field can be obtained by looking at
the asymptotic behavior of the field whenkr > 1. In this
approximation, the Hankel function is given by

From the oblique factof (9) given in Eq. (6), we can ob-
tain the total fieldE'(zy, yo) at any point(zg, yo) below the
grating by means of Eq. (5). The intensit{f)) scattered at
an angley (see Fig. 1) is given by |£(6)|°, whereC is a
constant which will be taken as unity since we are interested
only in relative quantities, so that we have

2

+oo
Hy (kr) = /2/7 kr exp(ir /4) exp(ikr); 3) I(G)z%kceﬁ& / t(z)E;(z) exp(—iksin 0x)dz|. (8)

then, the partial derivative in Eq. (2) is given by
In the following explanation, our attention is focused
on the transmitted powePr and on the intensity/ (0°)
Y diffracted normally to the screen, which will be denoted by
E. The normally diffracted energ¥ by the ruling is calcu-
lated from Eq. (8) by

,(fl d 2 +o0 2
i — = e > E=_ / H(x) Ey(a)da ©)
l, 0! x 2 )
I /9' and the transmitted powétr is obtained as follows:
P(Xo,yo) /2
FIGURE 1. A Ronchi ruling made of alternate opaque and trans- Pp = / 1(6)do (10)
parent zone of widthg, and/s, respectively. The slits are parallel
to theOz axis. —n/2
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3. Some applications 100
3.1. Incident Hermite-Gaussian beams 10 + m (a)
As an application of the results given above, we now consider 11 h w
the particular case of an incident Hermite-Gaussian beam or
a Ronchi ruling of period = ¢, +/¢5, where/; is the width of 10" 1
the opaque zone ard the width of the transparent zone. For
Hermite-Gaussian beams at oblique incideficéhe spectral 107 |
amplitudeA(«) is given by [11] ..?
L L 2 10° |
o 4
. 272 E 10" -
x exp [i(—ab + Sh)] exp(—q(0;)°L"/8),  (11) 5
-5 ! N . I
® 10 —t —
where N .
q1(0;) = accos 6; — Bsinb; g 101 (b)
S
and o .|
. Z
QQ(07) :COSGi+(Oé/ﬁ) s1n9i. N\
-1
The position of the incident Hermite-Gaussian beam with re- 10
spect to they axis is fixed by the parametér This parame- 107
ter enables us to displace the beam wave along the screen. W
denote byL the locall/e-intensity Gaussian beam diameter 10° |
(the L-spot diameter). The coordinatfs ) fix the position
of the beam waist. These Hermite-Gaussian beams can be e» 10* |
perimentally generated by means of end-pumped solid-state
lasers [15]. 10° : , : , : ,
In Fig. 2, the diffraction patterns of Hermite-Gaussian ' ' '
beams is plotted at the angle of inciderze = 30°, for 10 20 30 40 50
m = 1,2. The parameters used afg=0.5, /o = 1.0, Angle (degree)

L = 10/v/2, A = 0.1, and the position of the center of the
beam waist is fixed at the poifi, 2)=(20.0,4.0). Itis inter- g gyre 2. Diffraction patterns of Hermite-Gaussian beams at the
esting to compare these results for a Ronchi ruling with thos@ngle of incidenced; = 30° for m = 1,2, when?; = 0.5,
given in Fig. 7 of Ref. 14 where the diffraction of Hermite- ¢, = 1.0, L = 10/+/2, A = 0.1, and(b, h) = (20.0, 4.0).
Gaussian beams for a slit were considered.

The diffraction pattern of Fig. 2 shows the typical or- P,
ders resembling those of the diffraction of plane waves by f nd the power ratid” given by
grating, except that these are wider. We compared the an-
gular positions of the orders seen in Fig. 2 with those cal- P = Puin/ Pmax (13)
culated directly from the grating equation and a very good
agreement was found. In fact, if we denote byhe sev-

er?l orders, byV our numerifcarll results, and Wy £’ the re—h Pinax are the minimum and maximum transmitted power, and

sults obtained by means of the grating equation, we av%min andFE,, .« are the minimum and maximum values of the

25.66, 25.67), (0, 30, 30), (1, 34.53, 34.51), (2, 39.30, 39.29), o . ) )

(4, 50.04, 50.05). We note that at the maxima (orders), one It is interesting to know the influence of the width of the

dip appear forn = 1 and two dips appear fon = 2; inthe ~ OPaque zonel() and tran;parent zqné?Q on the inten.sity

general case: dips appear at the maxima for a given ratio K and the power ratid. For this, in Fig. 3 and Fig. 4
the ratiosP and K are plotted, respectively, as a function of

3.2. 3.2Influence of the transparent and opaque zones the parametey = /{5, for 0.066 < ¢ < 15. We assume a
normally incident Gaussian beam on the Ronchi ruling, with

for a Ronchi ruling of periodl = ¢; + ¢5, whereP,,;, and

Now we go to consider the intensity ratfo defined as L = 450/v/2 pm, d = 320 um, and\ = 0.633 um. From
these figures, we find th&f and P have a monotone decreas-
K = Enin/Emax, (12)  ing behavior whem = ¢, /¢, is increased.
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There are other definitions based on the energy enclo-
sure [3]. For instance, the beam width can be calculated us-
ing the diameter that passes 86.5% of the energy, in this case
the beam width will be denoted b¥gs 5. As was pointed
in Ref. 14 the relationship betwedhand Lgg 5 is given by
means of the linear relationshipgg 5 = 1.057L.

5. Two beam width methods

0=1 i= 1=o Now we go on to establish the'two methods'used With a
' - Ronchi ruling in order to determine the Gaussian spot size.
7 (4/6) But before this, it is necessar i i rul-
, y to consider the Ronchi rul
FIGURE 3. The power ratioP is plotted as a function of the pa-  jnq ytilized in the experimental set up in the next section. In
rametery = £, /(>. We assume a normally incident Gaussian beam e raq| grating used, the transparent and opaque zones have
g)\n_thoeﬁlggncn:n ruling, withl, = 450/v/2 um, d = 320 um, and g0y widths, 148:m and 172um, respectively. Then,
= heo Hil for this grating we haveg = 1.162 with the period given by
d = 320 pm. In addition, we have a He-Ne laser operating
at 633nm. Then, from the last result of Sec. 3.2, we conclude
that the results obtained with this grating and those obtained
from an ideal Ronchi ruling witly = 1.0 will be very similar.
In Fig. 5, the intensity ratid<{ and the power rati@ are
plotted as functions of the normalized beam widtf¢, for
a Ronchi ruling of periodi. These results o’ and P are
given for¢; = 172 pm and/; = 148 um; however, from the
considerations given above, these results are very similar to
those given in Fig. 3 of Ref. 11 for= 1.0.
; i 7 We mention two important facts. Firstly, the results given
0.1 1 10 in Fig. 5 are independent of the wavelength. Secondly, we

q (/) have verified that the values @f are identical to those ob-
FIGURE 4. The intensity ratidk is plotted as a function of the ratio  tained for a two-dimensional Gaussian beam [6] when the
q = {1/¢2. Same parameters as in Fig. 3. spot is displaced normally to the slits. From these facts we

can conclude that the results of Fig. 5 provide us with a
In both figures, the results for an ideal Ronchi ruling aremethod for determining the beam width.
indicated withg = 1.0, and also the results for = 1.162
are shown. For these particular cases, the values obtained ar~ 1
very similar; in fact, we have found that the relative error be-
tween both results is better thar2%. This conclusion will
be important in the section on experimental results. 081

4. Definitions of Gaussian beam width

As noted in Ref. 3, the most common definition of width for
a Gaussian mod& E My, is given by the width at which the 04 1+
beam intensity drops td/e? of the peak value. This value
is denoted byL.--. However, when the intensity drops to
1/e is also used and the corresponding beam width will be 0.2 ¢
denoted byL. In particular, in this paper the valuge will
be used from here on. . . . .

We assume the following intensity distribution of the in- 0 T
cident Gaussian beam 0.3 0.9 1.5 2.1 2.7 3.3

Beam Width/Slit Width (L/7,)

) i . ] ] FIGURE 5. Intensity ratio K = Emin/FEmax (dashed curve) and
wh'ereI (z)is the mtgnsny as a function of the coordma;t;e poWer ratioP = Puin/Pumax (solid curve) as functions of the nor-
1, is the peak intensity at the center of the beam, Ainglthe  malized beam width. />, for a Ronchi ruling withg = 1.162.
beam width.

Pand K

I(x) = I, exp[—42? /L7, (14)
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From Fig. 5 we get that the behavior Bfand K are very 1.2
similar but not identical, and that the beam widihcan be
determined as long &2 < L/d < 1.5, whered is the pe-
riod of the ruling. The beam width determined by P- and
K-graphs will be denoted bY.,,.c and L (g, respectively.

11 theoretical

o
o)

6. Experimental set-up

Transmitted Power
o o
r O

A He-Ne laser operating at 633nm give§'#& M,, beam of
diameter of about 1mm. This beam was passed through ¢

linear polarizer in order not to saturate a RCA 30807 silicon 021

detector. After the polarizer, the beam was propagated 6.5

cm and it was passed through a lens of focal length 25 cm. 0 : : : : : : .

The experimen.tal c'onfiguration is iIIustrgted in Fig. 6. . 06 08 1 12 14
The Ronchi ruling was placed at eight locations in the ..

vicinity of the lens focus. The Ronchi ruling used was an Beam Position (mm)

E_dmond Scientific ruling of period = 320 Hm-_The set_of FIGURE 7. Transmitted power (arbitrary units) as a function of
distances between the lens and the Ronchi ruling are given btie beam position when the Gaussian beam wave is scanned by
z =15cm, 17.5cm, 20 cm, 22.5 cm, 25 cm, 27.5 cm, 30 cmhe Ronchi ruling at =22.5 cm. a) Experimental results (dashed

and 32.5cm. curve) and b) theoretical results (solid curve).
The detector was fixed at a distan@e=10 cm for the
power method and a) =1.43 m in order to determine the In Fig. 8, the normally diffracted energl(0°) obtained

normally diffracted energy (0°). The detector scanned the experimentally is given as a function of the beam position,
beam wave normaly with a resolution given by 1100 steps byand also forz =22.5 cm as in Fig. 7. The proposed method
1 mm. The signal provided by this detector and its lateragives the beam widtii.; ;) = 0.157 mm. Note that the rel-
displacement was processed and controlled with a LabVievative error betweetpower and Ly (g is 6.54%. In the same
program. figure we have compared the experimental results with those
obtained by means of Eq. (9).
In Fig. 9, the beam widths obtained with the two methods
7. Comparison of the two methods are plotted as functions of the distanckeetween the lens and
the Ronchi ruling. We observe that the results obtained with
The experimental results obtained when the beam wave e two Ronchi ruling methods are very close. We conclude
scanned by the Ronchi ruling at the positior=22.5 cm are  that the two analyzed methods, which do not produce identi-
given in Fig. 7. We have plotted the total transmitted power
as a function of the position. Also, in this figure we have
added the theoretical results obtained by means of Eq. (10)‘>‘
In this case the experimental power method gives the bean 20 5 1
Width Lpower = 0.168 mm. 2
The observed discrepancy between the theoretical and ex% 41
perimental results may be the consequence of several source2
of error such as the non-uniform movement of the detector &

theoretical

and the fact that the beam emitted by the laser is not a trulyE 31
Gaussian beam. > ol
=
Polarizer Lens Ronchi ruling E
Detector s 1 T ex : al
periment
Z
0 - : - : - :
~—
o — 0.6 0.8 1 1.2 1.4
TEM,, beam Beam Position (mm)
FIGURE 8. Normally diffracted energy (arbitrary units) as a func-
63 em Z Q tion of the beam position when the Gaussian beam is scanned by
the Ronchi ruling at = 22.5 cm. a) Experimental results (dashed
FIGURE 6. Our experimental configuration. curve) and b) theoretical results.
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FIGURE 9. The beam width obtained with the two methods as a
function of the distance between the lens and the Ronchi ruling. Acknowledgment

with the experiment. Itis interesting to observe Fig. 4 of Ref.
3, where the beam width is measured by means of four meth-
ods, the knife edge method, the slit method, a method based
on the second moment or variance, and the so-cdliéd/,
method.

8. Conclusions

Two independent methods for Gaussian spot size measure-
ment based on a Ronchi ruling are experimentally compared.
One of them considers the total transmitted power, and the
other one the normally diffracted energy. To our knowledge,
the two methods had not been tested previously by experi-
ment. We show that the beam widths obtained by the two
methods are very close.

cal results, are sufficiently close to be useful in the determinaThe authors acknowledge support from Coimisde Opera-
tion of the Gaussian beam diameters. To our knowledge, thisiones y Fomento de Actividades A&dicas del Instituto
is the first time that these two Ronchi methods are confronteolitecnico Nacional.
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