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Effect of the variational symmetries of the lagrangian on the
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Making use of the expression for the propagator in terms of path integrals, we study the effect of certain variational symmetries of a
Lagrangian on the corresponding propagator. We also show that by considering a point transformation that relates two different Lagrangians
one can obtain a relation between the corresponding propagators.
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Haciendo uso de la exprési para el propagador eartinos de integrales de trayectoria, estudiamos el efecto de ciertad ainvetia-
cionales de una lagrangiana sobre el propagador correspondiente. Mostrameés tquehiconsiderando una transforndagpuntual que
relaciona dos lagrangianas diferentes, se puede obtener unamedatie los propagadores correspondientes.
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1. Introduction

. . . . e (rlﬁtl)
In (classical) analytical mechanics, certain families of trans-

formations are related with conserved quantities. In the La- K(ry,tisro,t) = Dir(t)}
grangian formulation, each one-parameter family of varia- (ro,to)
tional symmetries of the Lagrangian leads to a constant of t

motion (seeg.g, Ref. [1] and the references cited therein), i .
while in the Hamiltonian formulation, each one-parameter o Lir, ¥, 2)dt, 2)
family of canonical transformations that leave the Hamilto- to

nian invariant is associated with a constant of motion. ThiswhereL(r, t, ) is the Lagrangian of the classical system (we
last result has an analog in quantum mechanics, where eagy) ot need to be more specific about this expression, be-
one-para_metgr family of unitary operators that leave invariant 5 ,se in the rest of this paper we will not use it for explicit
the Hamiltonian operator leads to a conserved operator [2L.5|cylations). This relation suggests that the symmetries of
This analogy might be expected owing to the close relationy,e | agrangian determine symmetries of the propagator and,
ship between the Hamiltonian formulation of classical me-herefore, that the variational symmetries of the Lagrangian
chanics and the standard formalism of the non-relativistiGy, st determine some conserved operators of the quantized
quantum mechanics. system. One of the aims of this paper is to study such con-
However, the quantum dynamics can be also related dinections.
rectly with the Lagrangian formalism through the expression  |n quantum mechanics, the symmetries and the conserved
for the time evolution operator (propagator) in terms of pathquantities are usually defined making use of the Hamiltonian
integrals (seee.g, Refs. [3-6]). operator: A unitary operatof]’ (which may depend on the
For example, in the case of a quantum system formed bjime and on one or several parameters), is a symmetry (of the
a spin-0 particle in the three-dimensional space, the propagauantum system, or of the Hamiltonian) if
tor, K (r1,t1;r0,%), Which is the wavefunction at the point oT
ry, at timety, if the particle was localized at), at timet,, is T 'HT —ihT'=—— = H, 3)
related to the time evolution operatéf(ty, ¢y), by means of ot
and a Hermitian operatord (which may depend explicitly

K(ry,t1;70,t0) = (r1|U(t1,t0)|ro) (1) on the time, in spite of the fact that we are making use of the
Schiddinger picture), is conserved if
and, as is well known, Feynman’s rule allows us to find the 9A

propagator through ihﬁ +[A, H] = 0. 4)
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Making use of these definitions one can prove thatlits  for all values oft, andt; . With the aid of Egs. (5) and (6), the

conserved then the unitary operatéis= exp(—isA/h), for  relationship between conserved operators and symmetries of

s € R, form a one-parameter group of symmetriedbéind, a quantum system, mentioned in the Introduction, is clearly

conversely, if the unitary operato¥g form a one-parameter Vvisible.

family of symmetries ofi then, assuming thd, is the iden- Since the propagator is given by the matrix elements of

tity operator,A = ih9T,/ds|s=o is conserved [2]. (It may the time evolution operator in the basis formed by the eigen-

be noticed that iff” satisfies (3), then it also satisfies (4); the states of the position operator, Egs. (5) and (6) can be written

essential difference between Egs. (3) and (4) is thatin the firgh terms of the propagator which, in turn, is related to the La-

case the operatd@ must have an inverse.) grangian of the corresponding classical system by means of
In this paper we show that Feynman’s formula (2) allowsthe path integral (2).

us to determine the effect of certain variational symmetries of

L on the propagator, which, in turn, allows us to find the cor-

responding conserved operators. In Sec. 2, we charactericde  Effect of the variational symmetries of the

the symmetries and the conserved operators employing the  Lagrangian on the propagator

time evolution operator. In Sec. 3, we relate variational sym-

metries of the Lagrangian with conserved operators by mearis this section we begin by recalling some basic facts about

of the Feynman integral. In Sec. 4 we show that when twahe variational symmetries of a Lagrangian. As we shall

different Lagrangians are related by means of an approprishow, certain one-parameter families of variational symme-

ate point transformation, one can readily find one propagatatties of L correspond to symmetries of the propagator.

in terms of the other. Throughout the paper we give several By definition, a variational symmetry of a Lagrangian,

examples. L(qi, ¢, t), is a coordinate transformatiogf = ¢}(g;,1),
t' = t'(g;,t), such that
2. Symmetries and conserved operators in Lt d
terms of the evolution operator Lg; i V') o = Llaindis ) + - F (@i 1), (7)

Taking into account what is meant by a symmetry operatorwhereg, = dq}/dt’ andF(g;, t) is some real-valued function
T, of a quantum system, which can depend explicitly on theof ¢; andt, only. There exists a constant of motion associated
time, we could take as the definition of such an operator thevith each one-parameter family of variational symmetries of

condition L,q, =q(qj,t,s),t" =t'(g;,t,s), wheres is a real param-
eter that takes values in some neighborhood of zero, given
T(tl)U(ﬁ, to) = U(th to)T(to), (5) by
. " 0L oL
for all values ofty andt; (roughly speaking, ifl" is a sym- Z —mi+ElL - Z —¢ |-G (8)
- — 0g; 04; ’
metry operator, then one should get the same result by ap i—1 i—1

plying T' at some initial time and then allowing the system to
evolve, or letting first the system to evolve and then applylng
the transformatiorf’). In fact, we can readily demonstrate aq.
that Eq. (5) is equivalent to Eq. (3): Differentiating both sides ni(g;,t) = 8;
of (5) with respect ta; and evaluating these derivatives at
to = t1, we obtain are the components of the so-called infinitesimal generator of
OT(t) OU (11, 0) the symmetry transformations, aldt{q;,t) = OF/0s|s—o.
YU (ty,t0) + T(tl)l’o} (We are assuming that fer = 0, ¢;(g;,t,s) andt'(g;,t,s)
oty 2N P, reduce tay; andt, respectively.) For a given Lagrangian, the
{8U(t1, to) functionsn;, £, andG, are determined by

where

ot’

)

s=0

s=0

0]

to=t1

2”2 [GL aL (dm B dg)]
Making use of the fact that the time evolution operator must P 9¢;" " 9g; \dt T
satisfy de 4G

in 200 10) _ o), LertT-T

oty

and thatl/ (¢1, ¢,) is the identity operator, we obtain (3). (seee.g, Ref. [1] and the references cited therein).
In a similar manner one verifies that Eq. (4) is equivalent ~ Taking into account that the “path differential measure,”
to the condition D{r(t)}, comes from integration on the coordinates and a
factor that depends on the time interval, we restrict ourselves
A(t)U (t1,t0) = Ulty,t0) A(to), (6) to coordinate transformations with Jacobian equal to 1 and
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dt’ /dt = 1, so that the measure is invariant. Then, by com-wherep is the momentum operator, Eq. (14) can also be writ-
bining Egs. (2) and (7) we find that, under a variational sym-+en as
metry of the Lagrangian satisfying these conditions, the prop-

agator transforms according to (@1le™VAPRU (1, t0)e!V 1P M)

K ()t xh, 1) = K (r1, s o, fo) €/ 1F (100 =F(ro.t0)l /b = ([T (1, t9)e T 0Pz,
. . . where all the reference te, andx, (which are two arbitrary
. respectively. Hence, we have the relation betwagerators
(e} [U (¢, 0)Irp) = (e[t t0/

) —ivf,lp/hU ti.t iVtop/h
« U(tl,to)e_lF(r’tO)/h‘r()>, (11) e ( 1y 0)6

— P @I (4 to)e I F @)/
wherer is the positioroperator. Expressingdr) and|r}) in

terms of|ry) and|r, ), respectively, one obtains a relation of which amounts to

the form (5), which allows us to identify a symmetry opera-
tor associated with the variational symmetrylof(Note that

this is true for discrete or continuous transformations.) = Ul(ty, to)e F'(@to)/h=iVion/h

efiF(zatl)/heiivtlp/hU(tla to)

3.1. Examples Comparing this last equation with Eq. (5) we conclude that
the operator

As a first simple example, we consider a particle of mass .

a uniform gravitational field, in one dimension. The standard Ty (t) = exp [1 (mvx —

Lagrangian is h

mV?2t B mgVt?
2 2

i
L(x,i,t) = %i‘Q — mgzx (12) X exp (—thp) (16)

(in the case of a uniform electric fieldy, we replacemg IS @ Symmetry of the system and, therefore, its infinitesimal

by —eE, wheree is the electric charge of the particle). This 9enerator
2

Lagrangian possesses a five-dimensional group of variational . OTy mgt
symmetries [1]. One subgroup of these variational symme- At) =ih v = —mx + B +tp,
tries are the Galilean transformations V=0
is conserved df. Ref. [2]). Furthermore, since
=z -Vt t'=t, (13) Ty = exp(—iVA/h), it follows that (16) must be equiv-

alent to
whereV is a real parameter that takes the place of the param-

; 2
eters employed above. In fact, a straightforward computa- Ty (t) = exp [—1 (—mVJE + mgVt + th)} .
tion shows that h 2
m Note that we did not have to know the explicit expression of
[N Y . 2 . .
L{z', &', t') = (& = V)" —mg(x — Vt) = L(z,,1) the propagator or of the evolution operator.

A second example, more involved than the previous one,

2 2
+ d (—mV:L' + mV=t + mgVt > ’ is given by the standard Lagrangian for a particle of mass
dt 2 2 in a uniform gravitational field,
which allows us to identify the functioR'(z, t) appearing in I — @(x-z + %) — mgy.
Eqg. (7). Thus, in this case, Eq. (11) takes the form 2
As shown in Ref. [1], solving Eg. (10) one finds that a varia-
(21 = Vta|U(ty, to)|wo — Vo) tional symmetry of this Lagrangian is given by the functions
_ <x1|eiF(m’tl)/hU(t1,to)e_iF(m’tO)/h|m0>7 (14) £=0, m=y+ %th’ N = —1. (17)

with The corresponding group of coordinate transformations is

1 1 found to be

F(z,t) = —mVz + —mV?t + —mgV>.

2 2 x’:accoss—&-ysins—&—%gt2sins7

Using the well-known fact that, for any real number, y = —xsins 4 ycoss + %th(cos s—1), (18)
|zo + a) = e71%P/P|x0), (15) t' =t
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In fact, a straightforward computation shows that whereL(") andL(?) are two Lagrangians with the same num-
ber of degrees of freedom attig;, t) is a function ofy; andt
L(z',y' 2,9 1) = L(z,y,%,9,t) only [cf. Eq. (7)]. For instance, the coordinate transformation
d .
+m9 [ty(1 — coss) + tasins + 3gt°(1 — coss)] o' =z + Jgt?, t'=t, (20)

which is of the form (7), with relates the Lagrangians

D (g i 4) = Limi? @ (g i t) = Lmi2 —
F =mg [ty(1 — cos s) + tzsins + 2gt3(1 — cos s)] . L@, ,8) = gmd”, L, ,) = gma” — mgz,
. i corresponding to a free particle and a particle in a uniform
The_gffect of the tra_nsformatlon (18) on the eigenstates Obravitational field, respectively. Indeed,
the position operators i€f. Eqgs. (17)]
de/
r') = exp { —is[(y + 39t°)p= — xpy]/} |r) at
1

= exp [is(L: — 59t°pa) /] Ir), = gmi® + mgti + 3mg*t*

LW i) — = im(& + gt)?

=152
wherer = (z,y) and L, is the angular momentum operator =L T Mgt

— yp.. Hence, from Eq. (11), we have d
TPy — YD, g.(11) —&-&(mgtx—l—%mg%?’),

o is(L: _%9t12p’”)/hU(t1, to)eis(Lz_%gtozpw)/h

which is of the form (19), with F(z,t) = mgtz
= I F@yt)/AL (4 to)e~ F@yto) /b, +(1/6)mg?t3. _ _
From Eqg. (2) we find that, under a coordinate transfor-
which implies that the operator mation with Jacobian equal to 1 add' /d¢ = 1, such that

Eqg. (19) holds, the propagators are related by
. . 1 .2
_ —iF(z,y,t)/h ,—is(L.—5gt*p.)/h
T=e ¢ ’ KW(r), t)5rf,tg) = K® (r1, 11510, t0)

is symmetry of the system [see Eq. (5)] and that i
Yy y y [ q ( )] X expf[F(rl,tl) — F(I‘()7t())], (21)

h
A=ih 0;; = L. — $gt°p, + mgtx or, in terms of the evolution operators,
= rr(L) (4 4 /
is conserved. (It may be noticed that, fpr= 0, the trans- (ry[U (81, 10)Iro)
formations (18) become rotations in thg-plane about the = (11| TR/ ) (1 tg)e IF @)/ Ppg)  (22)
origin and, in that case, the conserved operafors just the
angular momentum, as one would expect.) 4.1. Examples

) ) ) As is well known, the propagator for a free particle in one
4. Pointtransformations that relate two differ-  gimension is

ent Lagrangians — (g — 20)?

K(l)(Il,tl;mo,to) = " .
Apart from the coordinate transformations that leave invari- 2mih(t; — to) 2h(t1 — to)
ant a given _Lagrangian, the_coordinate transformations th.%ence, making use of Egs. (21) and (20) we find that the
relate two different Lagra_nglans are also very useful.- .Thls ropagator for a particle in a uniform gravitational field must
procedure has been applied previously to some specific e>E—e given by
amples: In Ref. [7] the effect of extended Galilean trans-
formations on the one-dimensional Sgtinger equation is @) m im(x, — z))?
studied making use of path integrals and in Ref. [8], con- K (#1,t1; %0, t0) = 2mih(ty — to) P on(t — o)
sidering also Galilean transformations, the propagator for a )
charged particle in a crossed uniform electromagnetic field is exp 1 (mgtoa?o + Lmg?te® — mgtia, — lmg2t13)
obtained from that of a charged particle in a uniform mag- h 6 6

netic field. m im 2 2
We shall consider coordinate transformations = \/ 9inAz P 2nAL [(@1 = 20)* = g1 +20) (A1)
4 = q}(q;,t),t' =t'(g;,t), such that
- 117292(At)4}7

. dt/ . d
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On the other hand, making use of Egs. (15) and (20) irof a charged particle in a uniform magnetic field perpendicu-

22) we obtain the relation between the evolution operators
p
eigtlzp/2h[7(1) (t17 tg)e_igt02p/2h

— eiF(’JUﬂh)/hU(?)(thto)e—il‘ﬂ(ﬂvﬂfo)/ﬁ7
which means that the operator

. 1 2.3 ;2
e 1(mgtm+6mg t°)/h elgt p/2h

o 1F(z,t)/h Jigt?p/2h _
maps solutions of the Sabdinger equation for a free particle
into solutions of the Sclidinger equation for a particle in a
uniform gravitational field¢f. Refs. [7, 9] and the references
cited therein).

Another well-known example corresponds to the La-
grangians

2
w
— @+,

L0 (@, d.4,t) = 5 (@ +37) - 7

2

of a two-dimensional isotropic harmonic oscillator, and

.. m, . . eBy, . .
L(Z)(J,’7y,$7y,ﬁ) = 5(.%'2 + y2) + y(l'y - yx),

lar to thexy-plane, provided thaB, = 2mwc/e (or, equiva-
lently, w = eBy/2mc). One readily verifies that the relation
(19) is satisfied with

' = xcoswt — ysinwt, y = rsinwt + ycoswt,

t' = t,andF = 0. Thus, we conclude that the opera-
tor T = exp(—iwtL,/k) maps solutions of the Sabdinger
equation for the two-dimensional harmonic oscillator into so-
lutions of the Schisdinger equation for a particle in a uniform
magnetic field.

5. Concluding remarks

Apart from the expression (2), the propagator can also be
written in terms of path integrals in the phase space &seg,
Refs. [10, 4]) and therefore one could also consider the effect
of canonical transformations on the propagator. The possi-
bility of using canonical coordinates is highly interesting, be-
cause one can relate (locally at least) any pair of systems with
the same number of degrees of freedom by means of a canon-
ical transformation.
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