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Scattering of elastic waves by shallow elliptical cracks
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Comprehensive studies in engineering have dealt with diffraction phenomena in unbounded elastic domains containing cracks, while some
others have been carried out to investigate diffraction by discontinuities located near a free surface. In this last case, the presence of cracks
significantly affects wave motion and, in some cases, large resonant peaks may appear. In order to study these resonant peaks and descrik
how they respond, we propose the use of the Indirect Boundary Element Method to simulate 2D scattering of elastic P- and SV-waves. The
geometry considered for the cracks is elliptical, but in some cases comparison of its behavior is made with that of planar cracks or cavities.
This method establishes a system of integral equations that allows us to compute the diffracted displacement and traction fields. We present
our results in the frequency domain. In the case of planar cracks located near the free surface, we validate the method by comparing our
results to those of a previously published study. We develop examples of various elliptical crack configurations to show resonance effects,
where one can observe important variations in the resonance peaks in the frequency domain. The results shown here can be used to detect tf
presence of subsurface cracks. Nevertheless, it is difficult to determine the shape (planar or elliptical) of the discontinuity that is embedded
in the halfspace.

Keywords:Elastic waves; diffraction; shallow cracks; elliptical cracks.

Extensos estudios en ingerieehan sido encaminados a la comprénsie feomenos de difracéin de ondas en dominiosasticos infinitos

que contienen grietas; algunos otros se han desarrollado para investigar la@ifde@ndas debidas a discontinuidades cercanas a una
superficie libre. En est@timo caso, la presencia de grietas afecta significativamente el movimiento de las ondas y, en algunos casos, pueden
observarse grandes picos de resonancia. Para estudiar estos picos de resonancia y describir como ellos pueden ser afectados, proponemo:
uso del Metodo Indirecto de Elementos Frontera para simular la difoacde ondas P y SV en un espacio 2D. Se considera una gémmetr
eliptica para las grietas, pero en algunos casos se hace referencia a resultados obtenidos para grietas planas y cavié#utis eEstblete

un sistema de ecuaciones integrales que nos permite calcular el campo difractado para desplazamientos y tracciones. Presentamos resultad
en el dominio de la frecuencia. En el caso de grietas planas localizadas cerca de la superficie libre, atokirsenvalida respecto a otra
investigacbn previa. Desarrollamos varios ejemplos para configuracioffgticak de grietas para mostrar los efectos de resonancia, donde

se pueden apreciar importantes variaciones en los picos de resonancia en el dominio de la frecuencia. Los resultados que se muestran en es
trabajo pueden utilizarse para detectar la presencia de grietas bajo la superficie libre. No obstante, reibdkgedihinar la forma (plana

0 eliptica) de las grietas que se encuentran bajo el semiespacio.

Descriptores:Ondas dhsticas; difracdn; grietas someras; grietagpgicas.

PACS: 62.30.+d

1. Introduction ers separated by interfaces of an arbitrary shape, or contains
cracks or inclusions, the use of boundary integral equations or
Cracks are very important in fracture mechanics and in othehoundary element methods is appropriate (Bouchon [2]). An
engineering areas. Methods to facilitate their iden'[ificatiorimportant and detailed review of boundary element methods
and characterization are always welcome. In this sense, it igpplied to elastodynamic problems is presented in Manolis
crucial to have information that allows us to analyze the presand Beskos [3], Beskos [4,5], while the methods focusing on
ence of near free surface cracks of any shape. The diffractafie interaction of elastic waves with cracks were treated by
wave field for planar cracks and cavities has been extensivelghang and Gross [6]. In Ref. 7 a study on the propagation
treated in Rodguez-Castellanost al. [1]. In the present of elastic waves in a cracked medium was presented. The
paper, we develop several examples to show the diffractefhcidence of P-waves and planar cracks was discussed, and
displacement field using different elliptical crack configura-results in time and frequency domains were shown.
tions.
The propagation of elastic waves in complex structures In the present work, we use the Indirect Boundary Ele-
has been studied using several numerical and analytical metiment Method (IBEM) to study the wave motion caused by
ods. When the medium to be analyzed is formed by laynhear free surface elliptical cracks, under the incidence of
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P- and SV-waves. Resonant effects are discussed in detailpt on ST;; (x; &) is the Green's function for traction for the

and wave motion for several crack models is shown. A brieffull space. Green’s functions for displacement and traction

review of the main aspects of our formulation is describedand additional details about Egs. 1 and 2 can be found for in-

below. stance in @nchez—Sesma and Campillo [8], and Rgdez-
Castellanogt al. [1,7,9].

2. Brief description of the method 29 Formulation

2.1. Integral Representation Considering the configuration shown in Fig. 1a, it is conve-

We use the IBEM based on the formulation cir@hez- hient to divide the domain into two regions (regions R and E

Sesma and Campillo [8]. Next, we shall summarize the maid" Fig. 1b); for each region, adequate boundary conditions
aspects of this formulation. must be imposed. A fictitious interface between regions R

Let us consider a domain V with boundary S. If we as-and E is used, following the multiregion concept, in order to
sume that the medium is elastic and linear, the displacemeﬁandle discontinuities of any form._ Moreover, th.is interface
field under harmonic excitation can be written, neglecting?/lows us to use the Green's functions, as mentioned above,
body forces, by means of the single-layer boundary integrajVhere no hypersingular integrals are considered. The scatter-
equation, ing of elastic waves by cracks using the direct BEM leads to

hypersingular integrals when imposing boundary conditions
_ _ _ . (tractions at the crack); this aspect has been the subject of
ui () = /% () G (x:¢) dS, D ceveral worksd.g. Chen and Hong, [10]; Aliabadi, [11] and
o Pineda and Aliabadi [13]). However, when the multi-region
whereu; (x) is thei-th component of the displacement at concept is invoked, the solution of hypersingular integrals is
pointx. HereG,; (x;¢) is the Green’s function for the full not required.
space, which represents the displacement produced in the di- For the free surfaced R), the traction-free boundary
rection atx due to the application of a unit force in direction condition must be enforced[{ (x) = 0). Similarly, the
j at point¢, andb; (€) is the force density in the direction jat same condition should be applied to the crack’s fadag(
point¢. andd, E). Tractions and displacements must be continuous
From a limiting process based on equilibrium considera-at the interface between the two regiofsR = 0, E). Be-

tions around an internal neighborhood of the boundary, it isause of linearity, the total displacement and traction fields
possible to write, foxon S, can be expressed by the superposition of the known reference

solution ¢.e. the analytical solution in the halfspace with-
t: (x) = oy (x) + / 5 (€) Tyj (x;€) dSe, (2)  outcracks) and the diffracted field, thatis= u° + u? and
g t = t° + t¢, where the superscript 0 indicates the reference
solution ¢.e., P- and SV-waves) andthe diffracted field ob-
wheret; (x) is the i-th component of the traction,= 0.5 if tained by means of our integral representation (Egs. 1 and 2).
x tends to the boundar§ from inside the regiong = —0.5  These five conditions allow us to write a system of integral
if x tends toS from outside the region, and = 0 if x is  equations for the unknown force densities:
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FIGURE 1. a) An elastic cracked medium under the incidence of P- and SV-waves; b) Boundary element Mesh for the problem considert
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3. Validation of the method

B ( R ( oft In order to validate the method presented, we compared its
ci / % (x; ) dSe = =7 (x), results with those obtained by Achenbach, Lin and Keer [12]
for a horizontal planar crack with a total length 2o-
x € 03R, (3) cated in a depthd from the free surface. They show
several curves that represent dimensionless horizontal dis-
et (x /qu (x;€) dSe = —t2" (x), placementd/;, (see Achenbach, Lin and Keer [12] for di-
mensionless process used), versus dimensionless frequency
wd/Cr, wherew = circular frequencyd = crack depth and
xc R, (4) Cr = Rayleigh’s wave velocity. Four ratie&'2a = 0.2, 0.4,
5 oF 0.6 and 1.0, and a range of dimensionless frequencies given
/d’ (x;€) dSg = (%), by 0 < wd/Cr < 3.0 were considered. These curves show
different peaks, which are associated with resonances of the
(5) layer located between the top crack face and the free sur-
face. These resonance frequencies correspond to the funda-
/¢R ¢)dSe — /¢ x; €) dSe mental frequency for each cas&2a. For the smallest ratio
(d/2a = 0.2), it is observed that the resonance peak is pre-
sented earlier than for the other ratios studied. This is due to
=ud (x)— ugR (x), xe€d R=&E, (6) thesmalldimension of for this layer as compared with the
other cases. As the ratity2a increasesd.g. d/2a = 1.0),

cngE

X € 82E,

and the peaks become less sharp and therefore it is more difficult

to determine their resonance frequency. In this paper we omit

o (x /d)R (x: €) dSe — o (x) the details about_the validation of our method because it was
already handled in Ref. 9.

/ P (x;6)dSe =127 (x) — 2" (%), 4. Cases of cases

In Figs. 2a and b, respectively, we plot the dimensionless
xetR=0.E, (7)  frequency versus the horizontal (u) and vertical (w) compo-
nents of the displacement at point A (see Fig. 1a, A is always

To solve numerically the system of integral equations 3-7placed atr; /a = —1) for a planar crack and an elliptical
we discretize them appropriately. In general, the boundariesrack under vertical P-wave incidence. Here we compare the
of each region are discretized into linear segments whosgesponses at different depths in the two configurations (pla-
size depends on the shortest wavelength (six boundary segar and elliptical crack). The depthof the crack is chosen
ments per wavelength). The force densitieg)srare taken in such a way that the ratio i&/2a = 0.2, 0.4 and 0.6. The
as constants along each segment, and a Gaussian integsiape of the elliptical crack can be determined by the ratio
tion (or analytical integration, where the Green’s functions/a = 0.20. Cracks located near the free surface create res-
is singular) is performed. The system to be solved is comonant effects that produce large resonance peaks in the am-
posed of2 (N + 2 (M + K)) equations, where N, M and K plitude spectrum. When these cracks are located deeper, the
are defined in Fig. 1b. Once the system of integral equaresonant peaks become less sharp. If we assume the planar
tions is solved, the unknown values of this are obtained, crack as a reference, we can observe that the behavior of an
and the diffracted displacement and traction fields are comelliptical crack is very similar to this reference 4. peaks are
puted by means of Egs. 1 and 2, respectively. Additionapresent neavd/Cr = 0.28, 0.65 and 1.03 for the horizontal
details regarding the discretization procedure can be found iand vertical components of displacement). In the case of the
Rodiiguez-Castellanost al. [9]. shallowest elliptic crackd/2a = 0.2), the second peak be-

The IBEM can be seen as a numerical application of Huy-comes sharper and shifts to a lower frequency (see Fig. 2b),
gens’ principle. Therefore, to reconstruct a given wave frontand as the ratid/2a of the elliptic crack increases (with val-
all points at the free surface and the continuous interfaceesd/2a > 0.2), its response comes closer to that of the
which act as sources and radiate energy must be taken infdanar crack. The vertical displacements for all cases show
account. The truncation of the free surface induces artifisimilar behavior and resonance peaks are clearly observed.
cial perturbations caused by diffractions at the edges of th&or the two cases, we can see that the rétizn of the crack
model. However, these perturbations are characterized byetermines the position of the resonance peaks. The distance
small amplitudes, and their reflections inside the model ardetween the top face of the discontinuity and the free surface
negligible. controls the behavior at a low frequency.
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FIGURE 2. a) Displacement amplitude spectrum for a planar crack; b) Displacement amplitude spectrum for an elliptical crack. In both ca
vertical incidence of P-waves is considered.

14 towards the free surface, or from an independent pulse echo
7 experiment. Then, if the resonance frequency has been deter-
129 // mined experimentally, the lengthcan be read directly from
e g Fig. 3. However, in this figure we can also see that for a
1.0 1 cavity given dimensionless frequency three geometries of disconti-
s nuities are available. For this reason, it is difficult to deter-
0.8 1 S planar crack mine the shape of the discontinuity that is embedded into the
halfspace. In addition, in this figure only slight differences
0.6 - between the planar and elliptical crack behaviors are seen, as
the two curves are practically the same. Alternatively, in or-
0.4 A der to identify an elliptical crack, a second resonance peak
for the horizontal component of displacement is present (see
0.2 . . . . . Fig. 2b), but it is only well defined in the case of the shallow-
0.1 02 0.3 0.4 0.5 06 0.7 est elliptical crackd/2a = 0.2). In Fig. 3, a curve for cavity
d/2a is also plotted. However, complete results for cavities are not

FIGURE 3. Resonance frequency versus deptBa for planarand  included here for simplicity.

elliptical cracks and a cavity.

In Fig. 4, horizontal (a and c) and vertical (b and d) dis-
In Fig. 3, the first dimensionless resonance frequencylacement for normal (left) and oblique & 30°, right) inci-

wd/Cr (w = 2xf) versus the ratial/2a for planar and dence of P- and SV-waves are presented. We have used four
elliptical cracks and cavities is plotted from the results forelliptical ratios for the cracks under study. These ratios are
the horizontal components of Fig. 2. Let us suppose that the/a = 0.0, 0.05,0.10 and 0.20. The ratiga = 0.0 corre-
depthd is known, either from comparison of surface wave sponds to a planar crack, and its curve for horizontal displace-
results for incident waves propagating into the halfspace anthent under normal P-wave incidence matches that obtained
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by Achenbach, Lin and Keer [12]. In these curves, resonana conspicuous peak is well definedwat/Cr = 0.28. On
peaks are clearly observed, and one can see that the diffractdte other hand, the curves for normal SV-wave incidence de-
wave field depends on the elliptical ratio of the crack and, inscribe similar behavior for the horizontal component of dis-
some cases, on the incident wave angle considered. For Blacement. However, for oblique SV-wave incidence, a com-
wave incidence, all curves show similar patterns for dimen-plex diffracted wave field can be seen. For the latter case, the
sionless frequency less tham/Cr = 0.60. For greater ra- elliptical ratio is very significant (see ratig/a = 0.20 for

tios, the diffracted field is greatly influenced by the elliptical horizontal and vertical displacement); here, sharp peaks are
ratios (as shown fob/a = 0.20). For P-wave incidence, observed abvd/ = 0.80.

Normal incidence Oblique incidence

P-waves | P-waves
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FIGURE 4. Horizontal (a and c) and vertical (b and d) displacement for normal (left) and obligue 80°, right) incidence of P- and
SV-waves versus dimensionless frequendy Cr. The continuous solid line correspondsi@ = 0.0, triangles tab/a = 0.05, squares to
b/a = 0.10 and circles td/a = 0.20.
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5. Conclusions waves with several incident angles. The importance of the
shape and depth for elliptical cracks, and their influence on a

The presence of shallow cracks generates resonant pealtggguency analysis, has been pointed out. Moreover, we have

which can reach large amplitudes depending on their configshown the intermediate behavior of elliptical cracks by com-

uration. Moreover, when cracks are placed deeper, resonaparing their response with that of a cavity or planar crack. We

peaks appear with less amplitude. On the other hand, the incgstablished that an analysis of the spectral response allows

dence of SV-waves on elliptical cracks has stronger effects ons to detect the presence of subsurface cracks. However, the

both the horizontal and vertical components of the displacediscrimination of several crack geometries requires studies of

ments. In addition, we have shown that the identification andvave propagation in time domain.

characterization of a discontinuity located near a free surface

is _no_t an easy task because, as seen in Fig. 3, planar a%knowledgements
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