INVESTIGACION REVISTA MEXICANA DE FISICA 53(3) 189-193 JUNIO 2007

The binding energy of light excitons in spherical quantum dots
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We study the effects of hydrostatic pressure over the ground state binding energy of light hole excitons corfinéd in Ga1—, Al As
spherical quantum dots. We applied the variational method ukifitydrogenic wavefunctions, in the framework of the effective mass
approximation. We computed the exciton binding energy as a function of the dot radicsncentrations and pressures. Our results show
that (i) the hydrostatic pressure increases the hinding energy, for all quantum dot radii; (ii) the binding energy is an increasing funct
of the Al concentration, for fixed radius and pressure, especially for a smaller dot; (iii) the binding energy follows approximately a line
dependence with the pressure, for fixed radius.Ahdoncentration.
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El efecto de la preéin hidroshtica sobre la energ de enlace de excitones ligeros confinados en puntasticos esfricos deGaAs —
Gai1_5Al; As es estudiado. Nosotros usamos dtato variacional y consideramos funciones de onda hidrogenbideajo la aproxi-
macbn de la masa efectiva. Se calcld energa de enlace como furtm del radio, la concentraa de aluminioAl y la presén. Nuestros
resultados muestran que (i) la p@siidrosética aumenta la endegde enlace para todos los radios considerados; (ii) la Enéegenlace
es una fundn creciente de la concentranide aluminio, para valores fijos del radio y la poesiespecialmente para radios petpg (jii) la
enerda de enlace sigue de manera aproximada una dependencia lineal conda, rasa radios y concentraciones de aluminio fijos.

Descriptores:Puntos canticos; excitones; prési hidrosatica.

PACS: 73.20.Dx; 73.20.Hb; 73.21.La

1. Introduction Kayanuma [12] made a simple variational calculation to

The progress in nanoscale technology has made possible tfBd the ground-state energy for an exciton confined in a mi-
fabrication of quasi-zero-dimensional quantum dots (QDS)erocrystaI with finite potential barriers. He found that the
the quantum size effects in semiconductor QDs greatly inéffect of penetration of the wavefunction outside the micro-
creases highly the electron-hole attraction inside them; iffryStal is quite large in the strong-confinement region, and is
consequence the correlated electron-hole pairs (excitons) réonsistent with the relatlvely small que-_sh|ft of the excitation
main present even at room temperature. It produces impofnergy observed i@’dS microcrystals. Einevoll [13] made a
tant changes in the optical properties of QDs as compareft€oretical study of excitons confineddfiS andZnS QDs,

to those of the corresponding bulk material; the transitiond!Sing @ single-band effective-mass approximation for the car-
between Wannier excitonic states are an important elemefe’s: the confinement potential for the hole and electron were
linked to those changes [1-4]. In the last few decades modeled as spherically symmetric potential wells with finite
proper quantitative understanding of the changes in the OI[parrier heights, finding a good agreement with experimental
tical properties of low-dimensional heteroestructures, sucifata. In the same way J.L. Margt al. [4] used the varia-

as QDs, has been of great interest, due to their importandé®nal method, and the effective-mass approximation, to cal-
for potential applications in electronic and optoelectronicculate the ground-state energy of excitons confined in spheri-
devices; theoretical studies predicted that low-dimensionaf@! QDs, with finite height potential walls as a function of the
semiconductor heteroestructures would offer the advantag@rticle radius. They usets-hydrogenic-like wavefunctions

of lower switching energy and enhanced oscillator strengt{Or the electron and hole, obtaining a good agreement for a
over the confined region, which may be used for applicatior?-40Aradius with experimental data 6fd'S, CdSe, PbS and

to high-performance devices [5, 9]. CdTe crystallites.

Many people have studied the effects of quantization for Photoluminescence studies of self-organized In-
the excitons in microcrystals or quantum dots; Brus [10] hasAlAs/AlGaAs quantum dots under pressure were carried
given a variational calculation for the size dependence of theut by Phillipset al. [6]. The effect of hydrostatic pres-
electron-hole pair state, Nadt al. [11] calculated the low- sure on the optical transitions in self-assembled InAs/GaAs
est electron-hole state in semiconductor microcrystals, as guantum dots was studied by Dugaeal. [7]. Oyoko et
function of their size, using the variational principle with a al. [8] studied donor impurities in a parallelepiped-shaped
three-parameter Hylleraas wave function; for very small parGaAs-(Ga,Al)As quantum dot, and they found that the donor
ticles, the Coulomb interaction was treated as a perturbatiohinding energy increases with increasing uniaxial stress and
and they considered an infinite confinement potential. decreasing sizes of the quantum dot. Raigetzal.[9] found
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the effects of hydrostatic pressure on the exciton states implied by the Hamiltonian. Taking into account the spher-
GaAs/Gay_, Al As semiconductor quantum wells via a ical confining geometry, the confinement potentials and the
variational procedure, in the frame of the effective-massCoulomb interaction between the electron and hole, we take
and non-degenerate parabolic band approximation; a godthe product of 1s-hydrogenic wavefunction as the trial wave
agreement with available experimental measurements wdanction for the exciton [4]. The ground-state wavefunction
obtained. Exciton states in quatum well-wires under electrignside the dot is defined as
field and hydrostatic pressure were also studied by this group.

Theoretical research into QDs usually assume the sim- ¢ = Aexp[—a(re +74)](R — are)(R — ary),  (3)
plification of spherical symmetry for the confinement poten-
tial, a geometric situation far from the experimental works infor 0 < re,7, < R. The wavefunction outside the dot is
semiconductor QDs, but it makes possible the computationdefined as
of excitonic contributions for the optical properties; recently

M. De Girgio et al. [16], found a way to produce spheri- Yo =~ o exp[—B(re + 1)), 4
cal QDs using colloidal nanocrystals, thus demonstrating the ‘
possibility of their fabrication. with the conditionR < r.,r, < co. Thea andg values are

In this paper we present a study of the hydrostatic presthe variational parameters, and the constanid B are the
sure effect over the binding energy of the ground-state ohormalization constants. The boundary condition is
excitons confined in spherical QDs made @t As with
Ga;_,Al,As barriers for different concentrations of Alu- iiawi — iiad’o
minumz = 0.15,0.30,0.45. We use the variational method i i Org lro=ro s Yo Ors Iri=ro’
and the effective mass approach to find the ground-state eheres depends on the case of electron or hole apdy?

ergy; we take into account the variations with the external aP3re the reduced effective mass of the exciton inside and out-

plied pressure of the parameters such as dot radius, dielectr Cde the dot. Given the boundary condition, we are able to
constant, confinement potential and effective masses [14, 1 ' . ' ;

T . . ' ““Feduce the two variational parameters to one, havin
We took a finite confinement potential for the dot. The the- P g
oretical method is presented in Sec. 2, the results and the glaro(l —a)+a] +a—1

discussion regarding them are shown in Sec. 3; in Sec. 4 we B = ro(1 — a) ) (6)
present our conclusions.

®)

with ¢ = i3/ i3
2 The Model Hereafter we show the_maln steps of the variational
method so that we can obtain the ground-state energy of the

In the effective mass approxima’[ion7 the Hamiltonian of aneXCiton. From the normalization condition of the trial wave
exciton in a spherical quantum dot 6zAs — (Ga, Al)As  function we have

under the influence of hydrostatic pressure is given by :
/ i[> dredmy, + / || dredrh = 1, ™
Qi Qo

h? h?
V2 - Vi

e
2mz(P) "¢ 2mi(P)

with ©; and(2, the volume regions inside and outside the dot,
- 4+ V.(r,P)+Vu(r,P), (1) anddr, is the volume element either for the electron (e) or
e(P)|re — ru| the hole (h). So the normalization constants are given by,

e2

wherem.(P), m;,(P) are the effective mass of electron and

hole respectivelyV, (r, P) andV;,(r, P) are the confinement

potentials for the electron and hole, ar{d) is the dielectric

constant. Note that the above quantities depend explicitly on

the hydrostatic pressure. In the Hamiltonian @dy),ry, are

the distances of the electron and hole with respect to the ceqyhere

ter of the quantum dot. The confinement potentials for the

electron and hole, in the Hamiltonian (1) are given by /R
0

A=[I} + I3 f17'? (8)

B = Ae(720720RRA(1 — )2, (9)

IN- =27

i

e (R — au)*u’du, (10)

Ve(r, P)[Vi(r, P)]= {0’ 0= rem=h- o

< <
Ve(P)[Va(P)]  R<re,rp<oo, I, = 21exp(—2ﬁR), 1)
whereR = R(P) is the radii of the quantum dot, which de- 8
pends on the hydrostatic pressure. and the constant is,
To solve the Hamiltonian (1), we use a variational ap-

proach to approximate the wave functions and eigenvalues f=R}1—a)teda=DER (12)
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The expectation value of the kinetic energy is, 120
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. h2 = - P=0 Kkbar
h h ~ 90}
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X {(u ot du2> (R — au)e }u du, (14) Dot radius (A)
and FIGURE 1. Binding energy of an exciton in@aAs — (Ga, Al) As
guantum dot as a function of the dot radius for different pressures.
e~ 2 d d? \ e P
Ik, = 47T/ " { (u du T du2> " }u2du~ (15) The ground-state energy for the exciton is now
R
The expectation value for the confinement potential en- B(e,R,P) = K(P) + Ven(P) +Ve(P),  (22)

ergy, takingV.(P) = V.(R, P) + Vi (R, P), is
o ) 5 which only depends on the variational parameter, the radius
Ve(P) = (Yol Veltho) = {Ve(P) + Vi (P)}A° fIN,. (16)  of the quantum dot, and the hydrostatic pressure. We simply

need to find the value aof for the ground-state energy to be
For the Coulomb interaction term we make a sphericaly minimum, so we set,

harmonic expansion,
o 1 OE(a, R, P)
e = X a0 o
The binding energy for the exciton is defined as the free elec-

tron energyE.,.. plus the free hole energly, ;. minus the
minimized energy for the exciton:

=0. (23)

XYYlm(efH@h)? (17)

and using this we obtain the expectation value of the
Coulomb term, given by
Eg:(R, P) = Ecjec(P)+Ehoie(P)— E(amin, R, P). (24)
Ven(P) = —(47)2A%J (o, R), (18)

with The application of hydrostatic pressure modifies the lat-
tice constants, dot size, barrier height, effective masses and

B dielectric constants. We present the explicit expressions for
J(a, R) = / e 2" (R — ar.)? these quantities as a function of the pressure below, where the
0 pressure is in kbar [14, 15]. The variation of the well width
with pressure is given by
x [F(a, R) + G(a, e, R)|r2dr., (29)
and R(P) = Ro(1 —1.5082 x 107*P), (25)

1 : i i
F(a,R) = [ €2 (R — arp)>r2dr (20) whereR, is the zero pressure width of the quantum dot, taken

Te into account by usingda/dP) = —2.6694 x 10~%ao where
0 ag 1S the lattice constant affaAs. The variation of the di-
R electric constant with the pressure is given as
G(a,re, R) :/6720‘”’ (R — arp)?rypdry,. (21)
re e(P) = 13.13 — 0.0088P. (26)
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FIGURE 2. Binding energy for the light hole exciton, varying the
concentration of Aluminum, for a pressure of 20Kbar.

Pressure (kbar)

FIGURE 3. Binding energy for the light hole exciton, varying the

. . . . pressure, for a radius of 80
The effective electron mass in the well and barrier reg|onID
change as

m:(P) = m(0) exp(0.0078P); 27) 3. Results and discussion

€

herem?(0) = 0.067my is the effective mass without pres-

sure, andn, is the bare electron mass. We have also chosein our calculations we consider quantum dots with a ra-
the light-hole effective mass asj (P) = 0.0951m.o, inde- dius in a range of 10-1@0 and Al concentrations equal to
pendent of the pressure. For simplicity, the dielectric con = 0.15,0.30 and0.45. Although the heavy excitons are
stant, the electron and hole masses were taken to be constdR@re common in experimental results, in this first study we

throughout the heterostructure, and equal todhels-bulk decided to study light-hole excitons because this mass does
values. not depend on the pressure.

We assume that the band-gap discontinuity [17,18] in @  The binding energy for a light-hole exciton as a function
GaAs — Gay . Al As quantum dot heterostructure is dis- of the quantum dot radius is shown in Fig. 1 for three differ-
tributed abouti0 % on the valence band a6 % on the con-  ent hydrostatic pressure valuBs= 0, P = 20 andP = 40
duction band with the total band-gap differendé, (z, P)  kbar, respectively. The behavior of the binding energies with-
(in eV) betweerGaAs andGa, . Al As given as afunction oyt pressuref = 0 kbar) is similar to the previous results

of the Al concentration and the hydrostatic presstiras found in Refs. 3 and 15. As the pressure is increased, the

AE,(z, P) = AE,(z) + PD(x), (28)  Quantum dot radius and the dielectric constant are reduced.

' The increasing behavior of the electron effective mass is also

where ) well-known. For all pressures we observe that the binding en-
AE,(z) = 1.155z + 0.37z7, (29)  ergy increases from its bulk value @iz As as the dot radius

is the variation of the energy gap difference without pressureis reduced, reaches a maximum value, and then drops to the
andD(x) (in eV/kbar) is the pressure coefficient of the bandbulk value characteristic of the barrier material as the dot ra-
gap given by dius goes to zero. Note that the binding energy increases with
. the hydrostatic pressure for any dot radius, reflecting the ad-
D(z) = (13 x 10™%)a. (30) dition);l confinerﬂentdue to theéressu’re;when the h)?dro-
Then the height of the potential barrier for electron andstatic pressure is increased, the exciton becomes more con-
holes as a function afll concentration: and the hydrostatic  fined and the binding energy increases. Also we observe that

pressure are given by the pressure effect is more appreciable for narrow dots, and
the maximum position goes to small radius when the pressure
Ve(P) = 0.6AE(z, P), GD  increases.
and In Fig. 2, we present the binding energy in a spherical
Vi(P) = 0.4AEy(z, P). (32) GaAs — Gay_,Al, quantum dot as a function of the dot ra-

Using these variations the exciton binding energy is obtainedius for differentAl concentrations, with hydrostatic pressure
for different pressures and dot sizes using the variationdiixed and equal t& = 20kbar. The Aluminum concentration
method within the effective mass approximation. determines the height of the confinement potential; low
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(high) Aluminum concentration implies a small (high) bar- 4. Conclusions
rier, therefore the behavior of the binding energy with #ie
concentration is important. For all Aluminum concentrationsVVe have determinated the ground-state binding energy of ex-
considered in the present work, we observe that the bindin§itons inside a GaAs/Ga,Al.As QD, using the variational
energy increases as the radius decreases, reaches a maxim{gthod, the effective mass approximation, and considering
and then diminishes to a limiting value corresponding to & hydrogenic-like wavefunction for both electron and holes.
particular radius of the well for which it is possible to find the We take into account the presence of external hydrostatic
free electron and hole energy level. Note that the binding enPressure and finite confinement potential dependent ofthe
ergy increases with thel concentration reflecting the higher concentration. Our results may be resumed thus:
confinement potential, and the maximum binding energy po-
sition goes to a small radius when the Aluminum concentra-
tion increases. In addition, this plot shows that, for a gi¥én
concentration, the binding energy is very great as compared (i) the binding energy is an increasing function of the
with the one- and two-dimensional casis, quantum wells

and quantum well-wires, respectively.

The dependence of the binding energy on the hydro-

static pressure appears in Fig. 3 for a quantum dot of radii
R = 50A. The binding energy shows an approximately lin- We hope that these results will motivate future experimental

ear increase with the pressure; this is in agreement witivork in this direction that will confirm our predictions.
the results obtained previously in quantum wells [19]. This

curve tells us that a system operating under hydrostatic pr
sure may be used to tune the output of optoelectronic d

e

(i) the hydrostatic pressure increases the binding energy

for all dot radii,

concentration for fixed radius and pressure,

(iii) the binding energy approximately follows a linear de-

pendence on the pressure, for a given radius Ahd
concentration.
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