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Recent variational inequalities of Talbot are used to improve the lower and upper bounds for the effective energy of nonlinear 3-D two-phase
conducting composites. The effective conductivity of the linear isotropic two-phase periodic conducting composite used as comparison
material in the inequalities is computed through an asymptotic homogenization model by finite element analysis of the local problem on
the three-dimensional cubic unit cell with one spherical inclusion. A brief mathematical description of the numerical method is included.
Numerical calculations of the effective conducting linear property are compared with Bruno’s bounds. It shows that the numerical solution
for the limit cases of superconducting and empty inclusions improves the bounds when the inclusion volume fraction is greater than about
0.4. It is natural to expect an improvement in the whole volume fraction of Talbot’s bounds for nonlinear conducting composites when the
numerical calculation is used instead of bounds for the linear comparison problem, as is the case here.
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Las cotas inferior y superior para la energfectiva de un compuesto conductor no lineal, tridimensionasisid son mejoradas usando
desigualdades variacionales de Talbot. La conductividad efectiva del compuesto de cdmpaedmiico, bifasico, lineal, usado en las
desigualdades, se obtiene resolviendo los problemas locales que aparecen al apétad@de homogeneizacei asinbtica, mediante un
arglisis de elemento finito, tomando como celda unitaria un cubo con una intkeskrica. Los nétodos nuréricos empleados se describen
brevemente. Los resultados néritos para la propiedad efectiva del compuesto de comparaei comparan con las cotas de Bruno. Se
observa que una de las cotasaasiuy cerca de la solumm nunérica, para los casosites de inclugin superconductora y v y cuando la
fraccion volunetrica de la inclusion es mayor qQet, ésta se aleja. Es natural entonces esperar una mejora, en todo el rango de fracciones
volumétricas de las cotas de Talbot para compuestos conductores no lineales, cuando se akandssanéricos, en lugar de las cotas

para el compuesto de compaiatiineal, como es aqel caso.

Descriptores: Cotas variacionales; propiedades efectivas; compuestos conduct@testonde homogeneizaxi asinbtica; método de
elemento finito.

PACS: 02.70.Dc; 46.15.Cc; 66.70.+f

1. Introduction erties of a linear comparison composite with the same mi-

crostructure. In Ref. 9, very good approximations for global
The derivation of the average behaviour of a heterogeneousnergy of nonlinear conducting composites were obtained by
medium based on knowledge of its components is a very imeombining the variational principles of Ref. 19, using the
portant topic because of the increasing use of reinforced conprediction of Ref. 25 for the comparison material. Improved
posite materials in many applications (see, for instance, thaew bounds for nonlinear dielectric composites were derived
recent review given in Refs. 14 and 28). This work considersn Ref. 26 and applied to two-phase matrix inclusion com-
the determination of tighter bounds for the effective energyposites by combining their variational inequalities with the
of a nonlinear conducting composite material. bounds derived in Ref. 4.

The general problem related to the calculation of global The goal of the present work is to obtain better lower
properties (or effective coefficients) has been the object ond upper bound approximations of the effective energy for
study by many researchers, for random media or for media nonlinear two-phase conducting composite. Variational
distributed in a particular way and for linear and nonlinearinequalities reported in Ref. 26 combined with the results
composites. In Ref. 11 the best possible bounds on the effeérom the effective properties of linear conducting composites
tive conductivity were found for linear isotropic two-phase are used. The Asymptotic Homogenization Method (AHM)
composites with perfect contact at the interface, providingbased on two-scale asymptotic expansions [2, 3, 15, 23], and
only volume fraction information of the phases. In Refs. 29the Finite Element Method (FEM) [12, 30], are used to calcu-
and 25, these variational principles were generalized and ddate the effective conductivity of a two-phase 3-D composite
veloped to nonlinear problems. In Ref. 19, a method is inmaterial having a periodic structure consisting of a sphere im-
troduced to estimate bounds for the effective properties of aersed in a cube. This kind of medium requires special treat-
nonlinear composite using information of the effective prop-ment because of the rapid variation of its materials properties.
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The AHM is a rigorous mathematical technique for modelingl = —V W is the electric fieldV is the electric potentiak;

the global behaviour of these types of heterogeneous media the Cartesian coordinate of the point.

(see, for instance, Refs. 7 and 17). By means of this method, Consider an isotropic composite with n isotropic phases,
the system of partial differential equations with rapidly os-and assume that the composite is periodic. For this type of a
cillating coefficients, governing the medium occupied by thecomposite, the local energy density function is given by
composite, is transformed into another one without this vari- .

ation. The coefficients in the new problem are the effective _

coefficients, and their determination depend on the solution W(E,2) = ; Wr (E) Jr (@),

of the so-called problems on the cell or local problems. The

solution of the local problems have been the subject of manyhereW,. and f, are the energy and characteristic functions
scientific works. Exact solutions for one-dimensional ho-Of the domain occupied by the r-phase, respectively.
mogenization problems (laminate composite) can be seen in A comparison material with energy functidi’ will be
Refs. 5, 8, and 18. Analytical solutions for some particularintroduced. This comparison material has the same microge-
two-dimensional homogenization problems such as unidirecometry as the nonlinear one. We shall deal with the particular
tional fibrous reinforced composite can be found in the recenproblem of bounding the effective energy density of a two-
papers [6, 10, 16, 20—22]. These exact solutions are useful &pase 3-D conducting composite, for two cases, consisting
a control guide to numerical methods applied to problems inof the following:

volving a more complicated geometrical microstructure. In
the above mentioned works, one can find a great variety of
references related to the topic of analytical and numerical ap-

a) One isotropic linear phase, the inclusion,
with energy function

plications to 1-D and 2-D homogenization problems. Exam- 1 )

ples from 3-D homogenization problems for linear and non- W (E) = ohL P2

linear composites include for instance the methods proposed . S ]

in Refs. 27 and 28, and in the recent works [13, 24]. and a nonlinear one, the matrix, with energy function
The structure of the article is as follows: Sec. 2 gives 1 , 1 .

improved variational bounds for the effective energy density Wi (B) = gen |BI" + 7 1E[,

properties of a nonlinear conducting composite are stated.

Section 3 describes the formal procedure of the AHM for wherer,, ky andy are constants.

obtaining the homogenized equation and the local problem
which allows us to derive the effective coefficient for a pe-

riodic two-phase 3D isotropic conducting medium. Some
comments related to the mathematical justification of this
method are included. Section 4 offers a brief mathematical
description of the numerical method employed and summa-

rizes some aspects related to its computational implement%here the subindicek M refer to inclusion and matrix, re-

tion. Numerical examples to illustrate the efficiency and im'spectively; by formula (3.9), page 3622 in Ref. 26, the lower

pprtance of th? calculations are also shoyvn in this SeCtioyound for the normalized effective energy density can be de-
Finally, Sec. 5 is devoted to some concluding remarks.

For the comparison material, the energy functions are
/W] =Wy and

— 1
Wi = 5H0 E|?,

rived as
2. Impr.oved bounds for the eﬁeqtlve energy of Wwelt (E)>@m KL
nonlinear conducting composites W, “rr " \ ko
Following the variational procedure given by Talbot in kn ko \2 7@’2
Ref. 26, which incorporates microstructural information, im- +p2 (HL—KL> / ST (2

proved bounds for the effective energy density properties of

a nonlinear conducting composite will be obtained. wherek is a free parametep, is the matrix volume fraction,
In order to derive variational bounds in composites, a baf is the mean value df andm (k. /o) is the effective con-

sic problem is to bound the density of the effective energy ofductivity of a matrix with unitary conductivity and inclusion

the compositelV¢/f, defined by with conductivityxy, /ko. Any lower bound for the effective
B propertym (k1 /ko) can be substituted in (2) and the best
well (E) = inf /W(E,x) dz, (1)  bound follows by maximizing the right-hand side with re-
EcK . . .
R spect tokp. In Figs. 1 and 2, the normalized effective energy
where weff /Wy, is plotted against the parameteg,, (S)
— 2
K = {E : Eis R-periodic,E = V¥, /E (2)dz = B}, s - (2B
R 2I€L
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for ky/kr, = 2 and for values of the volume fraction

p1 = 0.1715 andp; = 0.470597, respectively. In both fig-
ures we compare Talbot’'s lower bound (labelled Talbot 99
LB) replacingm (kr/ko) with the bound of Bruno and the

lower bound obtained using the FEM approximation for the

b) A linear matrix containing nonlinear inclu-

sion
In this case the problem considered is that of improving

Talbot’s upper bound Talbot in Ref. 26 by taking

1 —~
Wy =Wy

Wi = =k |E|?
1= 5ol B,

effective property (labelled FEM LB). We note that a much
improved lower bound of the effective energy near percola-

From the formula (3.8), page 3622 in Ref. 26, it is pos-
sible to obtain the following optimized upper bound for the

tion is obtained.
20 T T T T T T
EUB - |
T Ibc'J:tE9’\£ lEE - i
e & effective energy density normalized by the linear phase en-
i ergy:
15 | /% .

i welf (m(00) — 1) (F2 — 2F
/? 7 (B) <m(o0) = ( )
I L p1(%— )+m(oo)—1

B I

= o} ] 1 =2

5 p1 (m(00) —1)* F* v|E|

///ﬁ + 4 K, ’ (3)
;g 2 (p1 (ﬁ - 1) +m(c0) — 1)
5r T 1 whereF' is the real solution of
&ﬁéi: -2 2
m&f“ﬁ"/ E -1
— 7|E| P9 =1® ey
! FL (pl(%—1>+m(oo)—1)
4 6 8 10 12
Herem (oc0) is always an upper bound for the effective con-

fixed volume fractiorp; = 0.1715. The curves are labelled: EUB
6

and ELB are the simple upper and lower bounds obtained in Ref. 2
by substituting constant trial fields into Eq. (1) or in its dual; Talbot
99 LB and FEM LB, are the lower bounds obtained substituting the
effective property into Eq. (2) with the lower bound of Bruno and

the FEM approximation, respectively.

0
2 0 2
log,(S1)
FIGURE 1. Bounds for linear inclusions in a nonlinear matrix with ductivity constantn (z) of the comparison material (a matrix
with conductivity constant equal to unity containing inclu-
sion with conductivity equal te, in this casez = 10°). In

Fig. 3, the normalized effective enerdly/*// /W, against
the parametelog, (S51) is plotted forxy/xr, = 2 and for
volume fractionp; = 0.470597. We compare Talbot’'s upper

bound, replacingn (co) with Bruno’s linear bound and the
effective prediction obtained by the FEM. There is also an
improvement here on the effective energy upper bound, near
percolation, as a nonlinear conducting composite is observed.

3. Effective conductivity coefficients and local
problems for a periodic medium, as derived

from the AHM
The composite material under study is assumed to have a
periodic structure (certainly an idealization except for man-
made regular composites), which means a structure with
slowly changing geometric characteristics with a period
(known as thescaling parametér The periodic distribu-
tions consist of repetitions of a unit cell made of a conducting
spherical inclusiort; (dark color) and a conducting matrix
Yy (light color), as shown in Fig. 4. The inclusion is at

the center of the cube with radiu® (< 0.5). Each phase
of the medium is homogeneous and isotropic. The structure
has perioctY” and occupies a regiofl, ¢ R3. The above

20 _ | |
EUB -—--- T
FEMLB —--#--- [
Talbot 99 LB e~ [
ELB ———— [
é :
!’ "" ‘J
15 /) : |
¥ i
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= /] ;
/l ! @
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/¥ ;
¥ g
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B ¥ |
’ s @)@ﬁ
K o
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log(S1)

FIGURE 2. As Fig. 1 except that, = 0.470597

assumptions lead to the following family of boundary value
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problems indexed by the scaling parameter, in the heterogd-he coefficients are periodically oscillating and physical
fields depend o = (x;) € Q.. Herex = (k;;) stands

for the conductivity second rank tensor (although it should be
noticed that the system of equations for the magnetic perme-
ability and dielectric permittivity coefficients are analogous),
¥ for the electric potential field. The summation convention
over repeated Latin indices running frdno 3 is understood.
The boundary)). isT'5 [JT'5. Perfect contact conditions at

the interphase are considered.
Two different scales will be introduced, one denoted:by

in the domain2. at which the heterogeneities are invisible,
and the other a microscopic one denoted/by = /c. Depen-
dence one (global variablg describes macro-effects, while
dependence omy (local variable describes micro-effects.
For a fixede > 0, we have the following expression for the

coefficients of the conductivity isotropic tensor:

R (2) = e ()

= k0l (y) + kardindar (y) -

These are piecewise constant functions: iandY —periodic
functions iny. HereI; (y) and Iy (y) are the characteris-
tic functions of inclusion and matrix respectively. Further,
we assume that;; (y) € L (Q2) positive definite, that is

Kik (y) &k > a&;&;, for somea > 0.
Due to the rapid oscillation of;, (), an efficient di-

neous body:
0 ove (x
8@ 8.73k
\IJS (,’,E)|Fi = O, (5)
oV* (2)
Tk rs
20 : - . |
EUB - ]
FEMUB --#--- ’,
Talbot 99 UB ---o--- |
ELB -——— j
15 + ”,, ]
/ &
/ @
/ @
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/ &
. ;i QDD
/ o
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QQ
// Dﬁ
/ EJQ
S5r // Gppp
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% %%%%*** 77777777777777777777777
1 1 L | ) I
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12 rect numerical treatment of (4)-(6) is impossible. One task

in this work is to find the effective coefficients,, (=) by us-

log,(81)
FIGURE 3. Bounds for nonlinear inclusions in a linear matrix with ing the well-known method of two-scale asymptotic homog-

fixed volume fractiorp; = 0.470597. The curves are labelled as enization [2, 3] and the FEM [30].

in Fig. 1 with UB the upper bound obtained from Eq. (3).

3.1. Asymptotic Homogenization

The basic idea of the two-scale asymptotic homogenization
method is to embed the specific problem in question in a fam-
ily of problems parametrized by the scale parameter 0.

By letting the microscale tend to zero, homogenized differ-

ential equations are obtained.
To derive the limit problem in a formal way (see for in-

stance Ref. 2) one starts from the ansatz that the unknown
function ¥¢ (z) possesses an asymptotic expansion with re-

spect tcee of the form
e ($> = \IJO (xvy) + ElI/l (xay) + 52\1}2 (-'L',y) + ey (7)

where¥ (z,y), ¥4 (x,y), ... areY periodic functions iny.
By substituting (7) in (4)-(6), following the chain rule for

U=V (z,y)
(5 %)

ov _, 0¥
and comparing the terms associated with the same powers

dy

67111
ox

y==%

Y

andy as independent variables, that the functibg(z, y)

FIGURE 4. Periodic unit cell, a spherical inclusion immersed in a 0of &, we find from the terms of order—2, by consideringr

cube.
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does not depend op For the factor corresponding to !,
we get

0 B 8\111 (axy) - 0 B 8\110 (LC)
o (1 ) 250 ) — - s ) 2,
and the expressions for the functiohs (x, y) can be written
as follows:
8‘1’0 (J,‘)

Wy (z,y) = Nk (y) .

where Ny, (y) are the uniqueY -periodic solutions, up to
a constant inH! (Y) of the local problem defined by

Egs. (12)-(15), below.

A. LEON-MECIAS et al.

(see for instance page 106 in Ref. 2). This local problems
come also as partial results from the application of the AHM.

In fact the two-scale asymptotic method leads directly
to the strong formulation of the local problems. Conse-
quently, the material functions involved must be more regu-
lar, at least of clas€ (Y'). However, the weak (variational)
form of (12)-(14) can be used, c.f. Ref. 8.

4. Numerical computation of the effective co-
efficients

In order to compute the coefficient (11) we have to

Finally, for terms of order zero, the homogenized prob-solve (12)-(14). Due to numerical reasons, instead of solving

lem can be obtained as following:

o ([, 000 @)\
ox; <Hik Oxy, > =0, (8)
\IIO (x)’F(l) = 0’ (9)
8\110 .
i ) 2, L0 (10

whose solution?? (z) is the limit of the family of solutions

Egs. (12), we will employ the equivalent ones

0 oM\
- ( 0 G ) 0

whereMy, = Ni(y) + yk-

To solve (17) by the FEM with professional software,
it is convenient to transform the periodicity conditions into
boundary conditions.

Following [2], taking into account the symmetry of the

(17)

¥° (z) of the original one whea — 0. Convergence results cell and considering the cube

can be seen, for instance, in Refs. 1, 2 and 15. The effective

conductivity tensok!; is given by the formula

Kl = %/ <Hik(y) + kij (y) ON (y)) dy,  (11)

ayj
Y

where the real-valued and—periodic functionsVy, (y) are
solutions of the local problems

O (  JONk(y)\ _ 0
ayi (K'/Zj (y> 8yj - ayL Rik (y) ) (12)
with periodicity conditions
Nk(y)|yT:O = Nk(y)|yT:1 (13)
ONk(y) _ ONk(y) (14)
ayT yr=0 ayT yr=1

1 1
Q { 2_y1,y2,y3_2}

as the periodicity domain, we find that instead of seeking for
aY- periodic solution of (12)-(14), we shall look for a solu-
tion My (y) that is periodic in all they,, (¢ # k) such that

P P
2 ( ) aijk@)) 0, (18)
My ()], = d. 19)
Kij (y) a%_Mh(y) =0, (20)
J y;=d

whered = 0, d = 0.5, i # k and perfect interface conditions.
Then we get the following expression for the effective co-

and perfect contact conditions at the interface between thefficient:

inclusion and the matrix:

OMy(y)
k=g :23/5 y ! dQ. (22)
M)l =0, 15) R AT
ONk(y)
(’%j (y) By, + Kik (y) | na|| =0, (16)  Inthis case, due to the isotropic global behaviour of the com-
) . posite
wheren is the outward unit normal to the sphere, and the h h h

double bar notation denotes the jump across the interface.

The solutions to (12)-(14)Nx(y), for k = 1,2, 3, are 1-

K11 = Ka2 = Ka3,

and similarly to (21)

periodic iny, and are found up to an arbitrary constant. The

choice of the constant is fixed by the conditigfy (v)) = 0,

1
(N) = 157 Y/ Ni(y)dy

Hga =23 / Koo (Y) Md@ (22)

0Ya
Q

(there is no summation ove)
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4.1. Numerical examples

Three different sets of material properties for a two-phase
conducting composite were considered here, a conduct-
ing sphere in a conducting matrix, fer;/xy; = 2 and

kr/km = 0.5 based on data taken from Ref. 17, a super-
conducting and a void spherical inclusion in a conducting
matrix. It is of interest to compare the results calculated
using the FEM with classical upper and lower bounds, for
instance the bounds from Bruno [4] of normalized material
FIGURE 5. Mesh scheme for two volume fractionsya) = 0.1715 and engineering constants as a function of the inclusion vol

and b)p; = 0.470597. umetric fractionp; up to the percolation limit. It is shown in
Fig. 6 that the effective conductivity of the simulated com-
. o posite lies between the predictions of Bruno’s bounds, show-
— BrunoUB a b

ing a better approximation for a small volume fraction than
for larger one. Note that for the cases concerning supercon-
ducting and empty inclusion, Figs. 6¢ and d, the upper and
08 lower bounds, respectively, differ from the numerical solu-
- tion whenp; > 0.3. Thus it is natural to hope that the FEM
solution would give better results for the approximation of
the effective energy of the nonlinear conducting composite
than using Bruno’s bounds. The choice of the volume frac-
08 tions in our calculations is dictated by the choice of Bruno’s
06 q parameter, which is regularly spaced and already tabulated.

+ FEM
—— Bruno LB

»

09

%)

0.85

[N

normalized effective conductivity

[

o o=
o
[N
o
w
o
=~
o
o

- o
o
[N
o
w
o
S
o
o

o

0.4

o

0.2

normalized effective conductivity
=

5. Concluding remarks

oo
=

1 02 03 04 05 0.1 02 03 04 05
Volume Fraction R Volume Fraction p

Using the variational inequalities of Talbot which appeared
FIGURE 6. Comparison of the FEM results with Bruno's bounds in Ref. 26, improved lower and upper bounds of the effective
for the normalized effective conductivity against inclusion vol- energy near perco|ation for a non|inear Conducting Compos_
ume fraction for a conducting sphere in a conducting matrix, jte are obtained using a FEM solution of a linear comparison
a) wr/kim = 2, b) kr/kn = 0.5, €) kr/war — oo and  pediym. These results should prove useful in making better
¢) w1 /kyr = 0. predictions for the effective energy for nonlinear composites

to get the effective conductivity coefficient we must for all volume fractions and parameter

solve (18)-(20). 9

The finite element calculations were made using ANSYS S, = (7 &l > :
and by incorporating some necessary auxiliary programs. Pe- 2KL
riodic boundary conditions were replaced by boundary con-
ditions, as mentioned above in Ref. 2. The model volumewhich is a measure of the nonlinearity. The effective con-
(1/8 of the cubic unit celt” with an spherical inclusion) were ductivity for the linear composite material taken as compar-
meshed using 10-node tetrahedron thermal solid elementson material were accurately computed by the application
(Solid 87). The number of elements needed varies with thef the FEM in solving the local problems (coming from the
inclusion volume fractiorp,, for instance forp; = 0.1715  AHM) with the corresponding boundary conditions equiva-
(see Fig. 5a); a mesh witlo0 elements and737 nodes was lent to the original periodic conditions. The FEM calcula-
fine enough to represent accurately the geometry and to oltions were made using ANSY'S, observing that for large vol-
tain accurate results. However, in order to avoid (or to reduce@me fraction of the spherical inclusion, the amount of el-
to a minimum) distorted elements for a large volume frac-ements needed to obtain reasonable results was larger thar
tion of the sphere, a finer mesh was employed,; for instancdpr a small one. The numerical computed effective conduc-
the model forp; = 0.470597 (see Fig. 5b) was meshed us- tivity was compared with Bruno’s bounds [4], and that pro-
ing 3834 elements with6574 nodes. To check the accuracy vided an improvement in the limit cases/xy = oo and
of the standard meshes, the mesh was refined in some casesg/xy = 0, particularly wherp; > 0.3, which produced an
and the differences in the effective conductivities constantémprovement of Talbot's bounds for the effective energy for
computed with the standard; the refined meshes were belotine nonlinear conducting composite when the FEM approxi-
0.0008%. mation are used.
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