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Diffraction of beams by Ronchi rulings: comparison between two methods for
gaussian spot size measurements
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e-mail: omatax@yahoo.com
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Two independent methods for Gaussian spot size measurement are experimentally compared. The two methods use a Ronchi ruling where
the transmitted total power and the normally diffracted energy are considered. We show that the beam widths obtained by these methods are
very close. The theory of diffraction used is based on the Rayleigh-Sommerfeld integral equation with Dirichlet condition.
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Comparamos experimentalmente dos métodos para la determinación del ancho de una haz gauseano. Los dos métodos emplean una red de
difracción de Ronchi donde se considera la energı́a total transmitida y la energı́a difractada normalmente. La teorı́a de la difraccíon utilizada
esta basada en la ecuación integral de Rayleigh-Sommerfeld con las condiciones de Dirichlet.
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1. Introduction

For most applications, the size to which a laser beam can
be focused is an important fact. For instance, the optical
data storage in compact discs requires beams with a 1-µm
diameter[1]. Several methods for measuring Gaussian beam
diameters have been proposed[2-5]. For 0.6-mm or longer
Gaussian beam diameters, experimental comparisons among
the scanning knife edge method, the scanning slit method, a
method based on the second moment or variance, and the so
calledTEM00 method have been considered by Wright[3],
with the conclusions that although these methods do not pro-
duce identical results they are sufficiently close.

Some other interesting and powerful theoretical methods
have been proposed, based on the properties of the light trans-
mitted by rulings. Thus, Ronchi rulings[6] (grating with al-
ternate transparent and opaque regions per period) could be
used to estimate the 1/e Gaussian beam radiusr0, as long as
0.2 < r0/d < 1.2, whered is the period of the ruling. The
lower or upper limits fixed by Ronchi rulings are consider-
able improved by means of Ronchi-sinusoidal[6,7], Ronchi-
triangular[6,7], periodic exponential rulings[8,9], and aperi-
odic gratings[10].

In all the above mentioned techniques using rulings[6-10]
the beam diameters have been determined by means of the
maximum and the minimum transmitted power. However,
an exception is given in Ref. 11, where two different meth-
ods based directly on the diffraction properties of Gaussian
beams through a lamellar grating have been proposed. In the

first method, attention is focused on the normally diffracted
energy to the grating at maximum and minimum transmitted
power. In the second one, the beam diameter is obtained from
the angular position of the first minimum of the diffraction
pattern determined at minimum transmitted power. In pass-
ing we mention that, to our knowledge, the first time that the
normally diffracted energy was proposed in order to deter-
mine the width spot of Gaussian beams was in Ref. 4, where
a single slit was used, and this method was experimentally
tested in Ref. 12.

Experimental comparisons between two different meth-
ods based on Ronchi rulings are given. One method con-
siders the transmitted power, and the other one the normally
diffracted energy to the ruling, both of them under conditions
of maximum and minimum transmitted power. The theory of
diffraction is obtained from the two-dimensional Rayleigh-
Sommerfeld integral equation[4,11,13,14] with Dirichlet
conditions; this theory can be applied to the cases of Gaus-
sian beams, Hermite-Gaussian beams, and to other general
beams.

2. Diffraction theory

We have a ruling made of alternate transparent and opaque
zones. The period of the ruling isd = `1 + `2, where`1 is
the width of the opaque zone and`2 the width of the trans-
parent zone. We fixed a cartesian coordinate system with
the Oz-axis parallel to the ruling as shown in Fig. 1. The
ruling is illuminated by a beam wave independent of thez
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coordinate (cylindrical incident wave). The time dependence
exp(−i ω t) is used and omitted in the following explanation.

Let E(x), Ei(x), andt(x) be the transmitted field, the in-
put field or incident field, and the grating transmittance func-
tion, respectively, related as follows:

E(x) = t(x)Ei(x). (1)

From this equation, the fieldE(x) just below the ruling can
be obtained. Since we are interested in incident beam waves
of finite cross section, then the functionE(x) will be differ-
ent from zero within a finite interval[a, b] and zero outside
it (or very close to zero). The functiont(x) is null in the
opaque zones, and has the unit value in the transparent zones.
However, it is interesting to note that the theory presented in
this paper can be utilized not only for the particular case of
Ronchi rulings but also for holographic gratings.

From the field E(x), it is possible, by means of
the two-dimensional Rayleigh-Sommerfeld integral equation
[4,11,13,14] with Dirichlet conditions, to get the total field
E(x0, y0) at any point(x0, y0) below the grating

E(x0, y0) =
i

2

∞∫

−∞
E(x)

∂

∂ y0
H1

0 (kr)dx

=
i

2

∞∫

−∞
t(x)Ei(x)

∂

∂ y0
H1

0 (kr)dx, (2)

wherek = 2π/λ, with λ the wavelength of the incident radi-
ation,r2 = (x − x0)2 + y2

0 with P (x0, y0) the observation
point as illustrated in Fig. 1, andH1

0 is the Hankel function
of the first kind and order zero.

From Eq. (2), the far field can be obtained by looking at
the asymptotic behavior of the fieldE whenkr À 1. In this
approximation, the Hankel function is given by

H1
0 (kr) ≈

√
2/π kr exp(iπ /4) exp(ikr); (3)

then, the partial derivative in Eq. (2) is given by

FIGURE 1. A Ronchi ruling made of alternate opaque and trans-
parent zone of widths̀1 and`2, respectively. The slits are parallel
to theOz axis.
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√

2k/π exp(−iπ/4)
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r
1/2
0

cos θ; (4)

where for our ruling we have usedr ≈ r0 in the denomina-
tor, r ≈ r0[1− (xx0/r2

0)] in the exponential,sin θ = x0/r0,
andcos θ = −y0/r0 (see Fig. 1). It is important to note that,
in taking the partial derivative of Eq. (3), we have retained
the1/r1/2 term and neglected the1/r3/2 term. After substi-
tuting Eq. (4) into Eq. (2), we get the expression for the far
field

E(x0, y0) = f(θ) exp(ikr0)/
√

r0, (5)

which is the expression of a cylindrical wave with the oblique
factorf(θ) given by:

f(θ) =
√

k exp(−iπ/4) cos θ Ê(k sin θ), (6)

with Ê(α) the Fourier transform ofE(x)

Ê(α) =
1√
2π

+∞∫

−∞
E(x) exp(−iα x)dx

=
1√
2π

+∞∫

−∞
t(x)Ei(x) exp(−iα x)dx (7)

From the oblique factorf(θ) given in Eq. (6), we can ob-
tain the total fieldE(x0, y0) at any point(x0, y0) below the
grating by means of Eq. (5). The intensityI(θ) scattered at
an angleθ (see Fig. 1) is given byC |f(θ)|2, whereC is a
constant which will be taken as unity since we are interested
only in relative quantities, so that we have

I(θ)=
1
2π

k cos2 θ

∣∣∣∣∣∣

+∞∫

−∞
t(x)Ei(x) exp(−ik sin θx)dx

∣∣∣∣∣∣

2

. (8)

In the following explanation, our attention is focused
on the transmitted powerPT and on the intensityI(00)
diffracted normally to the screen, which will be denoted by
E. The normally diffracted energyE by the ruling is calcu-
lated from Eq. (8) by

E =
k

2π

∣∣∣∣∣∣

+∞∫

−∞
t(x)Ei(x)dx

∣∣∣∣∣∣

2

, (9)

and the transmitted powerPT is obtained as follows:

PT =

π/2∫

−π/2

I(θ)dθ (10)
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3. Some applications

3.1. Incident Hermite-Gaussian beams

As an application of the results given above, we now consider
the particular case of an incident Hermite-Gaussian beam on
a Ronchi ruling of periodd = `1+`2, wherè 1 is the width of
the opaque zone and`2 the width of the transparent zone. For
Hermite-Gaussian beams at oblique incidenceθi, the spectral
amplitudeA(α) is given by [11]

A(α) =
L

2
(i)mHm

[
−L

2
q1(θi)

]
q2(θi)

× exp [i(−αb + βh)] exp(−q1(θi)2L2/8), (11)

where

q1(θi) = α cos θi − β sin θi

and

q2(θi) = cos θi + (α/β) sin θi.

The position of the incident Hermite-Gaussian beam with re-
spect to theOy axis is fixed by the parameterb. This parame-
ter enables us to displace the beam wave along the screen. We
denote byL the local1/e-intensity Gaussian beam diameter
(theL-spot diameter). The coordinates(b, h) fix the position
of the beam waist. These Hermite-Gaussian beams can be ex-
perimentally generated by means of end-pumped solid-state
lasers [15].

In Fig. 2, the diffraction patterns of Hermite-Gaussian
beams is plotted at the angle of incidenceθi = 30◦, for
m = 1, 2. The parameters used are`1=0.5, `2 = 1.0,
L = 10/

√
2, λ = 0.1, and the position of the center of the

beam waist is fixed at the point(b, h)=(20.0,4.0). It is inter-
esting to compare these results for a Ronchi ruling with those
given in Fig. 7 of Ref. 14 where the diffraction of Hermite-
Gaussian beams for a slit were considered.

The diffraction pattern of Fig. 2 shows the typical or-
ders resembling those of the diffraction of plane waves by a
grating, except that these are wider. We compared the an-
gular positions of the orders seen in Fig. 2 with those cal-
culated directly from the grating equation and a very good
agreement was found. In fact, if we denote byn the sev-
eral orders, byN our numerical results, and byGE the re-
sults obtained by means of the grating equation, we have
(n, N, GE) = (−4, 13.5, 13.49), (-2, 21.50, 21.51), (-1,
25.66, 25.67), (0, 30, 30), (1, 34.53, 34.51), (2, 39.30, 39.29),
(4, 50.04, 50.05). We note that at the maxima (orders), one
dip appear form = 1 and two dips appear form = 2; in the
general casem dips appear at the maxima for a givenm.

3.2. 3.2 Influence of the transparent and opaque zones

Now we go to consider the intensity ratioK defined as

K = Emin/Emax, (12)

FIGURE 2. Diffraction patterns of Hermite-Gaussian beams at the
angle of incidenceθi = 30◦ for m = 1, 2, when `1 = 0.5,
`2 = 1.0, L = 10/

√
2, λ = 0.1, and(b, h) = (20.0, 4.0).

and the power ratioP given by

P = Pmin/Pmax (13)

for a Ronchi ruling of periodd = `1 + `2, wherePmin and
Pmax are the minimum and maximum transmitted power, and
Emin andEmax are the minimum and maximum values of the
normally diffracted energyI(00).

It is interesting to know the influence of the width of the
opaque zone (`1) and transparent zone (`2) on the intensity
ratio K and the power ratioP . For this, in Fig. 3 and Fig. 4
the ratiosP andK are plotted, respectively, as a function of
the parameterq = `1/`2, for 0.066 ≤ q ≤ 15. We assume a
normally incident Gaussian beam on the Ronchi ruling, with
L = 450/

√
2 µm, d = 320 µm, andλ = 0.633 µm. From

these figures, we find thatK andP have a monotone decreas-
ing behavior whenq = `1/`2 is increased.
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FIGURE 3. The power ratioP is plotted as a function of the pa-
rameterq = `1/`2. We assume a normally incident Gaussian beam
on the Ronchi ruling, withL = 450/

√
2 µm, d = 320 µm, and

λ = 0.633 µm.

FIGURE 4. The intensity ratioK is plotted as a function of the ratio
q = `1/`2. Same parameters as in Fig. 3.

In both figures, the results for an ideal Ronchi ruling are
indicated withq = 1.0, and also the results forq = 1.162
are shown. For these particular cases, the values obtained are
very similar; in fact, we have found that the relative error be-
tween both results is better than1.2%. This conclusion will
be important in the section on experimental results.

4. Definitions of Gaussian beam width

As noted in Ref. 3, the most common definition of width for
a Gaussian modeTEM00 is given by the width at which the
beam intensity drops to1/e2 of the peak value. This value
is denoted byLe−2 . However, when the intensity drops to
1/e is also used and the corresponding beam width will be
denoted byL. In particular, in this paper the value1/e will
be used from here on.

We assume the following intensity distribution of the in-
cident Gaussian beam

I(x) = Ip exp[−4x2/L2], (14)

whereI(x) is the intensity as a function of the coordinatex,
Ip is the peak intensity at the center of the beam, andL is the
beam width.

There are other definitions based on the energy enclo-
sure [3]. For instance, the beam width can be calculated us-
ing the diameter that passes 86.5% of the energy, in this case
the beam width will be denoted byL86.5. As was pointed
in Ref. 14 the relationship betweenL andL86.5 is given by
means of the linear relationshipL86.5 = 1.057L.

5. Two beam width methods

Now we go on to establish the two methods used with a
Ronchi ruling in order to determine the Gaussian spot size.
But before this, it is necessary to consider the Ronchi rul-
ing utilized in the experimental set up in the next section. In
the real grating used, the transparent and opaque zones have
different widths, 148µm and 172µm, respectively. Then,
for this grating we haveq = 1.162 with the period given by
d = 320 µm. In addition, we have a He-Ne laser operating
at 633nm. Then, from the last result of Sec. 3.2, we conclude
that the results obtained with this grating and those obtained
from an ideal Ronchi ruling withq = 1.0 will be very similar.

In Fig. 5, the intensity ratioK and the power ratioP are
plotted as functions of the normalized beam widthL/`2 for
a Ronchi ruling of periodd. These results ofK andP are
given for`1 = 172 µm and`2 = 148 µm; however, from the
considerations given above, these results are very similar to
those given in Fig. 3 of Ref. 11 forq = 1.0.

We mention two important facts. Firstly, the results given
in Fig. 5 are independent of the wavelength. Secondly, we
have verified that the values ofP are identical to those ob-
tained for a two-dimensional Gaussian beam [6] when the
spot is displaced normally to the slits. From these facts we
can conclude that the results of Fig. 5 provide us with a
method for determining the beam width.

FIGURE 5. Intensity ratioK = Emin/Emax (dashed curve) and
power ratioP = Pmin/Pmax (solid curve) as functions of the nor-
malized beam widthL/`2, for a Ronchi ruling withq = 1.162.
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From Fig. 5 we get that the behavior ofP andK are very
similar but not identical, and that the beam widthL can be
determined as long as0.2 < L/d < 1.5, whered is the pe-
riod of the ruling. The beam widthL determined by P- and
K-graphs will be denoted byLpower andLI(0), respectively.

6. Experimental set-up

A He-Ne laser operating at 633nm gives aTEM00 beam of
diameter of about 1mm. This beam was passed through a
linear polarizer in order not to saturate a RCA 30807 silicon
detector. After the polarizer, the beam was propagated 6.5
cm and it was passed through a lens of focal length 25 cm.
The experimental configuration is illustrated in Fig. 6.

The Ronchi ruling was placed at eight locations in the
vicinity of the lens focus. The Ronchi ruling used was an
Edmond Scientific ruling of periodd = 320 µm. The set of
distances between the lens and the Ronchi ruling are given by
z =15 cm, 17.5 cm, 20 cm, 22.5 cm, 25 cm, 27.5 cm, 30 cm,
and 32.5 cm.

The detector was fixed at a distanceQ =10 cm for the
power method and atQ =1.43 m in order to determine the
normally diffracted energyI(00). The detector scanned the
beam wave normaly with a resolution given by 1100 steps by
1 mm. The signal provided by this detector and its lateral
displacement was processed and controlled with a LabView
program.

7. Comparison of the two methods

The experimental results obtained when the beam wave is
scanned by the Ronchi ruling at the positionz =22.5 cm are
given in Fig. 7. We have plotted the total transmitted power
as a function of the position. Also, in this figure we have
added the theoretical results obtained by means of Eq. (10).
In this case the experimental power method gives the beam
width Lpower = 0.168 mm.

The observed discrepancy between the theoretical and ex-
perimental results may be the consequence of several sources
of error such as the non-uniform movement of the detector
and the fact that the beam emitted by the laser is not a truly
Gaussian beam.

FIGURE 6. Our experimental configuration.

FIGURE 7. Transmitted power (arbitrary units) as a function of
the beam position when the Gaussian beam wave is scanned by
the Ronchi ruling atz =22.5 cm. a) Experimental results (dashed
curve) and b) theoretical results (solid curve).

In Fig. 8, the normally diffracted energyI(00) obtained
experimentally is given as a function of the beam position,
and also forz =22.5 cm as in Fig. 7. The proposed method
gives the beam widthLI(0) = 0.157 mm. Note that the rel-
ative error betweenLpower andLI(0) is 6.54%. In the same
figure we have compared the experimental results with those
obtained by means of Eq. (9).

In Fig. 9, the beam widths obtained with the two methods
are plotted as functions of the distancez between the lens and
the Ronchi ruling. We observe that the results obtained with
the two Ronchi ruling methods are very close. We conclude
that the two analyzed methods, which do not produce identi-

FIGURE 8. Normally diffracted energy (arbitrary units) as a func-
tion of the beam position when the Gaussian beam is scanned by
the Ronchi ruling atz = 22.5 cm. a) Experimental results (dashed
curve) and b) theoretical results.
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FIGURE 9. The beam width obtained with the two methods as a
function of the distancez between the lens and the Ronchi ruling.

cal results, are sufficiently close to be useful in the determina-
tion of the Gaussian beam diameters. To our knowledge, this
is the first time that these two Ronchi methods are confronted

with the experiment. It is interesting to observe Fig. 4 of Ref.
3, where the beam width is measured by means of four meth-
ods, the knife edge method, the slit method, a method based
on the second moment or variance, and the so-calledTEM00

method.

8. Conclusions

Two independent methods for Gaussian spot size measure-
ment based on a Ronchi ruling are experimentally compared.
One of them considers the total transmitted power, and the
other one the normally diffracted energy. To our knowledge,
the two methods had not been tested previously by experi-
ment. We show that the beam widths obtained by the two
methods are very close.
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