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Scattering of elastic waves by shallow elliptical cracks
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Comprehensive studies in engineering have dealt with diffraction phenomena in unbounded elastic domains containing cracks, while some
others have been carried out to investigate diffraction by discontinuities located near a free surface. In this last case, the presence of cracks
significantly affects wave motion and, in some cases, large resonant peaks may appear. In order to study these resonant peaks and describe
how they respond, we propose the use of the Indirect Boundary Element Method to simulate 2D scattering of elastic P- and SV-waves. The
geometry considered for the cracks is elliptical, but in some cases comparison of its behavior is made with that of planar cracks or cavities.
This method establishes a system of integral equations that allows us to compute the diffracted displacement and traction fields. We present
our results in the frequency domain. In the case of planar cracks located near the free surface, we validate the method by comparing our
results to those of a previously published study. We develop examples of various elliptical crack configurations to show resonance effects,
where one can observe important variations in the resonance peaks in the frequency domain. The results shown here can be used to detect the
presence of subsurface cracks. Nevertheless, it is difficult to determine the shape (planar or elliptical) of the discontinuity that is embedded
in the halfspace.
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Extensos estudios en ingenierı́a han sido encaminados a la comprensión de feńomenos de difracción de ondas en dominios elásticos infinitos
que contienen grietas; algunos otros se han desarrollado para investigar la difracción de ondas debidas a discontinuidades cercanas a una
superficie libre. En estéultimo caso, la presencia de grietas afecta significativamente el movimiento de las ondas y, en algunos casos, pueden
observarse grandes picos de resonancia. Para estudiar estos picos de resonancia y describir como ellos pueden ser afectados, proponemos el
uso del Ḿetodo Indirecto de Elementos Frontera para simular la difracción de ondas P y SV en un espacio 2D. Se considera una geometrı́a
eĺıptica para las grietas, pero en algunos casos se hace referencia a resultados obtenidos para grietas planas y cavidades. Este método establece
un sistema de ecuaciones integrales que nos permite calcular el campo difractado para desplazamientos y tracciones. Presentamos resultados
en el dominio de la frecuencia. En el caso de grietas planas localizadas cerca de la superficie libre, nuestro método se valida respecto a otra
investigacíon previa. Desarrollamos varios ejemplos para configuraciones elı́pticas de grietas para mostrar los efectos de resonancia, donde
se pueden apreciar importantes variaciones en los picos de resonancia en el dominio de la frecuencia. Los resultados que se muestran en este
trabajo pueden utilizarse para detectar la presencia de grietas bajo la superficie libre. No obstante, resulta difı́cil determinar la forma (plana
ó eĺıptica) de las grietas que se encuentran bajo el semiespacio.

Descriptores:Ondas eĺasticas; difraccíon; grietas someras; grietas elı́pticas.

PACS: 62.30.+d

1. Introduction

Cracks are very important in fracture mechanics and in other
engineering areas. Methods to facilitate their identification
and characterization are always welcome. In this sense, it is
crucial to have information that allows us to analyze the pres-
ence of near free surface cracks of any shape. The diffracted
wave field for planar cracks and cavities has been extensively
treated in Rodŕıguez-Castellanoset al. [1]. In the present
paper, we develop several examples to show the diffracted
displacement field using different elliptical crack configura-
tions.

The propagation of elastic waves in complex structures
has been studied using several numerical and analytical meth-
ods. When the medium to be analyzed is formed by lay-

ers separated by interfaces of an arbitrary shape, or contains
cracks or inclusions, the use of boundary integral equations or
boundary element methods is appropriate (Bouchon [2]). An
important and detailed review of boundary element methods
applied to elastodynamic problems is presented in Manolis
and Beskos [3], Beskos [4,5], while the methods focusing on
the interaction of elastic waves with cracks were treated by
Zhang and Gross [6]. In Ref. 7 a study on the propagation
of elastic waves in a cracked medium was presented. The
incidence of P-waves and planar cracks was discussed, and
results in time and frequency domains were shown.

In the present work, we use the Indirect Boundary Ele-
ment Method (IBEM) to study the wave motion caused by
near free surface elliptical cracks, under the incidence of
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P- and SV-waves. Resonant effects are discussed in detail,
and wave motion for several crack models is shown. A brief
review of the main aspects of our formulation is described
below.

2. Brief description of the method

2.1. Integral Representation

We use the IBEM based on the formulation of Sánchez-
Sesma and Campillo [8]. Next, we shall summarize the main
aspects of this formulation.

Let us consider a domain V with boundary S. If we as-
sume that the medium is elastic and linear, the displacement
field under harmonic excitation can be written, neglecting
body forces, by means of the single-layer boundary integral
equation,

ui (x) =
∫

S

φj (ξ) Gij (x; ξ) dSξ, (1)

whereui (x) is the i-th component of the displacement at
point x. HereGij (x; ξ) is the Green’s function for the full
space, which represents the displacement produced in the di-
rectioni atx due to the application of a unit force in direction
j at pointξ, andφj (ξ) is the force density in the direction j at
point ξ.

From a limiting process based on equilibrium considera-
tions around an internal neighborhood of the boundary, it is
possible to write, forxonS,

ti (x) = cφi (x) +
∫

S

φj (ξ) Tij (x; ξ) dSξ, (2)

whereti (x) is the i-th component of the traction,c = 0.5 if
x tends to the boundaryS from inside the region,c = −0.5
if x tends toS from outside the region, andc = 0 if x is

not on S.Tij (x; ξ) is the Green’s function for traction for the
full space. Green’s functions for displacement and traction
and additional details about Eqs. 1 and 2 can be found for in-
stance in Śanchez–Sesma and Campillo [8], and Rodrı́guez-
Castellanoset al. [1,7,9].

2.2. Formulation

Considering the configuration shown in Fig. 1a, it is conve-
nient to divide the domain into two regions (regions R and E
in Fig. 1b); for each region, adequate boundary conditions
must be imposed. A fictitious interface between regions R
and E is used, following the multiregion concept, in order to
handle discontinuities of any form. Moreover, this interface
allows us to use the Green’s functions, as mentioned above,
where no hypersingular integrals are considered. The scatter-
ing of elastic waves by cracks using the direct BEM leads to
hypersingular integrals when imposing boundary conditions
(tractions at the crack); this aspect has been the subject of
several works (e.g. Chen and Hong, [10]; Aliabadi, [11] and
Pineda and Aliabadi [13]). However, when the multi-region
concept is invoked, the solution of hypersingular integrals is
not required.

For the free surface (∂3R), the traction-free boundary
condition must be enforced (tRi (x) = 0). Similarly, the
same condition should be applied to the crack’s faces (∂2R
and∂2E). Tractions and displacements must be continuous
at the interface between the two regions (∂1R = ∂1E). Be-
cause of linearity, the total displacement and traction fields
can be expressed by the superposition of the known reference
solution (i.e. the analytical solution in the halfspace with-
out cracks) and the diffracted field, that isu = uo + ud and
t = to + td, where the superscript 0 indicates the reference
solution (i.e., P- and SV-waves) andd the diffracted field ob-
tained by means of our integral representation (Eqs. 1 and 2).
These five conditions allow us to write a system of integral
equations for the unknown force densities:

FIGURE 1. a) An elastic cracked medium under the incidence of P- and SV-waves; b) Boundary element Mesh for the problem considered.
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cφR
i (x) +

∫

∂R

φR
j (ξ) TR

ij (x; ξ) dSξ = −to
R

i (x),

x ∈ ∂3R, (3)

cφR
i (x) +

∫

∂R

φR
j (ξ) TR

ij (x; ξ) dSξ = −to
R

i (x) ,

x ∈ ∂2R, (4)

cφE
i (x) +

∫

∂E

φE
j (ξ)TE

ij (x; ξ) dSξ = −to
E

i (x) ,

x ∈ ∂2E, (5)
∫

∂R

φR
j (ξ)GR

ij (x; ξ) dSξ −
∫

∂E

φE
j (ξ)GE

ij (x; ξ) dSξ

= uoE

i (x)− uoR

i (x) , x ∈ ∂1R = ∂1E, (6)

and

cφR
i (x) +

∫

∂R

φR
j (ξ)TR

ij (x; ξ) dSξ − cφE
i (x)

−
∫

∂E

φE
j (ξ)TE

ij (x; ξ) dSξ = to
E

i (x)− to
R

i (x) ,

x ∈ ∂1R = ∂1E, (7)

To solve numerically the system of integral equations 3-7,
we discretize them appropriately. In general, the boundaries
of each region are discretized into linear segments whose
size depends on the shortest wavelength (six boundary seg-
ments per wavelength). The force densities orφ’s are taken
as constants along each segment, and a Gaussian integra-
tion (or analytical integration, where the Green’s function
is singular) is performed. The system to be solved is com-
posed of2 (N + 2 (M + K)) equations, where N, M and K
are defined in Fig. 1b. Once the system of integral equa-
tions is solved, the unknown values of theφ’s are obtained,
and the diffracted displacement and traction fields are com-
puted by means of Eqs. 1 and 2, respectively. Additional
details regarding the discretization procedure can be found in
Rodŕıguez-Castellanoset al. [9].

The IBEM can be seen as a numerical application of Huy-
gens’ principle. Therefore, to reconstruct a given wave front,
all points at the free surface and the continuous interface
which act as sources and radiate energy must be taken into
account. The truncation of the free surface induces artifi-
cial perturbations caused by diffractions at the edges of the
model. However, these perturbations are characterized by
small amplitudes, and their reflections inside the model are
negligible.

3. Validation of the method

In order to validate the method presented, we compared its
results with those obtained by Achenbach, Lin and Keer [12]
for a horizontal planar crack with a total length 2a lo-
cated in a depthd from the free surface. They show
several curves that represent dimensionless horizontal dis-
placementsUL (see Achenbach, Lin and Keer [12] for di-
mensionless process used), versus dimensionless frequency
ω d/CR, whereω = circular frequency,d = crack depth and
CR = Rayleigh’s wave velocity. Four ratiosd/2a = 0.2, 0.4,
0.6 and 1.0, and a range of dimensionless frequencies given
by 0 ≤ ωd/CR ≤ 3.0 were considered. These curves show
different peaks, which are associated with resonances of the
layer located between the top crack face and the free sur-
face. These resonance frequencies correspond to the funda-
mental frequency for each case,d/2a. For the smallest ratio
(d/2a = 0.2), it is observed that the resonance peak is pre-
sented earlier than for the other ratios studied. This is due to
the small dimension ofd for this layer as compared with the
other cases. As the ratiod/2a increases (e.g. d/2a = 1.0),
the peaks become less sharp and therefore it is more difficult
to determine their resonance frequency. In this paper we omit
the details about the validation of our method because it was
already handled in Ref. 9.

4. Cases of cases

In Figs. 2a and b, respectively, we plot the dimensionless
frequency versus the horizontal (u) and vertical (w) compo-
nents of the displacement at point A (see Fig. 1a, A is always
placed atx1/a = −1) for a planar crack and an elliptical
crack under vertical P-wave incidence. Here we compare the
responses at different depths in the two configurations (pla-
nar and elliptical crack). The depthd of the crack is chosen
in such a way that the ratio isd/2a = 0.2, 0.4 and 0.6. The
shape of the elliptical crack can be determined by the ratio
b/a = 0.20. Cracks located near the free surface create res-
onant effects that produce large resonance peaks in the am-
plitude spectrum. When these cracks are located deeper, the
resonant peaks become less sharp. If we assume the planar
crack as a reference, we can observe that the behavior of an
elliptical crack is very similar to this reference (e.g. peaks are
present nearωd/CR = 0.28, 0.65 and 1.03 for the horizontal
and vertical components of displacement). In the case of the
shallowest elliptic crack (d/2a = 0.2), the second peak be-
comes sharper and shifts to a lower frequency (see Fig. 2b),
and as the ratiod/2a of the elliptic crack increases (with val-
uesd/2a > 0.2), its response comes closer to that of the
planar crack. The vertical displacements for all cases show
similar behavior and resonance peaks are clearly observed.
For the two cases, we can see that the ratiod/2a of the crack
determines the position of the resonance peaks. The distance
between the top face of the discontinuity and the free surface
controls the behavior at a low frequency.
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FIGURE 2. a) Displacement amplitude spectrum for a planar crack; b) Displacement amplitude spectrum for an elliptical crack. In both cases
vertical incidence of P-waves is considered.

FIGURE 3. Resonance frequency versus depthd/2a for planar and
elliptical cracks and a cavity.

In Fig. 3, the first dimensionless resonance frequency
$d/CR ($ = 2πf̄) versus the ratiod/2a for planar and
elliptical cracks and cavities is plotted from the results for
the horizontal components of Fig. 2. Let us suppose that the
depthd is known, either from comparison of surface wave
results for incident waves propagating into the halfspace and

towards the free surface, or from an independent pulse echo
experiment. Then, if the resonance frequency has been deter-
mined experimentally, the lengtha can be read directly from
Fig. 3. However, in this figure we can also see that for a
given dimensionless frequency three geometries of disconti-
nuities are available. For this reason, it is difficult to deter-
mine the shape of the discontinuity that is embedded into the
halfspace. In addition, in this figure only slight differences
between the planar and elliptical crack behaviors are seen, as
the two curves are practically the same. Alternatively, in or-
der to identify an elliptical crack, a second resonance peak
for the horizontal component of displacement is present (see
Fig. 2b), but it is only well defined in the case of the shallow-
est elliptical crack (d/2a = 0.2). In Fig. 3, a curve for cavity
is also plotted. However, complete results for cavities are not
included here for simplicity.

In Fig. 4, horizontal (a and c) and vertical (b and d) dis-
placement for normal (left) and oblique (γ = 30◦, right) inci-
dence of P- and SV-waves are presented. We have used four
elliptical ratios for the cracks under study. These ratios are
b/a = 0.0, 0.05,0.10 and 0.20. The ratiob/a = 0.0 corre-
sponds to a planar crack, and its curve for horizontal displace-
ment under normal P-wave incidence matches that obtained
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by Achenbach, Lin and Keer [12]. In these curves, resonant
peaks are clearly observed, and one can see that the diffracted
wave field depends on the elliptical ratio of the crack and, in
some cases, on the incident wave angle considered. For P-
wave incidence, all curves show similar patterns for dimen-
sionless frequency less thanωd/CR = 0.60. For greater ra-
tios, the diffracted field is greatly influenced by the elliptical
ratios (as shown forb/a = 0.20). For P-wave incidence,

a conspicuous peak is well defined atωd/CR = 0.28. On
the other hand, the curves for normal SV-wave incidence de-
scribe similar behavior for the horizontal component of dis-
placement. However, for oblique SV-wave incidence, a com-
plex diffracted wave field can be seen. For the latter case, the
elliptical ratio is very significant (see ratiob/a = 0.20 for
horizontal and vertical displacement); here, sharp peaks are
observed atωd/ = 0.80.

FIGURE 4. Horizontal (a and c) and vertical (b and d) displacement for normal (left) and oblique (γ = 30◦, right) incidence of P- and
SV-waves versus dimensionless frequencyωd/CR. The continuous solid line corresponds tob/a = 0.0, triangles tob/a = 0.05, squares to
b/a = 0.10 and circles tob/a = 0.20.
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5. Conclusions

The presence of shallow cracks generates resonant peaks,
which can reach large amplitudes depending on their config-
uration. Moreover, when cracks are placed deeper, resonant
peaks appear with less amplitude. On the other hand, the inci-
dence of SV-waves on elliptical cracks has stronger effects on
both the horizontal and vertical components of the displace-
ments. In addition, we have shown that the identification and
characterization of a discontinuity located near a free surface
is not an easy task because, as seen in Fig. 3, planar and
elliptical cracks have an analogous response for P- wave in-
cidence. The response of the cavity shows a similar behavior,
but with slight variations.

In this paper, we have shown the formulation of the In-
direct Element Boundary Method applied to the propagation
of elastic waves in a halfspace which contains an elliptical
crack. We have also considered the incidence of P- and SV-

waves with several incident angles. The importance of the
shape and depth for elliptical cracks, and their influence on a
frequency analysis, has been pointed out. Moreover, we have
shown the intermediate behavior of elliptical cracks by com-
paring their response with that of a cavity or planar crack. We
established that an analysis of the spectral response allows
us to detect the presence of subsurface cracks. However, the
discrimination of several crack geometries requires studies of
wave propagation in time domain.
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