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The binding energy of light excitons in spherical quantum dots
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We study the effects of hydrostatic pressure over the ground state binding energy of light hole excitons confined inGaAs − Ga1−xAlxAs

spherical quantum dots. We applied the variational method using1s-hydrogenic wavefunctions, in the framework of the effective mass
approximation. We computed the exciton binding energy as a function of the dot radius,Al concentrations and pressures. Our results show
that (i) the hydrostatic pressure increases the binding energy, for all quantum dot radii; (ii) the binding energy is an increasing function
of theAl concentration, for fixed radius and pressure, especially for a smaller dot; (iii) the binding energy follows approximately a linear
dependence with the pressure, for fixed radius andAl concentration.
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El efecto de la presión hidrost́atica sobre la energı́a de enlace de excitones ligeros confinados en puntos cuánticos esf́ericos deGaAs −
Ga1−xAlxAs es estudiado. Nosotros usamos el método variacional y consideramos funciones de onda hidrogenoides1s bajo la aproxi-
macíon de la masa efectiva. Se calculó la enerǵıa de enlace como función del radio, la concentración de aluminioAl y la presíon. Nuestros
resultados muestran que (i) la presión hidrost́atica aumenta la energı́a de enlace para todos los radios considerados; (ii) la energı́a de enlace
es una funcíon creciente de la concentración de aluminio, para valores fijos del radio y la presión, especialmente para radios pequeños; (iii) la
enerǵıa de enlace sigue de manera aproximada una dependencia lineal con la presión, para radios y concentraciones de aluminio fijos.

Descriptores:Puntos cúanticos; excitones; presión hidrost́atica.

PACS: 73.20.Dx; 73.20.Hb; 73.21.La

1. Introduction
The progress in nanoscale technology has made possible the
fabrication of quasi-zero-dimensional quantum dots (QDs),
the quantum size effects in semiconductor QDs greatly in-
creases highly the electron-hole attraction inside them; in
consequence the correlated electron-hole pairs (excitons) re-
main present even at room temperature. It produces impor-
tant changes in the optical properties of QDs as compared
to those of the corresponding bulk material; the transitions
between Wannier excitonic states are an important element
linked to those changes [1–4]. In the last few decades, a
proper quantitative understanding of the changes in the op-
tical properties of low-dimensional heteroestructures, such
as QDs, has been of great interest, due to their importance
for potential applications in electronic and optoelectronic
devices; theoretical studies predicted that low-dimensional
semiconductor heteroestructures would offer the advantage
of lower switching energy and enhanced oscillator strength
over the confined region, which may be used for application
to high-performance devices [5,9].

Many people have studied the effects of quantization for
the excitons in microcrystals or quantum dots; Brus [10] has
given a variational calculation for the size dependence of the
electron-hole pair state, Nairet al. [11] calculated the low-
est electron-hole state in semiconductor microcrystals, as a
function of their size, using the variational principle with a
three-parameter Hylleraas wave function; for very small par-
ticles, the Coulomb interaction was treated as a perturbation
and they considered an infinite confinement potential.

Kayanuma [12] made a simple variational calculation to
find the ground-state energy for an exciton confined in a mi-
crocrystal with finite potential barriers. He found that the
effect of penetration of the wavefunction outside the micro-
crystal is quite large in the strong-confinement region, and is
consistent with the relatively small blue-shift of the excitation
energy observed inCdS microcrystals. Einevoll [13] made a
theoretical study of excitons confined inCdS andZnS QDs,
using a single-band effective-mass approximation for the car-
riers; the confinement potential for the hole and electron were
modeled as spherically symmetric potential wells with finite
barrier heights, finding a good agreement with experimental
data. In the same way J.L. Marinet al. [4] used the varia-
tional method, and the effective-mass approximation, to cal-
culate the ground-state energy of excitons confined in spheri-
cal QDs, with finite height potential walls as a function of the
particle radius. They used1s-hydrogenic-like wavefunctions
for the electron and hole, obtaining a good agreement for a
5-40Åradius with experimental data ofCdS, CdSe, PbS and
CdTe crystallites.

Photoluminescence studies of self-organized In-
AlAs/AlGaAs quantum dots under pressure were carried
out by Phillips et al. [6]. The effect of hydrostatic pres-
sure on the optical transitions in self-assembled InAs/GaAs
quantum dots was studied by Duqueet al. [7]. Oyoko et
al. [8] studied donor impurities in a parallelepiped-shaped
GaAs-(Ga,Al)As quantum dot, and they found that the donor
binding energy increases with increasing uniaxial stress and
decreasing sizes of the quantum dot. Raigozaet al. [9] found
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the effects of hydrostatic pressure on the exciton states in
GaAs/Ga1−xAlxAs semiconductor quantum wells via a
variational procedure, in the frame of the effective-mass
and non-degenerate parabolic band approximation; a good
agreement with available experimental measurements was
obtained. Exciton states in quatum well-wires under electric
field and hydrostatic pressure were also studied by this group.

Theoretical research into QDs usually assume the sim-
plification of spherical symmetry for the confinement poten-
tial, a geometric situation far from the experimental works in
semiconductor QDs, but it makes possible the computations
of excitonic contributions for the optical properties; recently
M. De Girgio et al. [16], found a way to produce spheri-
cal QDs using colloidal nanocrystals, thus demonstrating the
possibility of their fabrication.

In this paper we present a study of the hydrostatic pres-
sure effect over the binding energy of the ground-state of
excitons confined in spherical QDs made ofGaAs with
Ga1−xAlxAs barriers for different concentrations of Alu-
minumx = 0.15,0.30,0.45. We use the variational method
and the effective mass approach to find the ground-state en-
ergy; we take into account the variations with the external ap-
plied pressure of the parameters such as dot radius, dielectric
constant, confinement potential and effective masses [14,15].
We took a finite confinement potential for the dot. The the-
oretical method is presented in Sec. 2, the results and the
discussion regarding them are shown in Sec. 3; in Sec. 4 we
present our conclusions.

2. The Model

In the effective mass approximation, the Hamiltonian of an
exciton in a spherical quantum dot ofGaAs − (Ga,Al)As
under the influence of hydrostatic pressure is given by

Ĥ =− ~2

2m∗
e(P )

∇2
e −

~2

2m∗
h(P )

∇2
h

− e2

ε(P )|re − rh| + Ve(r, P ) + Vh(r, P ), (1)

whereme(P ), mh(P ) are the effective mass of electron and
hole respectively,Ve(r, P ) andVh(r, P ) are the confinement
potentials for the electron and hole, andε(P ) is the dielectric
constant. Note that the above quantities depend explicitly on
the hydrostatic pressure. In the Hamiltonian (1),re, rh are
the distances of the electron and hole with respect to the cen-
ter of the quantum dot. The confinement potentials for the
electron and hole, in the Hamiltonian (1) are given by

Ve(r, P )[Vh(r, P )]=

{
0, 0 ≤ re, rh≤R

Ve(P )[Vh(P )] R≤re, rh≤∞,
(2)

whereR = R(P ) is the radii of the quantum dot, which de-
pends on the hydrostatic pressure.

To solve the Hamiltonian (1), we use a variational ap-
proach to approximate the wave functions and eigenvalues

implied by the Hamiltonian. Taking into account the spher-
ical confining geometry, the confinement potentials and the
Coulomb interaction between the electron and hole, we take
the product of 1s-hydrogenic wavefunction as the trial wave
function for the exciton [4]. The ground-state wavefunction
inside the dot is defined as

ψi = A exp[−α(re + rh)](R− αre)(R− αrh), (3)

for 0 ≤ re, rh ≤ R. The wavefunction outside the dot is
defined as

ψ0 =
B

rerh
exp[−β(re + rh)], (4)

with the conditionR ≤ re, rh < ∞. Theα andβ values are
the variational parameters, and the constantsA andB are the
normalization constants. The boundary condition is

1
µ∗i

1
ψi

∂ψi

∂rs
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rs=r0

=
1
µ∗o

1
ψo

∂ψo

∂rs

∣∣∣
rs=r0

, (5)

wheres depends on the case of electron or hole andµ∗i , µ∗o
are the reduced effective mass of the exciton inside and out-
side the dot. Given the boundary condition, we are able to
reduce the two variational parameters to one, having

β =
q[αr0(1− α) + α] + α− 1

r0(1− α)
, (6)

with q = µ∗o/µ∗i .
Hereafter we show the main steps of the variational

method so that we can obtain the ground-state energy of the
exciton. From the normalization condition of the trial wave
function we have

∫

Ωi

|ψi|2dτedτh +
∫

Ωo

|ψo|2dτedτh = 1, (7)

with Ωi andΩo the volume regions inside and outside the dot,
anddτn is the volume element either for the electron (e) or
the hole (h). So the normalization constants are given by,

A = [I2
Ni

+ I2
No

f ]−1/2 (8)

and
B = Ae(−2α−2β)RR4(1− α)2, (9)

where

INi = 2π

R∫

0

e−2αu(R− αu)2u2du, (10)

INo =
2π

β
exp(−2βR), (11)

and the constantf is,

f = R8(1− α)4e−4(α−β)R. (12)
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The expectation value of the kinetic energy is,

K(P ) =− 〈ψi| ~2
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e +
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where
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=4π

R∫

0
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×
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2
u

d
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d2

du2
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and
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= 4π
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R

e−βu

u

{(
2
u

d
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d2

du2

)
e−βu

u

}
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The expectation value for the confinement potential en-
ergy, takingVc(P ) = Ve(R,P ) + Vh(R, P ), is

V c(P ) = 〈ψo|V̂c|ψo〉 = {Ve(P ) + Vh(P )}A2fI2
No

. (16)

For the Coulomb interaction term we make a spherical
harmonic expansion,

1
|re − rh| = 4π

∞∑

l=0

l∑

m=−l

1
2l + 1

rl
<

rl+1
>

Y m∗
l (θe, Φe)

×Y m
l (θh,Φh), (17)

and using this we obtain the expectation value of the
Coulomb term, given by

V eh(P ) = −(4π)2A2J(α,R), (18)

with

J(α,R) =

R∫

0

e−2αre(R− αre)2

× [F (α, R) + G(α, re, R)]r2
edre, (19)

and

F (α,R) =
1
re

re∫

0

e−2αrh(R− αrh)2r2
hdrh (20)

G(α, re, R) =

R∫

re

e−2αrh(R− αrh)2rhdrh. (21)

FIGURE 1. Binding energy of an exciton in aGaAs− (Ga, Al)As

quantum dot as a function of the dot radius for different pressures.

The ground-state energy for the exciton is now

E(α, R, P ) = K(P ) + V eh(P ) + V c(P ), (22)

which only depends on the variational parameter, the radius
of the quantum dot, and the hydrostatic pressure. We simply
need to find the value ofα for the ground-state energy to be
a minimum, so we set,

∂E(α, R, P )
∂α

= 0. (23)

The binding energy for the exciton is defined as the free elec-
tron energyEelec plus the free hole energyEhole minus the
minimized energy for the exciton:

EEx(R,P ) = Eelec(P )+Ehole(P )−E(αmin, R, P ). (24)

The application of hydrostatic pressure modifies the lat-
tice constants, dot size, barrier height, effective masses and
dielectric constants. We present the explicit expressions for
these quantities as a function of the pressure below, where the
pressure is in kbar [14, 15]. The variation of the well width
with pressure is given by

R(P ) = R0(1− 1.5082× 10−4P ), (25)

whereR0 is the zero pressure width of the quantum dot, taken
into account by using(da/dP ) = −2.6694× 10−4a0 where
a0 is the lattice constant ofGaAs. The variation of the di-
electric constant with the pressure is given as

ε(P ) = 13.13− 0.0088P. (26)
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FIGURE 2. Binding energy for the light hole exciton, varying the
concentration of Aluminum, for a pressure of 20Kbar.

The effective electron mass in the well and barrier region
change as

m∗
e(P ) = m∗

e(0) exp(0.0078P ); (27)

herem∗
e(0) = 0.067me0 is the effective mass without pres-

sure, andme0 is the bare electron mass. We have also chosen
the light-hole effective mass asm∗

h(P ) = 0.0951me0, inde-
pendent of the pressure. For simplicity, the dielectric con-
stant, the electron and hole masses were taken to be constant
throughout the heterostructure, and equal to theGaAs-bulk
values.

We assume that the band-gap discontinuity [17, 18] in a
GaAs − Ga1−xAlxAs quantum dot heterostructure is dis-
tributed about40% on the valence band and60 % on the con-
duction band with the total band-gap difference∆Eg(x, P )
(in eV) betweenGaAs andGa1−xAlxAs given as a function
of theAl concentration and the hydrostatic pressureP as

∆Eg(x, P ) = ∆Eg(x) + PD(x), (28)

where
∆Eg(x) = 1.155x + 0.37x2, (29)

is the variation of the energy gap difference without pressure,
andD(x) (in eV/kbar) is the pressure coefficient of the band
gap given by

D(x) = −(1.3× 10−3)x. (30)

Then the height of the potential barrier for electron and
holes as a function ofAl concentrationx and the hydrostatic
pressure are given by

Ve(P ) = 0.6∆Eg(x, P ), (31)

and
Vh(P ) = 0.4∆Eg(x, P ). (32)

Using these variations the exciton binding energy is obtained
for different pressures and dot sizes using the variational
method within the effective mass approximation.

FIGURE 3. Binding energy for the light hole exciton, varying the
pressure, for a radius of 50Å.

3. Results and discussion

In our calculations we consider quantum dots with a ra-
dius in a range of 10-100̊A and Al concentrations equal to
x = 0.15,0.30 and0.45. Although the heavy excitons are
more common in experimental results, in this first study we
decided to study light-hole excitons because this mass does
not depend on the pressure.

The binding energy for a light-hole exciton as a function
of the quantum dot radius is shown in Fig. 1 for three differ-
ent hydrostatic pressure valuesP = 0, P = 20 andP = 40
kbar, respectively. The behavior of the binding energies with-
out pressure (P = 0 kbar) is similar to the previous results
found in Refs. 3 and 15. As the pressure is increased, the
quantum dot radius and the dielectric constant are reduced.
The increasing behavior of the electron effective mass is also
well-known. For all pressures we observe that the binding en-
ergy increases from its bulk value inGaAs as the dot radius
is reduced, reaches a maximum value, and then drops to the
bulk value characteristic of the barrier material as the dot ra-
dius goes to zero. Note that the binding energy increases with
the hydrostatic pressure for any dot radius, reflecting the ad-
ditional confinement due to the pressure;i.e. when the hydro-
static pressure is increased, the exciton becomes more con-
fined and the binding energy increases. Also we observe that
the pressure effect is more appreciable for narrow dots, and
the maximum position goes to small radius when the pressure
increases.

In Fig. 2, we present the binding energy in a spherical
GaAs−Ga1−xAlx quantum dot as a function of the dot ra-
dius for differentAl concentrations, with hydrostatic pressure
fixed and equal toP = 20kbar. The Aluminum concentration
determines the height of the confinement potential;i.e., low
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(high) Aluminum concentration implies a small (high) bar-
rier, therefore the behavior of the binding energy with theAl
concentration is important. For all Aluminum concentrations
considered in the present work, we observe that the binding
energy increases as the radius decreases, reaches a maximum,
and then diminishes to a limiting value corresponding to a
particular radius of the well for which it is possible to find the
free electron and hole energy level. Note that the binding en-
ergy increases with theAl concentration reflecting the higher
confinement potential, and the maximum binding energy po-
sition goes to a small radius when the Aluminum concentra-
tion increases. In addition, this plot shows that, for a givenAl
concentration, the binding energy is very great as compared
with the one- and two-dimensional cases,i.e. quantum wells
and quantum well-wires, respectively.

The dependence of the binding energy on the hydro-
static pressure appears in Fig. 3 for a quantum dot of radii
R = 50Å. The binding energy shows an approximately lin-
ear increase with the pressure; this is in agreement with
the results obtained previously in quantum wells [19]. This
curve tells us that a system operating under hydrostatic pres-
sure may be used to tune the output of optoelectronic de-
vices without modifying the physical size of the quantum
dot. We have not considered pressures beyond40kbar, be-
cause of a direct to indirect bandgap transition forGaAs at
about40kbar [20].

4. Conclusions

We have determinated the ground-state binding energy of ex-
citons inside a GaAs/Ga1−xAlxAs QD, using the variational
method, the effective mass approximation, and considering
a hydrogenic-like wavefunction for both electron and holes.
We take into account the presence of external hydrostatic
pressure and finite confinement potential dependent of theAl
concentration. Our results may be resumed thus:

(i) the hydrostatic pressure increases the binding energy
for all dot radii,

(ii) the binding energy is an increasing function of theAl
concentration for fixed radius and pressure,

(iii) the binding energy approximately follows a linear de-
pendence on the pressure, for a given radius andAl
concentration.

We hope that these results will motivate future experimental
work in this direction that will confirm our predictions.
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