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Reciprocity relations for Bollmann’s o-lattice
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A reciprocity relation for Bollmann’s O-lattice is introduced. This result completes the existing Grimmer’s reciprocity results between
coincidence sites and displacement shift complete lattices. We show that the lattice generated bya∗i − b∗i (i = 1, 2, 3) is reciprocal to the
O-lattice. This result, supported by Multislice calculations, indicates that it is possible to observe the O-lattice under an electron microscope
using annular apertures, thus allowing the study of strain fields existing in interfaces or between a thin film growing onto a crystalline
substrate.
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Se presenta una relación de reciprocidad para las redes O de Bollmann. Este resultado complementa el obtenido por Grimmer quien estableció
relaciones de reciprocidad entre las redes de coincidencia y las redes DSC. Demostramos que la red generada pora∗i − b∗i (i = 1, 2, 3) es
rećıproca a la red O. Este resultado, apoyado en simulaciones por el método multicapas, indica que podrı́a ser factible observar la red O en
el microscopio electŕonico usando aperturas anulares, permitiendo con ello el estudio de los campos de esfuerzos en interfaces o entre una
peĺıcula delgada y el sustrato sobre el que crece.

Descriptores:Redes O; fronteras de grano.

PACS: 61.72.Mm; 68.37-d

1. Introduction

For the geometric analysis of the interfaces between crystals,
several geometrical constructs have been introduced, among
which the most useful are, probably, the Coincidence Site lat-
tice (CSL), the DSC lattice, and Bollmann’s O-lattice, which
can be quickly defined as follows:

• Given two latticesL1 andL2, the CSL is the intersec-
tion lattice,L1 ∩ L2 [1]. In other words, the CSL is
the lattice formed by all points in both lattices. In this
communication, it will be assumed that the two lattices
have a rational orientation relationship, so the CSL is a
discrete lattice.

• The DSC lattice is defined as the sum of the lattices
(L1 + L2 = {a + b | a ∈ L1 , b ∈ L2}). In other
words, the DSC lattice is the lattice formed by vectors
that are sums (or differences) of points in the two lat-
tices.

• The Bollmann’s O-lattice [2], which is formally de-
fined below, represents points of a good geometrical
fit between the two lattices.

The CSL has been studied, among others, for lattices and
modules by Baake and Pleasants [3], by Baake [4,5] and also
by Warrington, Radulescu and Lück [6] and Radulescu [7]. A
useful review of O-lattices has been presented by Smith and
Pond [8].

Many works on grain boundaries use these concepts in
various ways, but the main objective has been to provide a
geometrical background to aid the solution of a still unre-
solved fundamental problem: to find a relation between in-

ternal structure (grain boundary crystallography) and physi-
cal properties.

Along these lines, Grimmer [9] showed that the DSC and
the CSL satisfy certain reciprocity relations. Roughly speak-
ing, the CSL and the DSC are reciprocal to each other (a more
precise formulation is given below). This is a fundamental
result since it relates observable (diffraction) information to
structural properties of interfaces.

In the present work (restricting the attention basically to
two dimensions since our main interest lies in boundaries
and epitaxy), we show that reciprocity relations equivalent
to those found by Grimmer exist for O-lattices. These re-
lationships show that O-lattices, or rather, regions of good
and bad fit between two crystals can be directly observed un-
der the electron microscope. This is important not only in
the field of interfaces, but also in problems of epitaxy and in
the study of the strain fields existing in thin films growing
on crystalline substrates. Multislice simulations are shown
to illustrate this point. Also, the reported relationships open
up the possibility of experimentally confirming or discarding
models of interface structure.

2. O-lattices

LetL1 andL2 be two three-dimensional lattices with a com-
mon origin, spanned byα={a1,a2,a3} andβ={a4,a5,a6},
respectively.

Given a vectorP ∈ R3, there exists a uniquel1 in L1 and
numbers0 ≤ αi < 1, (i = 1, 2, 3) such that

P = l1 +
3∑

i=1

αi ai.
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The (integer) coordinates ofl1 are called “external coor-
dinates ofP” (with respect toL1) and the numbersαi,
(i = 1, 2, 3) are called “internal coordinates ofP” (with re-
spect toL1). The external and internal coordinates ofP with
respect toL2 are defined in a similar way [2, 8]. A point
(or vector)O is called an O-point if it has the same internal
coordinates with respect to bothL1 andL2.

If A is a linear mapping such thatA(ai) = ai+3,
(i = 1, 2, . . . , 3), then it can be shown [2, 8] thatO is an O-
point if and only if it satisfies

(I −A−1)O = l1 (1)

for somel1 ∈ L1 or, equivalently,

(I −A)O = l2 (2)

for somel2 ∈ L2; I represents the identity mapping. If the
inverse of(I−A) [or, equivalently, the inverse of(I−A−1)]
exists, then the O-points form a point lattice.

It is important to notice that the O-lattice depends on
L1,L2 and a choice of basesα andβ or, alternatively, a choice
of a linear transformationA mappingL1 intoL2.

3. Reciprocity relations forL1+L2 andL1∩L2

In what follows, letL1 andL2 be the two lattices spanned by
α = {a1, a2, a3} andβ = {b1, b2, b3}, respectively, and let
L∗1 andL∗2 be the corresponding reciprocal lattices spanned
by α∗ = {a∗1, a∗2, a∗3} andβ∗ = {b∗1, b∗2, b∗3}.

Grimmer [9] has shown that:

L1 + L2 = (L∗1 ∩ L∗2)∗ (3)

L1 ∩ L2 = (L∗1 + L∗2)∗

This result is absolutely general and it does not depend at all
on the choice of lattice bases or structure matrices.

4. A reciprocity relation for the O-lattice

Theorem: Let L1 and L2 be two lattices spanned by
α = {a1, a2, a3} andβ = {b1, b2, b3}, respectively, and let
the corresponding reciprocal latticesL∗1 andL∗2 be spanned
by α∗ = {a∗1, a∗2, a∗3} andβ∗ = {b∗1, b∗2, b∗3} respectively. Let
O(L1,L2) be the O-lattice generated byL1 andL2 (and with
respect to the given bases). IfO∗(L1,L2) is the lattice recip-
rocal toO(L1,L2), we have that

O∗(L1,L2) = gen(a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3)

(heregen(a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3) is the lattice generated

by {a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3}).

Proof: Let P ∈ O(L1,L2), so

P = h1a1 + h2a2 + h3a3 + x1a1 + x2a2 + x3a3

= h′1b1 + h′2b2 + h′3b3 + x1b1 + x2ba2 + x3ba3,

whereh1, h
′
1, h2, h

′
2, h3 andh′3 are integers (external coordi-

nates) andx1, x2, x3 ∈ [0, 1) (internal coordinates). Then,
for i = 1, 2, 3:

P ·(a∗i − b∗i )

=P · a∗i − P · b∗i
=(h1a1 + h2a2 + h3a3 + x1a1 + x2a2 + x3a3) · a∗i
− (h′1b1 + h′2b2 + h′3b3 + x1b1 + x2b2 + x3b3) · b∗i

=hi + xi − (h′i + xi) = hi − h′i;

so
P · (a∗i − b∗i ) = hi − h′i ∈ Z,

meaning that

P ∈ gen(a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3)

∗,

wheregen(a∗1− b∗1, a
∗
2− b∗2, a

∗
3− b∗3)

∗ is the lattice reciprocal
to gen(a∗1 − b∗1, a

∗
2 − b∗2, a

∗
3 − b∗3).

Conversely, ifP ∈ gen(a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3)

∗, then for
i = 1, 2, 3

P · (a∗i − b∗i ) ∈ Z;

and if

P = h1a1 + h2a2 + h3a3 + x1a1 + x2a2 + x3a3

= h′1b1 + h′2b2 + h′3b3 + x′1b1 + x′2ba2 + x′3ba3

with h1, h
′
1, h2, h

′
2, h3 andh′3 integers (external coordinates),

and
x1, x2, x3, x

′
1, x

′
2, x

′
3 ∈ [0, 1)

(internal coordinates) we have that

P · a∗i = hi + xi

P · b∗i = h′i + x′i

and

P · (a∗i − b∗i ) = (hi − h′i) + (xi − x′i) ∈ Z,

implying that
(xi − x′i) ∈ Z

and
−1 < (xi − x′i) < 1

and, finally, that
xi = x′i;

so
P ∈ O(L1,L2),

thus establishing thatO(L1,L2) andgen(a∗1−b∗1, a
∗
2−b∗2, a

∗
3−b∗3)

are reciprocal to each other.
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5. A matrix approach

Here we provide a simple, alternative, matrix proof of the
fact that, ifO(L1,L2) is the O-lattice generated byL1 and
L2 (with respect to the given bases), and ifO∗(L1,L2) is the
lattice reciprocal toO(L1,L2), then we have, as before, that

O∗(L1,L2) = gen(a∗1 − b∗1, a
∗
2 − b∗2, a

∗
3 − b∗3).

The structure matrixS for lattice L1 is defined as that
matrix having as columns the coordinates of the generators
{a1, a2, a3}with respect to a given, fixed, orthonormal frame
of reference. The structure matrixS′ for L2 is defined analo-
gously.

It is well known that the structure matrices for the recip-
rocal lattices are given byS∗ = (ST )−1 andS′∗ = (S′T )−1,
respectively; hereST denotes the transpose matrix.

If the matrix A maps lattice one into lattice two (so
S′ = AS), Bollmann’s basic equation states that the struc-
ture matrixO for the O-lattice satisfies (provided the inverse
exists, when it doesn’t pseudoinverses can be used as shown
in [11])

O = (I −A−1)−1S

so that

OT (−1) = (I −A−1)T ST (−1)

= (I −AT (−1))ST (−1) (4)

and, callingS∗ = ST (−1) andO∗ = OT (−1), we have that

O∗ = (I −AT (−1))S∗

= S∗ −AT (−1)S∗. (5)

However, ifS′ = AS then

S′T (−1) = S′∗ = AT (−1)ST (−1) = A∗S∗

and
O∗ = S∗ − S′∗

thus proving our theorem.
In Figs. 1 and 2 we illustrate this result graphically for

two-dimensional lattices. In Fig. 1 one can appreciate two
square lattices; the O-lattice is also shown. In Fig. 2 the cor-
responding reciprocal lattices are shown together with the ba-
sis vectors for all the lattices involved.

6. Observing O-lattices under the electron mi-
croscope

Consider two crystals on top of each other with latticesL1

andL2. Under an electron microscope, the diffraction pat-
tern will show spots corresponding toL∗1 andL∗2, and also
some spots fromL∗1 + L∗2 (i.e. double diffraction spots). If
an annular aperture is placed so that it includes spots of the
form ±a∗i ,±b∗i (i = 1, 2), then the resulting image will be
basically (i.e. in a kinematical approximation) a mapping of
the O-lattice.

FIGURE 1. Two identical square lattices rotated36.9 degrees
with respect to each other (Σ5). The corresponding O-lattice is
also displayed with shaded circles. Each shade corresponds to
a set of internal coordinates, black={0, 0} CSL), grey={0, 1/2},
white={1/2, 1/2}. The basis vectors forL1, L2 and the O-lattice
are shown.

FIGURE 2.

The previous statement calls for further clarification.
There will be interference between beamsai and bj

(i, j = 1, 2), and we have the same situation as when observ-
ing the beating between various waves. However, the modu-
lations with greater wavelengths (analogous to the beating)
correspond to the combinationsai− bj of shortest length.
These will dominate the image, so that we will “see” one
of the possible O-lattices; in a way we have selected one of
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FIGURE 3. Multislice simulation (shown in reversed contrast) of
two identical square lattices rotated36.9◦ with respect to each other
(Σ5). The dark wide spots mark the positions of O-lattice points.

them. This is completely analogous to what one observes
in the so-called Moiŕe patterns; actually, Bollmann was well
aware of the close relationship between O-lattices and Moiré
patterns [2].

In order to illustrate this, we have used the Multislice pro-
gram SimulaTem [10] to compute diffraction patterns and im-
ages from two superimposed, two-dimensional square crys-
tals of gold misoriented36.87 degrees in order to simulate
the well knownΣ5 CSL. We have used an annular aperture,
admitting the strongest reflections from both crystals having
wave-vectors between 0.2̊A−1 and 0.3Å−1.

The resulting image for Scherzer defocus is shown in
Fig. 3 together with a purely geometrical representation of
the O-lattice, making clear a complete agreement.

It is therefore possible to directly observe O-lattices using
annular apertures.

Another case of importance is that of epitaxy; in Fig. 4 we
again show two square lattices, but this time one of them has
a lattice parameter10 per cent larger than the other. Again the
O-lattice can be clearly resolved with the annular aperture.

FIGURE 4. Multislice simulation of two parallel square lattices
with lattice parameters differing by10 per cent. An annular aper-
ture was used (the contrast has been reversed for purposes of clar-
ity).

7. Conclusions

We have extended Grimmer’s reciprocity results [9] between
CSL and DSC lattices. In this paper, we have presented a
new reciprocity relation for the O-lattice in which the recip-
rocal lattice to the O-lattice is the lattice generated bya∗i −b∗i ,
(i = 1, 2, 3).

The similarities and differences between the CSL and the
O-Lattice can be stated succinctly by saying thatP is the in
O-lattice iff P · (a∗i −b∗i ) ∈ Z for all i = 1, 2, . . . , n, whereas
P is in the CSL iffP · (a∗ − b∗) ∈ Z for all a ∈ L∗1, b ∈ L∗2

According to our results, supported by Multislice calcu-
lations, it seems possible to observe the O-lattice under an
electron microscope using annular apertures, which offers the
possibility of studying the strain fields generated during thin
film growth on a crystalline substrate.
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