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This work presents an overview of a methodology based on the Numerical Laplace Transform (NLT) and applied to the analysis of electro-
magnetic transient phenomena in power systems. The basic development of the method is described, with its main qualitative advantages
as compared to conventional time domain methods, such as the method of characteristics and professional programs for transient simulation
such as EMTDC and ATP/EMTP. Current practices for reducing errors derived from the truncation and discretization of the analytical equa-
tions are also discussed. Finally, some important results obtained recently with this tool are shown. Comparisons with time domain methods
reveal a high accuracy of the Numerical Laplace Transform in several studies.
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En este artı́culo se revisa una metodologı́a basada en la Transformada Numérica de Laplace (TNL) y aplicada al análisis de feńomenos
transitorios electromagnéticos en sistemas eléctricos de potencia. Se expone el desarrollo básico del ḿetodo con sus principales ventajas
cualitativas con respecto a métodos convencionales basados en técnicas del dominio del tiempo como son el método de las caracterı́sticas
y los programas profesionales de simulación de transitorios EMTDC y ATP/EMTP. Se discuten también las pŕacticas actuales para reducir
las fuentes de error derivadas del truncamiento y la discretización de las ecuaciones analı́ticas. Finalmente, se muestran algunos resultados
importantes obtenidos recientemente con esta herramienta. Comparaciones con métodos en el dominio del tiempo demuestran una alta
eficiencia de la Transformada Numérica de Laplace en estudios diversos.

Descriptores:Transitorios electromagnéticos; ańalisis en el dominio de la frecuencia; transformada numérica de Laplace.
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1. Introduction

Electromagnetic transients, mainly due to switching opera-
tions, faults and lightning, cause overvoltages that are danger-
ous to the power system. Therefore, an accurate analysis of
these disturbances is very important for the insulation coordi-
nation design and testing stages of power system equipment,
such as transmission lines and cables, rotatory plant, trans-
formers, grounding systems, and so on. This analysis can
be performed either with time or frequency domain methods.
However, the latter are preferred, mainly for the following
reasons:

• short computer processing time is required,

• nonlinear and time varying elements can be directly ac-
counted for, and

• it is suitable for real time simulation.

Besides, the time domain program EMTP (Electromag-
netic Transients Program) is nowadays the most widely
known and used tool for analyzing electromagnetic transients
in power systems [1].

The inclusion of frequency dependent elements, such as
transmission lines, has always been an inherent difficulty in

time domain methods. Several approaches have been applied
to overcome this problem the since early 70s [2-7], but even
the most advanced line models consider approximations that
are prone to error in systems with high frequency depen-
dence [8]. In contrast, when using frequency domain meth-
ods, such as those based on the Fourier or Laplace transforms,
frequency dependent elements can be included in a straight-
forward manner. Thus, a frequency domain method offers the
most theoretically exact transient solution.

In this work, the methodology basis of a frequency do-
main method, namely the Numerical Laplace Transform, is
reviewed, discussing its accuracy as compared with time do-
main methods and presenting some of its most recent appli-
cations.

2. Historical review of the NLT

The Fourier and Laplace transforms are very powerful anal-
ysis tools for the solution of differential and integral equa-
tions. However, their application to practical problems is lim-
ited, given that the transformation from time to frequency do-
main and vice versa can be very difficult or even impossible.
Besides, the time domain function may not be defined ana-
lytically, but rather through graphics, experimental measure-



ON THE APPLICATION OF THE NUMERICAL LAPLACE TRANSFORM FOR ACCURATE. . . 199

ments, sections or in discrete form. In particular, the analyti-
cal solution of systems with nonlinear frequency dependence,
such as transmission lines, is practically impossible. To over-
come these situations, numerical transformations have been
used instead of the analytical expressions.

The numerical inversion of the Laplace transform was
introduced in the 60s by Bellmanet al., approximating
the Laplace integral by a Gauss-Legendre polynomial [9].
From 1965 to 1973, a group lead by Mullineux applied dis-
crete Fourier transforms in analyzing transients in power
systems [10-13], naming their technique “Modified Fourier
Transform” (MFT), since the algorithm was adapted to re-
ducing truncation and discretization errors. In 1969, the MFT
was successfully applied by Medepohlet al. to the computa-
tion of transients in multiconductor transmission lines [14].

In 1973, Ametani introduced the use of the Fast Fourier
Transform algorithm (FFT) to obtain computer time sav-
ings, and the MFT became a much more attractive analysis
method [15]. The term “Numerical Laplace Transform” was
introduced in 1978 by Wilcox, who formulated the MFT in
terms of the Laplace transform theory [16].

In 1988, Nagaokaet al. developed an electromagnetic
transient program in the frequency domain based on the MFT,
which included lumped and distributed parameters, as well as
switches and nonlinear elements [17].

The Numerical Laplace Transform has been successfully
applied in analyzing transients in particular elements such as
uniform transmission lines, as well as nonuniform and field
excited transmission lines, underground cables, transformer
and machine windings, etc. [8], [18-23]. Besides, the NLT
has been widely used in testing new time domain model de-
velopments.

3. Basic Development of the NLT

Let f(t) be a causal time domain function andF (s) its image
in the frequency domain. Direct and inverse Laplace trans-
forms are given by

F (s) =

∞∫

0

f(t)e−stdt, (1)

f(t) =
1

2πj

c+j∞∫

c−j∞

F (s)estds (2)

Defining the Laplace variable ass=c+jω, (1) and (2) can
be rewritten as

F (c + jω) =

∞∫

0

[
f(t)e−ct

]
e−jωtdt, (3)

f(t) =
ect

2π

∞∫

−∞
F (c + jω)ejωtdω, (4)

whereω is the angular frequency andc is a stability constant.
It can be noticed that whenc=0, (3) and (4) correspond to the
Fourier transforms:

F (jω) =

∞∫

0

f(t)e−jωtdt, (5)

f(t) =
1
2π

∞∫

−∞
F (jω)ejωtdω. (6)

A comparison of (3) and (5) shows that the Laplace trans-
form can be obtained by applying the Fourier integral to
f(t)exp(-ct), i.e. a damped version off(t). Hence,c is also
known as a damping constant and, as will be seen, its correct
definition is fundamental in order to reduce aliasing errors.

As previously mentioned, the application of (3) and (4)
[or (5) and (6)] for real practical systems can be very difficult
or even impossible. In consequence, these expressions need
to be evaluated numerically, giving rise to truncation and dis-
cretization errors. Practical techniques for reducing numer-
ical errors when inverting from Laplace to time domain are
addressed in the following subsections.

3.1. Truncation errors

It will be assumed in this section thatc=0; application ofc as
a damping factor will be introduced in 3.2. For the numerical
evaluation of (6), the finite range [-Ω, Ω] is considered:

f(t) =
1
2π

Ω∫

−Ω

F (jω)ejωtdω. (7)

Equation (7) can be rewritten as

f ′(t) =
1
2π

∞∫

−∞
F (jω)H(ω)ejωtdω, (8)

where

H(ω) =
{

1, −Ω < ω < Ω
0, Ω < ω < −Ω . (9)

From (6) and (8):

F ′(jω) = F (jω)H(ω), (10)

and from the convolution theorem:

f ′(t) = f(t) ∗ h(t), (11)

whereh(t) is the inverse Laplace transform ofH(ω), com-
puted as follows:

h(t) =
1
2π

∞∫

−∞
H(ω)ejωtdω =

Ω
π

sin(Ωt)
Ωt

. (12)

According to (11) and (12), truncation of the frequency
spectrum is equivalent to the convolution off(t) and asinc
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function in time domain. As an example, letf(t) be a unit
step function. The waveform obtained from its convolution
with h(t) shows high frequency oscillations near the discon-
tinuities (Fig. 1), known as Gibbs oscillations, which lead
to amplitude errors that are unacceptable for transient analy-
sis purposes. This magnitude can be reduced to an acceptable
value by the introduction of some suitable data windowσ(ω),

TABLE I. Defining equations of data windows.

Window Equation

Blackman σ(ω) = 0.45 + 0.5 cos

(
π

ω

Ω

)
+ 0.08 cos

(
2π

ω

Ω

)

Hanning σ(ω) =
1 + cos(πω/Ω)

2

Lanczos σ(ω) =
1 + cos(πω/Ω)

πω/Ω

Riez σ(ω) = 1.0−
∣∣∣∣∣
ω

Ω

∣∣∣∣∣

2

FIGURE 1. Convolution off(t) andh(t).

FIGURE 2. Data windows.

e.g. by multiplying F (jω) by σ(ω). Among a variety of ex-
isting data windows for digital signal processing, Dayet al.
introduced the use of the Lanczos window for transient anal-
ysis in 1965 [10], while Wedepohl proposed in 1983 the use
of the Hamming window [24]. More recently, the Hanning
(Von Hann) and Blackman windows have also been tested,
yielding satisfactory results [8]. Figure 2 shows these data
windows, while Table I lists their respective equations.

3.2. Discretization errors

Equation (6) can be expressed in discrete form as

f1(t) =
∆ω

2π

∞∑
n=−∞

F (jn∆ω)ejn∆ωt, (13)

where∆ω is the spectrum integration step. From the sam-
pling property of a Dirac function, the term inside the sum-
mation can be expressed as follows:

f1(t) =
1
2π

∞∫

−∞
F (jω)G(ω)ejωtdω, (14)

whereG(ω) is a Dirac comb in the frequency domain:

G(ω) = ∆ω

∞∑
n=−∞

δ(ω − n∆ω), (15)

or in the time domain

g(t) =
∞∑

n=−∞
δ(t− nT ), (16)

with T = ∆ω/2π. From (14) and the definition of the inverse
Fourier transform:

F1(jω) = F (jω)G(ω). (17)

Using the convolution theorem, the discrete approxima-
tion f1(t) is given by the convolution of the original function
f(t) and the Dirac combg(t):

f1(t) = f(t) ∗ g(t) =
∞∑

n=−∞
f(t− nT ). (18)

Equation (18) shows thatf1(t) is obtained from a super-
position of f(t) and its time-displaced versionsf(t + T ),
f(t + 2T ), etc., as shown in Fig. 3. This causesaliasinger-
rors, which can be reduced by multiplyingf(t) by the damp-
ing factor exp(-ct), as in (3), so thatf(t) tends to zero for
t > T . Functionf1(t) will accurately approximatef(t) in
the interval 0< t < T if the damping constantc is appro-
priately chosen. Given that exp(-ct) is used to dampf(t), it
could be supposed that a high value forc is required. Un-
fortunately, other errors arise ifc is chosen too high, since
the expression exp(ct) in the inverse Laplace transform acts
as an amplifier which, when multiplied byf(t), magnifies
the remaining errors related to truncation and quantification.
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Determination ofc is still mostly based on empirical rules.
Wilcox [16] proposed the following criterion:

c = 2∆ω. (19)

Wedepohl [24] found a relationship between the number
of samplesN and the choice ofc, given by

c =
ln

(
N2

)

T
. (20)

Using (20), aliasing errors can be directly reduced by in-
creasing the number of samples.

3.3. Direct numerical Laplace transform

Consideringf(t) to be not only causal but also real and mea-
surable, and taking a finite integration range [0,T ], (3) can be
written in discrete form according to

F (c + jm∆ω) =
N−1∑
n=0

f(n∆t)e−cn∆te−jm∆ωn∆t∆t, (21)

wheren= 0, 1, 2,. . . ,N -1 and∆t is the time step. More-
over, (21) can be expressed in terms of the well known Dis-
crete Fourier Transform (DFT):

Fm =
N−1∑
n=0

fnDn exp
(
−j2πmn

N

)
, (22)

where

Dn = ∆t exp
(
−cn∆t− jπn

N

)
. (23)

3.4. Inverse numerical Laplace transform

Taking a finite integration range [0,Ω] and including the data
windowσ(ω), (4) can be expressed as

f(t) ∼= ect

π
Re





Ω∫

0

F (c + jω)σ(ω)ejωtdω



 . (24)

For the numerical evaluation of (24), an odd sampling
of ω is considered in order to avoid singularities ofF(jω) at
ω=0. Bearing this in mind, the discrete form of (24) is as
follows:

f(n∆t) =
ecn∆t

π
Re

{
2N∑

m=1,3,5,...

F (c + jm∆ω)

× σ (m∆ω) ejm∆ω n∆t2∆ω
}

. (25)

Equation (25) can be expressed in terms of the Inverse
Discrete Fourier Transform (IDFT):

fn=Re

{
Cn

[
1
N

2N∑
m=1,3,5,...

Fmσm exp
(

j2πmn

N

)]}
, (26)

FIGURE 3. Superposition off(t) and its time-displaced versions.

FIGURE 4. Circuit for example 4.1.

FIGURE 5. Arrangement of the conductors for example 4.1.

where

Fm = F (c + jm∆ω), (27)

fn = f(n∆t), (28)

Cn =
2

∆t
exp

(
cn∆t +

jπn

N

)
, (29)

σm = σ(m∆ω). (30)

Equations (22) and (26) can be solved using the FFT (Fast
Fourier Transform) and inverse FFT, respectively, to get com-
puter time savings.
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TABLE II. Effect of increasing N in EMTDC.

max. absolute

N difference max. relative

(p.u.) error (%)

1×1024 0.1249 7.1213

2×1024 0.0796 4.5408

4×1024 0.0621 3.5451

6×1024 0.0529 3.0156

8×1024 0.0522 2.9768

10×1024 0.0551 3.1433

FIGURE 6. Voltage at phase C of the receiving end of the line.

4. Application examples

In order to illustrate the use of the NLT, three application ex-
amples related to electromagnetic transient phenomena are
presented in this section: sequential energization of a trans-
mission line, fast transient overvoltage in machine winding,
and switching transients related to the restoration process of
a power network. Comparisons with EMTDC, ATP and the
Method of Characteristics are provided to show the accuracy
of the NLT.

4.1. Sequential energization of a transmission line

A 400 kV 3-phase transmission line shown in Fig. 4, with the
conductors arrangement depicted in Fig. 5 is considered. Se-
quential energization with closing times of 3, 6 and 9 ms for
phases A, B and C, respectively, is analyzed using the NLT
and the commercial time domain program EMTDC, with a
total observation time of 15 ms. The Phase Domain Line
Model, which takes into account the frequency dependence
of the line electrical parameters, was used for the EMTDC
simulation [7]. The number of samples for the NLT algo-
rithm was fixed to 1024 (210), while in EMTDC it was in-
creased from 1024 to 10×1024, for a total of 10 simulations.

TABLE III. Winding data.

Slot width 0.75m

Slot material Iron

Turn area 3×9 mm

Turn length 3.8 m

Slot length 0.75 m

Overhang length 1.15 m

Conductor material Copper

FIGURE 7. Winding representation using line segments.

FIGURE 8. Voltage at node B of the winding.

In Fig. 6, the transient overvoltage at phase C of the receiving
node is shown, withN=10×1024 in EMTDC.

Table II shows a comparison between NLT and EMTDC
results for different number of samples of the latter. It can
be noticed that from 6×1024 onwards, the relative error be-
tween the two methods remains at approximately 3%. It is
clear that the number of samples required in EMTDC for this
example is on the order of 6 times those of NLT to assure
similar results.

4.2. Fast transient overvoltage in machine winding

A machine winding is modeled using 6 distributed parame-
ter segments, as shown in Fig. 7. The coil electrical param-
eters are computed according to [25] and the data listed in
Table III. A unit step voltage source is connected to node A,
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FIGURE 9. One-line diagram for example 4.3.

FIGURE 10. Voltage at phase A of the open end of the line L2.
Same number of samples for NLT and ATP.

FIGURE 11. Voltage at phase A of the open end of the line L2.
Number of samples for ATP 15 times greater than with NLT.

while node B is left open. Figure 8 shows the voltage wave-
form at node B, comparing the results with those obtained
with the Method of Characteristics (MC) [26]. A better ap-
proximation between the waveforms could not be achieved,
since the MC requires a rational approximation in order to
consider the frequency dependence of the coil parameters,
which can be difficult for non-smooth frequency spectra.

4.3. Switching transients related to the restoration pro-
cess of a power network

In order to analyze transient overvoltages related to transmis-
sion line energization during a restoration process, the NLT
and the superposition principles [8], [18] were applied to the
test system shown in Fig. 9. Each switch operation is per-
formed in separated simulation processes to obtain more ac-
curate results. Waveforms are compared with those obtained
in the time domain using the ATP. To analyze the most severe
overvoltages, each sequential energization is considered to be
critical, i.e. each switch pole closes at the maximum voltage
value present, and neither pre-insertion resistors nor arresters
are included. The ATP simulation was performed using the
J. Marti Line Model, which considers the frequency depen-
dence of the line electrical parameters [6].

As an example, Fig. 10 shows transient overvoltage at
phase A of the open end of line L2 when energized from its
left end, with line L1 previously connected. For both ATP
and NLT simulations,N=2048 samples were used. An im-
portant difference in waveforms obtained with the frequency
and time domain methods can be noticed. Closing times of
switch poles were 0.475, 0.47222 and 0.47777 s for phases A,
B and C, respectively, considering a damping time of 0.4666 s
(28 cycles) for the transient produced by previous connection
of line L1.
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Figure 11 shows transient overvoltage at phase A of the
same line, when the frequency domain analysis is performed
with N=2048 but 15N points are considered in ATP. This
gives very similar results, showing that in this case the fre-
quency domain method is much more accurate than ATP.

5. Conclusions

In this article, the basic development of the Numerical
Laplace Transform has been presented. This technique has
proven to be efficient for the analysis of electromagnetic tran-
sients in power systems. The main advantages of the NLT are
summarized below:

1. The modeling of components with distributed and fre-
quency dependent parameters can be done in a straight-
forward manner.

2. Since its basic principles are different from those of
time domain methods, the NLT is very useful to veri-
fying time domain methods, as well as in the develop-
ment of new time domain models and techniques.

3. The application of the NLT can be very important when
a high accuracy of results is mandatory. The examples
given show that time domain methods may require a
much smaller discretization step.
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