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Improved bounds for the effective energy of nonlinear 3D conducting composites
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Recent variational inequalities of Talbot are used to improve the lower and upper bounds for the effective energy of nonlinear 3-D two-phase
conducting composites. The effective conductivity of the linear isotropic two-phase periodic conducting composite used as comparison
material in the inequalities is computed through an asymptotic homogenization model by finite element analysis of the local problem on
the three-dimensional cubic unit cell with one spherical inclusion. A brief mathematical description of the numerical method is included.
Numerical calculations of the effective conducting linear property are compared with Bruno’s bounds. It shows that the numerical solution
for the limit cases of superconducting and empty inclusions improves the bounds when the inclusion volume fraction is greater than about
0.4. It is natural to expect an improvement in the whole volume fraction of Talbot’s bounds for nonlinear conducting composites when the
numerical calculation is used instead of bounds for the linear comparison problem, as is the case here.
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Las cotas inferior y superior para la energı́a efectiva de un compuesto conductor no lineal, tridimensional bifásico son mejoradas usando
desigualdades variacionales de Talbot. La conductividad efectiva del compuesto de comparación períodico, bif́asico, lineal, usado en las
desigualdades, se obtiene resolviendo los problemas locales que aparecen al aplicar el método de homogeneización asint́otica, mediante un
ańalisis de elemento finito, tomando como celda unitaria un cubo con una inclusión esf́erica. Los ḿetodos nuḿericos empleados se describen
brevemente. Los resultados numéricos para la propiedad efectiva del compuesto de comparación se comparan con las cotas de Bruno. Se
observa que una de las cotas está muy cerca de la solución nuḿerica, para los casos lı́mites de inclusíon superconductora y vacı́a, y cuando la
fracción voluḿetrica de la inclusion es mayor que0.4, ésta se aleja. Es natural entonces esperar una mejora, en todo el rango de fracciones
volumétricas de las cotas de Talbot para compuestos conductores no lineales, cuando se usan los cálculos nuḿericos, en lugar de las cotas
para el compuesto de comparación lineal, como es aquı́ el caso.

Descriptores: Cotas variacionales; propiedades efectivas; compuestos conductores; método de homogeneización asint́otica; ḿetodo de
elemento finito.
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1. Introduction

The derivation of the average behaviour of a heterogeneous
medium based on knowledge of its components is a very im-
portant topic because of the increasing use of reinforced com-
posite materials in many applications (see, for instance, the
recent review given in Refs. 14 and 28). This work considers
the determination of tighter bounds for the effective energy
of a nonlinear conducting composite material.

The general problem related to the calculation of global
properties (or effective coefficients) has been the object of
study by many researchers, for random media or for media
distributed in a particular way and for linear and nonlinear
composites. In Ref. 11 the best possible bounds on the effec-
tive conductivity were found for linear isotropic two-phase
composites with perfect contact at the interface, providing
only volume fraction information of the phases. In Refs. 29
and 25, these variational principles were generalized and de-
veloped to nonlinear problems. In Ref. 19, a method is in-
troduced to estimate bounds for the effective properties of a
nonlinear composite using information of the effective prop-

erties of a linear comparison composite with the same mi-
crostructure. In Ref. 9, very good approximations for global
energy of nonlinear conducting composites were obtained by
combining the variational principles of Ref. 19, using the
prediction of Ref. 25 for the comparison material. Improved
new bounds for nonlinear dielectric composites were derived
in Ref. 26 and applied to two-phase matrix inclusion com-
posites by combining their variational inequalities with the
bounds derived in Ref. 4.

The goal of the present work is to obtain better lower
and upper bound approximations of the effective energy for
a nonlinear two-phase conducting composite. Variational
inequalities reported in Ref. 26 combined with the results
from the effective properties of linear conducting composites
are used. The Asymptotic Homogenization Method (AHM)
based on two-scale asymptotic expansions [2, 3, 15, 23], and
the Finite Element Method (FEM) [12,30], are used to calcu-
late the effective conductivity of a two-phase 3-D composite
material having a periodic structure consisting of a sphere im-
mersed in a cube. This kind of medium requires special treat-
ment because of the rapid variation of its materials properties.
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The AHM is a rigorous mathematical technique for modeling
the global behaviour of these types of heterogeneous media
(see, for instance, Refs. 7 and 17). By means of this method,
the system of partial differential equations with rapidly os-
cillating coefficients, governing the medium occupied by the
composite, is transformed into another one without this vari-
ation. The coefficients in the new problem are the effective
coefficients, and their determination depend on the solution
of the so-called problems on the cell or local problems. The
solution of the local problems have been the subject of many
scientific works. Exact solutions for one-dimensional ho-
mogenization problems (laminate composite) can be seen in
Refs. 5, 8, and 18. Analytical solutions for some particular
two-dimensional homogenization problems such as unidirec-
tional fibrous reinforced composite can be found in the recent
papers [6, 10, 16, 20–22]. These exact solutions are useful as
a control guide to numerical methods applied to problems in-
volving a more complicated geometrical microstructure. In
the above mentioned works, one can find a great variety of
references related to the topic of analytical and numerical ap-
plications to 1-D and 2-D homogenization problems. Exam-
ples from 3-D homogenization problems for linear and non-
linear composites include for instance the methods proposed
in Refs. 27 and 28, and in the recent works [13,24].

The structure of the article is as follows: Sec. 2 gives
improved variational bounds for the effective energy density
properties of a nonlinear conducting composite are stated.
Section 3 describes the formal procedure of the AHM for
obtaining the homogenized equation and the local problem
which allows us to derive the effective coefficient for a pe-
riodic two-phase 3D isotropic conducting medium. Some
comments related to the mathematical justification of this
method are included. Section 4 offers a brief mathematical
description of the numerical method employed and summa-
rizes some aspects related to its computational implementa-
tion. Numerical examples to illustrate the efficiency and im-
portance of the calculations are also shown in this section.
Finally, Sec. 5 is devoted to some concluding remarks.

2. Improved bounds for the effective energy of
nonlinear conducting composites

Following the variational procedure given by Talbot in
Ref. 26, which incorporates microstructural information, im-
proved bounds for the effective energy density properties of
a nonlinear conducting composite will be obtained.

In order to derive variational bounds in composites, a ba-
sic problem is to bound the density of the effective energy of
the composite,W eff , defined by

W eff
(
E

)
= inf

E∈K

∫

R

W (E, x) dx, (1)

where

K = {E : E is R-periodic,E = −∇Ψ,
∫

R

E (x) dx = E},

E = −∇Ψ is the electric field,Ψ is the electric potential,x
is the Cartesian coordinate of the point.

Consider an isotropic composite with n isotropic phases,
and assume that the composite is periodic. For this type of a
composite, the local energy density function is given by

W (E, x) =
n∑

r=1

Wr (E) fr (x) ,

whereWr andfr are the energy and characteristic functions
of the domain occupied by the r-phase, respectively.

A comparison material with energy function̂W will be
introduced. This comparison material has the same microge-
ometry as the nonlinear one. We shall deal with the particular
problem of bounding the effective energy density of a two-
phase 3-D conducting composite, for two cases, consisting
of the following:

a) One isotropic linear phase, the inclusion,
with energy function

WL (E) =
1
2
κL |E|2 ,

and a nonlinear one, the matrix, with energy function

WN (E) =
1
2
κN |E|2 +

1
4
γ |E|4 ,

whereκL, κN andγ are constants.

For the comparison material, the energy functions are

ŴI = WL and

ŴM =
1
2
κ0 |E|2 ,

where the subindicesI, M refer to inclusion and matrix, re-
spectively; by formula (3.9), page 3622 in Ref. 26, the lower
bound for the normalized effective energy density can be de-
rived as

W eff

WL

(
E

)≥ κ0

κL
m

(
κL

κ0

)

+p2

(
κN

κL
− κ0

κL

)2

/
γ

∣∣E
∣∣2

2κL
, (2)

whereκ0 is a free parameter,p2 is the matrix volume fraction,
E is the mean value ofE andm (κL/κ0) is the effective con-
ductivity of a matrix with unitary conductivity and inclusion
with conductivityκL/κ0. Any lower bound for the effective
propertym (κL/κ0) can be substituted in (2) and the best
bound follows by maximizing the right-hand side with re-
spect toκ0. In Figs. 1 and 2, the normalized effective energy
W eff/WL is plotted against the parameterlog2 (S1)

(
S1 =

(
γ

∣∣E
∣∣2

2κL

))
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for κN/κL = 2 and for values of the volume fraction
p1 = 0.1715 andp1 = 0.470597, respectively. In both fig-
ures we compare Talbot’s lower bound (labelled Talbot 99
LB) replacingm (κL/κ0) with the bound of Bruno and the
lower bound obtained using the FEM approximation for the
effective property (labelled FEM LB). We note that a much
improved lower bound of the effective energy near percola-
tion is obtained.

FIGURE 1. Bounds for linear inclusions in a nonlinear matrix with
fixed volume fractionp1 = 0.1715. The curves are labelled: EUB
and ELB are the simple upper and lower bounds obtained in Ref. 26
by substituting constant trial fields into Eq. (1) or in its dual; Talbot
99 LB and FEM LB, are the lower bounds obtained substituting the
effective property into Eq. (2) with the lower bound of Bruno and
the FEM approximation, respectively.

FIGURE 2. As Fig. 1 except thatp1 = 0.470597.

b) A linear matrix containing nonlinear inclu-
sion

In this case the problem considered is that of improving
Talbot’s upper bound Talbot in Ref. 26 by taking

ŴI =
1
2
κ0 |E|2 , ŴM = WL.

From the formula (3.8), page 3622 in Ref. 26, it is pos-
sible to obtain the following optimized upper bound for the
effective energy density normalized by the linear phase en-
ergy:

W eff

WL

(
E

) ≤ m (∞)− (m (∞)− 1)2
(
F 2 − 2F

)

p1

(
κN

κL
− 1

)
+ m (∞)− 1

+
p1 (m (∞)− 1)4 F 4

2
(
p1

(
κN

κL
− 1

)
+ m (∞)− 1

)4

γ
∣∣E∣∣2
κL

, (3)

whereF is the real solution of

γ
∣∣E

∣∣2
κL

p1 (m (∞)− 1)2(
p1

(
κN

κL
− 1

)
+ m (∞)− 1

)3 F 3 + F = 1.

Herem (∞) is always an upper bound for the effective con-
ductivity constantm (z) of the comparison material (a matrix
with conductivity constant equal to unity containing inclu-
sion with conductivity equal toz, in this casez = 105). In
Fig. 3, the normalized effective energyW eff/WL against
the parameterlog2 (S1) is plotted forκN/κL = 2 and for
volume fractionp1 = 0.470597. We compare Talbot’s upper
bound, replacingm (∞) with Bruno’s linear bound and the
effective prediction obtained by the FEM. There is also an
improvement here on the effective energy upper bound, near
percolation, as a nonlinear conducting composite is observed.

3. Effective conductivity coefficients and local
problems for a periodic medium, as derived
from the AHM

The composite material under study is assumed to have a
periodic structure (certainly an idealization except for man-
made regular composites), which means a structure with
slowly changing geometric characteristics with a periodε
(known as thescaling parameter). The periodic distribu-
tions consist of repetitions of a unit cell made of a conducting
spherical inclusionYI (dark color) and a conducting matrix
YM (light color), as shown in Fig. 4. The inclusion is at
the center of the cube with radiusR (≤ 0.5). Each phase
of the medium is homogeneous and isotropic. The structure
has periodεY and occupies a regionΩε ⊂ R3. The above
assumptions lead to the following family of boundary value
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problems indexed by the scaling parameter, in the heteroge-
neous bodyε:

∂

∂xi

(
κε

ik (x)
∂Ψε (x)

∂xk

)
= 0, (4)

Ψε (x)|Γε
1

= 0, (5)

κε
ik (x)

∂Ψε (x)
∂xk

ni

∣∣∣∣
Γε

2

= g. (6)

FIGURE 3. Bounds for nonlinear inclusions in a linear matrix with
fixed volume fractionp1 = 0.470597. The curves are labelled as
in Fig. 1 with UB the upper bound obtained from Eq. (3).

FIGURE 4. Periodic unit cell, a spherical inclusion immersed in a
cube.

The coefficients are periodically oscillating and physical
fields depend onx = (xi) ∈ Ωε. Hereκ = (κij) stands
for the conductivity second rank tensor (although it should be
noticed that the system of equations for the magnetic perme-
ability and dielectric permittivity coefficients are analogous ),
Ψ for the electric potential field. The summation convention
over repeated Latin indices running from1 to3 is understood.
The boundary∂Ωε is Γε

1

⋃
Γε

2. Perfect contact conditions at
the interphase are considered.

Two different scales will be introduced, one denoted byx
in the domainΩε at which the heterogeneities are invisible,
and the other a microscopic one denoted byy = x/ε. Depen-
dence onx (global variable) describes macro-effects, while
dependence ony (local variable) describes micro-effects.
For a fixedε > 0, we have the following expression for the
coefficients of the conductivity isotropic tensor:

κε
ik (x) = κik

(x

ε

)

= κIδikII (y) + κMδikIM (y) .

These are piecewise constant functions inx andY –periodic
functions iny. HereII (y) andIM (y) are the characteris-
tic functions of inclusion and matrix respectively. Further,
we assume thatκik (y) ∈ L∞ (Ω) positive definite, that is
κik (y) ξiξk ≥ αξiξi, for someα > 0.

Due to the rapid oscillation ofκε
ik (x), an efficient di-

rect numerical treatment of (4)-(6) is impossible. One task
in this work is to find the effective coefficientsκh

ik (x) by us-
ing the well-known method of two-scale asymptotic homog-
enization [2,3] and the FEM [30].

3.1. Asymptotic Homogenization

The basic idea of the two-scale asymptotic homogenization
method is to embed the specific problem in question in a fam-
ily of problems parametrized by the scale parameterε > 0.
By letting the microscale tend to zero, homogenized differ-
ential equations are obtained.

To derive the limit problem in a formal way (see for in-
stance Ref. 2) one starts from the ansatz that the unknown
functionΨε (x) possesses an asymptotic expansion with re-
spect toε of the form

Ψε (x) = Ψ0 (x, y) + εΨ1 (x, y) + ε2Ψ2 (x, y) + ..., (7)

whereΨ0 (x, y) ,Ψ1 (x, y) , ... areY periodic functions iny.
By substituting (7) in (4)-(6), following the chain rule for
Ψ = Ψ (x, y)

∂Ψ
∂x

=
(

∂Ψ
∂x

+ ε−1 ∂Ψ
∂y

)∣∣∣∣
y= x

ε

and comparing the terms associated with the same powers
of ε, we find from the terms of orderε−2, by consideringx
and y as independent variables, that the functionΨ0 (x, y)
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does not depend ony. For the factor corresponding toε−1,
we get

∂

∂yi

(
κij (y)

∂Ψ1 (x, y)
∂yj

)
= − ∂

∂yi
(κij (y))

∂Ψ0 (x)
∂xj

,

and the expressions for the functionsΨ1 (x, y) can be written
as follows:

Ψ1 (x, y) = Nk (y)
∂Ψ0 (x)

∂xk
,

where Nk (y) are the uniqueY -periodic solutions, up to
a constant inH1 (Y ) of the local problem defined by
Eqs. (12)-(15), below.

Finally, for terms of order zero, the homogenized prob-
lem can be obtained as following:

∂

∂xi

(
κh

ik

∂Ψ0 (x)
∂xk

)
= 0, (8)

Ψ0 (x)
∣∣
Γ0

1
= 0, (9)

κh
ik (x)

∂Ψ0 (x)
∂xk

ni

∣∣∣∣
Γ0

2

= g, (10)

whose solutionΨ0 (x) is the limit of the family of solutions
Ψε (x) of the original one whenε → 0. Convergence results
can be seen, for instance, in Refs. 1, 2 and 15. The effective
conductivity tensorκh

ik is given by the formula

κh
ik =

1
|Y |

∫

Y

(
κik(y) + κij (y)

∂Nk (y)
∂yj

)
dy, (11)

where the real-valued andY –periodic functionsNk (y) are
solutions of the local problems

∂

∂yi

(
κij (y)

∂Nk(y)
∂yj

)
= − ∂

∂yi
κik (y) , (12)

with periodicity conditions

Nk(y)|yr=0 = Nk(y)|yr=1 (13)

∂Nk(y)
∂yr

∣∣∣∣
yr=0

=
∂Nk(y)

∂yr

∣∣∣∣
yr=1

(14)

and perfect contact conditions at the interface between the
inclusion and the matrix:

‖Nk(y)‖ = 0, (15)
∥∥∥∥
(

κij (y)
∂Nk(y)

∂yj
+ κik (y)

)
ni

∥∥∥∥ = 0, (16)

wheren is the outward unit normal to the sphere, and the
double bar notation denotes the jump across the interface.

The solutions to (12)-(14),Nk(y), for k = 1, 2, 3, are 1-
periodic iny, and are found up to an arbitrary constant. The
choice of the constant is fixed by the condition〈Nk(y)〉 = 0,

〈Nk(y)〉 =
1
|Y |

∫

Y

Nk(y)dy

(see for instance page 106 in Ref. 2). This local problems
come also as partial results from the application of the AHM.

In fact the two-scale asymptotic method leads directly
to the strong formulation of the local problems. Conse-
quently, the material functions involved must be more regu-
lar, at least of classC1 (Y ). However, the weak (variational)
form of (12)-(14) can be used, c.f. Ref. 8.

4. Numerical computation of the effective co-
efficients

In order to compute the coefficient (11) we have to
solve (12)-(14). Due to numerical reasons, instead of solving
Eqs. (12), we will employ the equivalent ones

∂

∂yi

(
κij (y)

∂Mk

∂yj

)
= 0 (17)

whereMk = Nk(y) + yk.
To solve (17) by the FEM with professional software,

it is convenient to transform the periodicity conditions into
boundary conditions.

Following [2], taking into account the symmetry of the
cell and considering the cube

Q =
{
−1

2
≤ y1, y2, y3 ≤ 1

2

}

as the periodicity domain, we find that instead of seeking for
a Y - periodic solution of (12)-(14), we shall look for a solu-
tion Mk(y) that is periodic in all theyq, (q 6= k) such that

∂

∂yi

(
κij (y)

∂

∂yj
Mk(y)

)
= 0, (18)

Mk (y)|yk=d = d, (19)

κij (y)
∂

∂yj
Mh(y)

∣∣∣∣
yi=d

= 0, (20)

whered = 0, d = 0.5, i 6= k and perfect interface conditions.
Then we get the following expression for the effective co-

efficient:

κh = κh
11 = 23

∫

Q

κ11 (y)
∂M1(y)

∂y1
dQ. (21)

In this case, due to the isotropic global behaviour of the com-
posite

κh
11 = κh

22 = κh
33,

and similarly to (21)

κh
αα = 23

∫

Q

καα (y)
∂Mα(y)

∂yα
dQ (22)

(there is no summation overα)
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FIGURE 5. Mesh scheme for two volume fractions a)p1 = 0.1715

and b)p1 = 0.470597.

FIGURE 6. Comparison of the FEM results with Bruno’s bounds
for the normalized effective conductivity against inclusion vol-
ume fraction for a conducting sphere in a conducting matrix,
a) κI/κM = 2, b) κI/κM = 0.5, c) κI/κM → ∞ and
c) κI/κM = 0.

to get the effective conductivity coefficient we must
solve (18)-(20).

The finite element calculations were made using ANSYS
and by incorporating some necessary auxiliary programs. Pe-
riodic boundary conditions were replaced by boundary con-
ditions, as mentioned above in Ref. 2. The model volume
(1/8 of the cubic unit cellY with an spherical inclusion) were
meshed using 10-node tetrahedron thermal solid elements
(Solid 87). The number of elements needed varies with the
inclusion volume fractionp1, for instance forp1 = 0.1715
(see Fig. 5a); a mesh with900 elements and1737 nodes was
fine enough to represent accurately the geometry and to ob-
tain accurate results. However, in order to avoid (or to reduce
to a minimum) distorted elements for a large volume frac-
tion of the sphere, a finer mesh was employed; for instance,
the model forp1 = 0.470597 (see Fig. 5b) was meshed us-
ing 3834 elements with6574 nodes. To check the accuracy
of the standard meshes, the mesh was refined in some cases,
and the differences in the effective conductivities constants
computed with the standard; the refined meshes were below
0.0008%.

4.1. Numerical examples

Three different sets of material properties for a two-phase
conducting composite were considered here, a conduct-
ing sphere in a conducting matrix, forκI/κM = 2 and
κI/κM = 0.5 based on data taken from Ref. 17, a super-
conducting and a void spherical inclusion in a conducting
matrix. It is of interest to compare the results calculated
using the FEM with classical upper and lower bounds, for
instance the bounds from Bruno [4] of normalized material
and engineering constants as a function of the inclusion vol-
umetric fractionp1 up to the percolation limit. It is shown in
Fig. 6 that the effective conductivity of the simulated com-
posite lies between the predictions of Bruno’s bounds, show-
ing a better approximation for a small volume fraction than
for larger one. Note that for the cases concerning supercon-
ducting and empty inclusion, Figs. 6c and d, the upper and
lower bounds, respectively, differ from the numerical solu-
tion whenp1 ≥ 0.3. Thus it is natural to hope that the FEM
solution would give better results for the approximation of
the effective energy of the nonlinear conducting composite
than using Bruno’s bounds. The choice of the volume frac-
tions in our calculations is dictated by the choice of Bruno’s
q parameter, which is regularly spaced and already tabulated.

5. Concluding remarks

Using the variational inequalities of Talbot which appeared
in Ref. 26, improved lower and upper bounds of the effective
energy near percolation for a nonlinear conducting compos-
ite are obtained using a FEM solution of a linear comparison
medium. These results should prove useful in making better
predictions for the effective energy for nonlinear composites
for all volume fractions and parameter

S1 =

(
γ

∣∣E
∣∣2

2κL

)
,

which is a measure of the nonlinearity. The effective con-
ductivity for the linear composite material taken as compar-
ison material were accurately computed by the application
of the FEM in solving the local problems (coming from the
AHM) with the corresponding boundary conditions equiva-
lent to the original periodic conditions. The FEM calcula-
tions were made using ANSYS, observing that for large vol-
ume fraction of the spherical inclusion, the amount of el-
ements needed to obtain reasonable results was larger than
for a small one. The numerical computed effective conduc-
tivity was compared with Bruno’s bounds [4], and that pro-
vided an improvement in the limit casesκI/κM = ∞ and
κI/κM = 0, particularly whenp1 ≥ 0.3, which produced an
improvement of Talbot’s bounds for the effective energy for
the nonlinear conducting composite when the FEM approxi-
mation are used.
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Rodŕıguez-Ramos, and G.A. Maugin,Arch. Mech.55 (2003)
357.
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