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A boundary condition traditionally used in analytical models for tracer or contaminant pulse transport in porous underground formations
gives the tracer concentration at the injection border as a discontinuous function in time. It has recently been shown that this condition leads
to a physically improper pulse behavior. Models using sounder boundary conditions are already available for non-fractured porous media,
but not for fractured media, where the traditional condition is commonly employed which can potentially lead to errors. We develop two new
formulations to describe tracer tests in fractured media. They set conditions (i) on the total amount of injected tracer and (ii) on the tracer
flow. The new formulations are compared against the traditional debatable model by examining tracer breakthrough curve differences. It has
been found that they are important at small Peclet numbers. Differences are analyzed in two ways, by (a) employing typical model parameter
values, and (b) fitting the three models to the same field tracer data set, and comparing the resulting model parameter values. In the first case
the breakthrough curve difference has been quantified at 25%, and in the field tests considered in the second case it was from 1% to 10%. In
general these discrepancies are small, but could become significant in some cases.

Keywords: Boundary conditions; tracer transport; porous media; fractured reservoirs.

Una condicdn de frontera usada tradicionalmente en modelostata de transporte de un pulso de trazador o de contaminante en forma-
ciones porosas subtarreas, establece la concentoacie trazador en la frontera de inygoticomo una funéin discontinua en el tiempo.
Recientemente se mogtque esta condioh da lugar a comportamientasitamente inadecuados del pulso. Modelos con condiciones de
frontera nas $lidas existen para formaciones no-fracturadas pero no para fracturadas, para las cuales se ernpheenteral modelo
tradicional, lo cual puede llevar a conclusione$reaas. En este trabajo se presentan dos formulaciones para medios fracturaddmnque est
basadas en condiciones de frontéstidas que especifican (i) la cantidad total de trazador inyectado, y (ii) el flujo de trazador en la frontera.

Las nuevas formulaciones son comparadas con el modelo tradicioriineinds de las diferencias en la curva de surgencia del trazador.

Las discrepancias son importantesianeros Peclet peqties. Ellas son cuantificadas empleando (a) valdpesos para los pametros
involucrados en los modelos, y (b) ajustando los tres modelos al mismo conjunto de datos de pruebas de trazadores y comparando el valor d¢
los paémetros obtenidos. En el primer caso la diferencia encontrada es 25% y en el segundo de 1% a 10%. En general estas discrepancia
son pequias, pero podan ser significativas en algunos casos.

Descriptores: Condiciones de frontera; transporte de trazador; medios porosos; yacimientos fracturados.

PACS: 05.60.Cd

1. Introduction cal basis. This is the particular case of certain boundary and
initial conditions. Boundary conditions in tracer transport
In Geosciences, specifically in the study of aquifers,models are regularly set by the tracer concentration (Dirichlet
petroleum reservoirs and geothermal fields, inter-well traceor type-one conditions) or the tracer flow (Cauchy or type-
tests are used to determine subsurface flow communicatiathree conditions) [2-4]. The selection of appropriate bound-
channels, study contaminant behavior and estimate geologwy conditions in field tests or laboratory experiments has
ical formation properties. In these tests, a tracer is introbeen the subject of many papers [see for example Refs. 5
duced into the underground formation through an injectionto 8], since actual boundary conditions are in reality not well
well, and its arrival at the surrounding observation wells isknown. Author discussions on this subject gave rise to the
monitored [1,2]. The tracer breakthrough curie, tracer  unnecessary and confusing definitions of the so called “res-
concentration as a function of time in the observation well,ident” and “flowing” tracer concentration [6]. More recent
contains information about the characteristics of the porousvork on boundary conditions in tracer transport laboratory
media along the tracer flow path. By fitting appropriate tracerexperiments concentrate on the effect of the mixing tanks lo-
transport models to the breakthrough data, properties suatated prior and after the porous column [7,8]. In a field tracer
as porosity, dispersion coefficient, formation thickness, blockest, fluid mixing occurs inside the injection or production
size or fracture width can be estimated. pipeline transporting the fluids between the surface and the
During the past six decades, many analytical models omnderground formation.
this subject have been developed for divers cases and condi- A boundary condition commonly used in analytical mod-
tions; however, there are some basic assumptions proposets for instantaneous or finite-step tracer injection in porous
in deriving these models, which in reality lack a solid physi- media describes the tracer concentration at the injection bor-
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der as a discontinuous function of time, specifically as a Diration 2, Cy(z, z, t)]. In this approach, both populations form
delta or a finite-step function [4,9-11]. It has been shown bya continuum in the entire space which represent the fracture
Coronadcet al. [12], that this condition gives place to phys- system and the porous rock system, respectively. The mobile
ically improper mass conservation and pulse behavior due tpopulation is coupled to the stagnant population via transver-
the presence of strong, spurious dispersive backward flowsal tracer diffusion from the fractures to the rock matrix. The
at the tracer injection entrance border. The subject has bedatal amount of tracer going into the matrix due to diffusion
known to some extent to various researchers [13] who usei$ artificially introduced into the mobile population as a sink
the “resident” and “flowing” concentration concepts, and asmeared over the entire fracture volume. The resulting tracer
few practitioners, but it was not properly documented untilconservation equations are [9,23,24]:

the paper in Ref. 12. Nevertheless, models based on this type

of questionable boundary conditions remain in use [1,14-16], % + u% - D >’C _ $2Do @ —0 Q)
and an estimate of the possible errors incurred in is therefore 0t oz Ox? w0z |,_,
desirable. 0Cy Dy 92C,

For non-fractured media there are tracer pulse transport 5% R 92 0. (2
models available that employ physically rigorous boundary @
conditions [see for example Refs. 3, 4, 7, and 17]. One Here subscripts 1 and 2 in dispersion/diffusion coeffi-
of these models, which sets conditions from the total in-cients D and porosity¢ refer to the region describing the
jected tracer mass [3] instead of the improper boundary corfracture or the matrix, respectively; is a constant tracer
dition [10], gives differences in the breakthrough curve thatvelocity along the fractures2w is the effective fracture
can be quantified at 30% or even larger for a Peclet numbesgidth; R, is a retardation factor due to stagnant tracer ad-
smaller than five [18]. In the case of analytical models forsorption/desorption on the rock. Equation (1) is a modified
fractured media, the situation is different. Although severaladvection-dispersion equation for fractures, while Eq. (2) is
deterministic models for tracer pulse transport in diverse sita diffusion equation for the porous rock.

uations have been developed in the past, they all make use of The boundary and initial conditions for the stagnant pop-

the above mentioned controversial boundary condition [seglation are the same as the traditional model and the two new
for example Refs. 9, 11 and the review in Ref. 19] or themodels to be discussed here, namely:

fully equivalent [12] time derivative technique [20,21] and

superposition principle [16]. Cy(z,2,t =0)=0 3
In order to provide models with physically solid bound-

ary conditions, the original formulation of Sudicky and Frind Co(z, 2z =w,t > 0) = Cy (4)

for continuous tracer injection [22] and Maloszewski and Zu- 0Cs(x,z = E/2,t > 0)/0z = 0, (5)

ber for pulse injection [23] have been considered in this paper

and adequately modified. Two new formulations have beefhereE is the transversal matrix block size. Condition (5)

obtained by introducing conditions (i) on the injection flow, establishes the absence of transverse flow communication be-

and (i) on the total injected tracer mass. In Sec. 2 of thisween parallel fractures. The conditions for the mobile popu-

paper, the boundary conditions and the models are presentddtion are different in each of the three models to be presented

Model differences are quantified in terms of the breakthrougthere. The traditional condition set is [9]

curves in Sec. 3 by providing typical model parameter values,

and in Sec. 4 by fitting the models to published data obtained Ci(z>0,t=0)=0 (6)

from tracer tests in three different field sites. Conclusions are

drawn in Sec. 5. Mathematical details of calculations and Ci(z =0,t) = Ag(t+) @)
mass balance are presented in the Appendices. Ci(z — oo,t) =0, (8)
2. Boundary conditions and models

™
———

The presence of a network of well interconnected pathways

in fractured formations can lead to regions of highly mobile
fluid along the fractures (which can lead to large Peclet num- ___
bers), and very slowly moving fluid regions inside the porous EZ
rock matrix. To deal with the boundary condition problem,
we consider the traditional two-dimensional systém,z),
composed of a series of parallel fractures separated by a slal
of porous matrix [9,22,23], as schematically shown in Fig. 1.
The standard double population approach is used to mode.
tracer transport in the fracture network [mobile population 1,Ficure 1. Schematic representation of a porous fractured medium
C1(z,t)], and in the porous matrix region [stagnant popula-in terms of fracture and porous matrix slabs.

FRACTURE

POROUS MATRIX
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where the Dirac delta(t;.) meansi(t — 0 ) andA is a con- The physical inconsistencies of moa[é{i“) (x,t) become

stant to be related to the total tracer mass injected, M. Malapparent when analyzing the space dependence of the tracer
oszewski and Zuber [9] givel = M/Q.with @ the volu-  pulse or evaluating the total tracer mass inside the system as
metric flow rate of the injection fluid. This flow rate can be a function of time,

written asl) = u¢1 S, whereu is the interstitial fluid velocity, -

S the flow total cross section agdSthe flow effective inter- © ()

stitial cross section [3]. Equation (7) displays the above phys- me(t) = / C1 (z,t)dz.

ically improper boundary condition mentioned. The solution 0

of Egs. (1) to (8) in Laplace space given by Maloszewski andy ¢onstant or a temporarily increasing mass would be ex-

Zuber is [23] pected, as a result of the pulse inflowzat= 0. However,
— M a quite different dynamic is found in reality, as described by
7 (zp, SD):m Coronadcet al. [12] for a non-fractured systemé.3 = 0).
! Here, the tracer pulse has an infinite starting mass and a per-

P . - .
X exp xplhe {1_ 1+40p/ P@} ) mangr_lt zero tra_cer conceqtratlonaatf 0, accordmg!y to
2 condition (7). This last condition forces a strong positive con-

centration gradient to be formed:at= 0, which in turn gen-

where erates a backward dispersion flgw D,0C\” /o) at this
B point that actually transports tracer mass back outside the
op(sp) = sp + B/sp tanh [0/5p], (10)  gystem. Therefore, the total mass is reduced continuously
and in time and asymptotically reaches the injected tracer mass.
For a fractured system > 0, the pulse behavior is sim-
ilar, but due to the porous matrix diffusive losses, the total
s = L = L = L 11 ' H H H ’
wp=/L, zp=z[L, tp=tu/L, 1D fracer mass:© (t) decreases continuously in time, as shown
in Appendix A.
The two new formulations developed herein describe two
ul 6oL [RuDs common carrier fluid injection situations: (a) the tracer pulse
P = Dy’ =V ur is introduced in a short slug of carrier fluiiid slug injec-

tion), and (b) the tracer pulse is introduced in a continuous
o— uLR, (E _ w) (12) carrier fluid inflow gontinuous fluid injection[17]. In both
D, 2L L cases, physically solid conditions are imposed. In the first
case (a), we consider an infinite system and give the total
Here L is a characteristic system length, such as the diStrzcer mass injected in = 0 att = 0 as a Dirac delta mass
tance between wells. The Laplace variableis dimension-  pylse. The initial and boundary conditions on &re there-
less. The indexc) in 556) means boundary conditions set on fore [3]
concentration. The expression in Eq. (9) is the same obtained

in Ref. 21 by using the so called time derivative method. Ci(z;=0) = %5(33)7 (13)
Maloszewski and Zuber [23] found an analytical expression S

in real space for the Laplace inverse of Eq. (9). This solu- Ci(|z| — o0,t) = 0. (14)
tion is given in terms of an integral that should be evaluated

numerically. After some algebraic manipulations (see Appendix B),

| the solution in Laplace space is obtained as

() il BV

—(M) o5k V/1+40p/Pe o 20
Cl (wD,SD): . (15)
expl 2P [1 4 T1d0p /P.
) =L
1 +40'D/Pe

The superscript (M) irﬁgM) refers to conditions set by
the total injected tracer mass. Here, the total tracer mass in-

side the system is ) )
For 8 = 0, the total mass is constant and equal to the in-

(M) 7 (M) jected tracer massy/, as expected. Fgf > 0, the mass
m(t) = / Cr (z, t)dz. mM) decreases continuously in time due to the matrix diffu-
—o0 sive losses, as shown in Appendix A.
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The second casedgntinuous fluid injectionis obtained 3. Model comparison by specifying typical
by setting the tracer pulse as a flow pulse at the injection bor-  model parameter values
der atr = 0. A semi-infinite system with the following initial

and boundary conditions is considered: .
The new models described by Egs. (15) and (19) are com-

Ci(z,t = 0) =0, (16) parec_i with the tradit_ional model _in Eq._ (9) using De Hoog’s
algorithm for numerical Laplace inversion [25]. For this pur-
J1(0,1) = ﬂé(t ) (17)  Pose, the behavior of the dimensionless tracer concentrations
’ ¢S T defined byC\! (zp,tp) = C\(zp,tp)/Cr is analyzed.
Cy(z — 00,t) =0. (18)  Here, indexi in Cg) is valid for ¢, M or J. The approxi-

mation in Eq. (20) will be used when comparing models. A
representative value fdPe is 10; nevertheless, in fractured

The solution in Laplace space (see Appendix C) is
systems, larger values &fe could be expected due to the

é(J)(x sp) relatively high speed flows developed. On the other hand,
1D, eD the paramete = ¢»(L/w)+/(R./P.)(D2/D;) can take

zpP. A Ar TP a broad range of values; however, to estimate it, we con-
_ M eXp{ 2 {1 B 1+40D/P€”_ (19)  sider the cage whet, ~ 0.1, L/w ~ 105, R, = 1 and
$1SL 1+ +/1+40p/P. Ds/Dy ~ [107'1 — 1077]. It follows that 8 ~ [0.1 — 10].
Figure 2 presenté?g) as a function ofrp for (a)tp = 0.1
The superscript (J) iﬁ(l‘]) means conditions set by the and (byp = 1, with Pe=10 and 3=0.5.  Curves
tracer flow. The total system tracer mass, Cg”)and C’,(:;’) describe a standard inlet pulse @ap=0

- arriving from the left, while C,(:f) shows an anoma-
) ) lous behavior, as described previously. The condition
m(t) = /Cl (z, t)dz, ' (xp =0,tp > 04)=0forces theC” pulse to leave the
0 injection site ¢p = 0) earlier tharCf") andCl(M)puIses do.
) ) For longer times, the three curves become similar. In Fig. 3,
behaves exactly as'™/(t) does (Appendix A). tracer breakthrough curve\’) (,)are shown for (a) Pe =5
The Laplace inversion of Egs. (15) and (19) will be per- 5nq (b) Pe=50, with:p = 1, and3=3. It can be observed

formed numerically. To compare these solutions with they,5¢ large model differences appear for snighalues. The
traditional Maloszewski and Zuber case we calculate the,,qel differences can be quantified by evaluating

Laplace inversion of Eq. (9) also numerically.
The free parameters involved in the three models,

Egs. (9), (15) and (19), aRe, 5 andO, as defined in Eq. (12). 4 .

In tracer breakthrough curve analysis, the variaflecan be o

used as afitting parameterpeing the real underground tran- a5 @ ] o)

sit length. The scale parametéip = M /¢, SL, works as L S— °l Eahs
an additional linear model free parameter. Thealue de- af Sin L

scribes the importance of the tracer diffusion into the rock in o
relation to tracer flow along the fracture. As previously men-  zsi- .
tioned, the non-fractured case is recovered when no diffusion |/
from the fracture to the matrix is preseng. 3 = 0. The oo
paramete® is linked to the presence of multiple interacting
parallel fractures. The model for a single fracture is recov-
ered wherP is large {.e. E — oo). For© > 2, itis true that
tanh ©® =~ 1, and the multiple fracture effect is negligible.
This case is also known a a short-term experiment, since the
transit time is sufficiently short to prevent the tracer from dif-
fusing deep enough into the rock matrix in order to notice the , ‘ ‘ .
presence of adjacent fractures [11,24]. In this case, Eq. (10) ° L L L 05 1 18 2
translates into

150 ¢

05

FIGURE 2. Normalized tracer concentration as function of space
op(s) = sp + /s, (20)  for (@) tp = 0.1 and (b)tp = 1, with P. = 10 and3 = 0.5
] in the three models. The curves describe the behavior of a pulse
and the parametéd disappears from the models. There are appearing incp = 0 at¢p = 0 and moving to the right. Observe

four free parameters left in the models, nanfédy3, zp and  thatC{”)(tp > 0) = 0 holds, and that curves get similar to each
the scale parametefz. other at large times.
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R should be carried out whefe= ut /L. In Laplace space
gk

izl (o) _om this change |mpl|e§ (sD) i ) (sp/&). The structure
of Cl in terms of the variable, remains exactly the same if
. new fitting parameters are definedas= zp /€, as = £ Pe,
oil 1 oil i as = /EB together withny = £CR. Itis noteworthy that pa-
‘ rametera; is proportional to the parametey = z/u intro-
duced by Maloszewski and Zuber [9,11,24&(ty = ast.),
and parametati; to their parametet.

The fitting procedure starts with the selectiortofn or-
der to normalize time. Later an objective function is defined,
here a non-weighted sum of the square of the errors, and
then an optimization method is selected, here the Levenberg-
Marquardt and the Broyden-Fletcher-Goldfarb-Shanno meth-
ods [26]. In applying the optimization process, some appro-
priate initial parameter values should be provided and a sensi-
tivity analysis should be performed in order to study solution
FIGURE 3. Dependence on the Peclet number. Breakthrough'“mique_ne_SS [27]. The parameter range we consider in our
curves for (a)Pe=5 and (b)Pe=50 withzp=1 ands = 3. analysis isn; € [0.1,2], as € [5,200], andag € [0,4]. The
previously mentioned De Hoog's algorithm is used to obtain
the inverse Laplace transform numerically. Once the opti-
- mized parameter§o, as, a3, ay} are determined the origi-
() nal fitting parameters can be obtained usingyhaefinition.
dtD//C dtp. (21) For instance, ifcp = 1 is taken, ther¢ can be calculated
from ¢ = xp/ay, and therPe, 8 andCr can be evaluated
For Pe=10, %=1 and (=3, it follows that using the expression fary, a3 and ay, respectively. From
ACY) = 8.3% andACM) = 13.0%. These discrepancies these quantities, some properties of the system can be esti-
increase by reducing the matrix effects. Thus, setngp  Mated (see for example Ref. 11). Fra for instance, the
0.5, this yieldsAC) = 14.4% andACM) = 26.0%. Also, ~ average flow cross section, S, can be obtained.
by reducingPeto 5,while keepingz p=1 andg3=3, the differ- Three different published tracer tests performed on frac-
ences increase thC'(Y) = 12.3% andACM) = 20.7%. tured formations are analyzed in the next section. Each of
these applications has a different origin and different charac-
teristics. The three cases are: an experimental aquifer with a
transit length L=11.8 m, a geothermal field with L= 210 m,

To obtain a meaningful quantification of model differences,@"d an oil field with L=2182 m. The injection S't]t}?t'on inthe

we make use of real data from field tracer tests in fracturedi’St case corresponds tofliid slug injectionC;"", while

formations. The three models are fitted to the same datﬁthertWO cases correspondscintinuous fluid |n]ect|on e.

set to determine discrepancies in the resulting free param§1 - The three models were fitted to all three field cases.

ter values. This will provide a good estimate of the relative

error when selecting a certain boundary condition over an-

other. The use of a one-dimensional model to describe redl-1. Aquifer in an experimental field in Ontario

3D tracer transport can be justified by only taking into consid-

eration the space formed by the communication channel beé>ata from a tracer test performed in an experimental field site

tween the injector and a single production well. We assuméocated in west of Ontario and developed to study fluid flow

the flow along the channel path is approximately uniform.in fractured porous media are considered [28]. The test was

Here M means the total tracer mass fraction introduced incarried out in a single fracture layer saturated with water. In

the communication channel, astts average cross section. the experiment, a 0.17 liter pulse of a concentrated fluores-
The three models depend on the parametess Pe  cent dye (at 1000ng/l) was injected in well 1 and its arrival

andg, plus the scaling factar'z. In order to apply the mod- at the surrounding wells monitored. The specific data used

els to real field data, a characteristic tinig, is introduced in this paper concern the tracer response at well 19 (see data

together with the new dimensionless variable= ¢t /t.. This  points in Fig. 4). The value used for the characteristic time

new variable is necessary becatigsas inadequate since itin- is t. =12%. The initial parameter values employed in the

volvesu, which is part of the fitting parameters. The charac-fitting procedure are;; = 0.5, ap = 0.25 andaz = 0.06.

teristic time might be, for example, the average tracer transiNo initial value is required far'g, since it is a linear multi-

time or any other time such as the peak concentration transjflicative parameter. The solution with the lowest objective

time or the first arrival time. The transformatiop — t4¢ function value for each model is:

CD(tD)

ACY = / el - cf)
0

4. Model comparison by field data fitting
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120 T

C(©) —Model: oy = 0.431, 100

as = 161.7, a3 =1.179 (22)

80

C™) — Model: aq = 0.419,

as = 166.7, a3 = 1.180 (23)

40

) —Model: oy = 0.425,

Tracer Concentration fu g /L]

as =163.1, a3 =1.179. (24)

The same valueyy, = 62.79u9/l is obtained in all three o
cases. In Fig. 4, a plot of the fitting curves is displayed

(the valueCy =15 mg/l given by Lapcevicet al. [27] was  pigure 4. Breakthrough data (squares) for the tracer test in an
used). All three models give the same curve and thereforgquifer near Ontario and model curves resulting from data fitting.
they appear overlap. The largest parameter difference founthe three modele’®, ¢, andC{*" give overlapping curves.

in Egs. (22) to (24), relative t6'(), is around 1.5% fo€(”)

and 3.1% forC (M), By settingzp = 1 and employing the 12 . .
values in Eq. (22), it follows that that = 2.39, Pe=69.7
and 5=0.76. The discrepancies found between the models
are small in this case, probably due to the ldPg&alue.

o

4.2. Wairakei geothermal field s

We analyze one of the two tracer tests performed in the
Wairakei reservoir to determine underground communication
channels [29]. This field is a major liquid dominated geother-
mal fractured reservoir located in New Zealand. In the test
that interests us here, a 1%8Bq pulse of the radioactive
lodine-131 in well WK107 at 334 m a depth of was intro- aF
duced, and its arrival in well WK24 located at a distance of
210 m from injector is analyzed. We have selected this well : e 5. cxp
pair because the tracer response curve has relatively low dati ~ ° A
dispersion, which could be an indication of a simple com- _
munication channel. The characteristic time=0.214 days ';'GL\’AF;E_ Sk _Breatﬁthrou??_ Tidatta (St?]“are.st)h for the tﬁc‘?r tgsf,t n
(breakthrough time) is chosen. As in the previous case, thie Wairakei geothermal fie c{%’)e f]r) W Cu&\\/’ﬁs.o ained from
. . . odel fitting. The three modets;”,C;"’, andC;™’ give almost
three models under consideration are fitted to the same dag% .
i ) L erlapping curves.
set in order to determine;, as, a3 andCg.. The initial pa-

Activity Detected [c/s]*10°

4k

rameter values employed atig = 1, as = 20, a3 = 2. The 5 , ‘
solution obtained is: o
. e
C© —Model: a; = 1.325, it ﬁi:ﬂ i ]
f— CM
ag = 88.76, a3z = 1.804 (25) o

C™M) — Model: oy = 1.302,
s =90.42, a3 =1.805 (26)

Tracer Geneentration [ppb]
N
T

c) —Model: oy =1.314,
o = 89.06, a3 =1.804. (27)

The same valug)'r =7.303x10" Bq, is obtained in the . Ay Rt S
Fhree cases (the volumg Pf the analysis sam_plg was not S_peIQI_GURE 6. Breakthrough data (squares) for the tracer test in the
ified). A plot of the original data and the fitting curves is chjapas-Tabasco Basin ol field together with curves obtained from
presented in Fig. 5. As in the previous case, the three modelgodel fitting. Here dots are overlapped by the solid line. The large

yield overlapping curves. Sensitivity analysis indicates thedata dispersion is probably due to multiphase fluid and formation
presence of a single global minimum around the values ircomplexities present.
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Egs. (25) to (27). The corresponding parameter differencell available deterministic analytical models for tracer trans-
relative to modeC(“)- are less than 1% fa?(’) and less than  port in fracture formations make use of the debatable con-
2% for C(M) As in the previous case, the model discrepan-dition. In this paper two new one-dimensional formulations
cies are very small. By settingp, = 1 and using Eq. (27), that make use of physically more rigorous boundary condi-
it turns out thatt = 0.761, Pe=117.0 and3=2.07. Again, tions have been developed, which apply in different circum-
the modest model discrepancies can be attributed to the vestances. These new models impose conditions on
largePevalue involved.

(i) the total tracer injected mass and
4.3. Chiapas-Tabasco Oil Basin

(ii) the tracer flow at the injection border respectively.
A tracer test was carried out on a fractured oil field in the

Chiapas-Tabasco Basin in Mexico in order to determine inter-l-he solutions are found in Laplace space and the inversion

well Eolnnelctir\]/ity [30]. A short pulse of 2,0_'25 }fjg, Per:fluo— is made numerically using De Hoog's algorithm. Differences
rmethylcyclo exane” (PZMCHS t_racer.walls magf(;te in the dperTrom the traditional model are evaluated in terms of tracer
manent injector well 12, and its arrival at different produc- breakthrough curves by using typical values for the two free

tion We::sslls anal)ézzefézl-lere, the fdata %bt"?“r_'ed from p;Oduﬁ'model parameters involved, which are the Peclet nuni®@r (
tion well 5 locate m away from the injector at a depth, 4 he fracture-matrix coupling parametg).( For Pe=10

of nearly 6000 m is analyzed. As in the two previous Sec'andﬂ:B, the models yield discrepancies smaller than 13%.

tions., brea!(through data are fitted by the.thr.ee models undefitcarances get larger when reduciRe or 3. Thus, for
consideration. Here,. =444.1 d and the initial parame;ers Pe=10 and=0.5, these discrepancies increase to 26%, and
ap =1, ap = 10 andaz = 1 are employed. The solution ¢, po-g (=3, they become 21%. Real reservoir tracer test
obtained is: data were also employed to determine fitting parameter dif-
ferences resulting from the models. Three separate data sets
Cc© —Model: a5 = 1.432, ap =90.41, from dissimilar geophysical applications and different inter-
well distances I) have been considered. The cases were an
az =1x107°, Cr=1272.0ppt  (28)  aquifer with, ~ 12m, a geothermal field with ~ 210 m,
) _ Model: ay = 1.409, sy = 97.01 and an oil field withL. ~ 2200 m. Model differences found
’ ’ from the tracer breakthrough data matching are small; they
az=1x10"% Cgr=1249.9ppt (29) are less than or similar to 3% in the two first cases and less
5 . B B than 9% in the third case. The origin of these small differ-
¢/ —Model: a1 =1.419, a;=98.15, ences seems to be based on the large Peclet numbers ap-
a3 =2x 1077, 20k =2479.6ppt  (30) Pearing (70, 117 and 139). Other tracer field data were ex-
amined, but no significantly smaller value B¢ was found.
The fitting curves are shown in Fig. 6. The parameterT0 obtain smaller Peclet numbers once large fluid flows are
differences among models relative @ are less than 9% Present, very intensive fluid mixing due to the fracture net-
for C(Y) and less than 8% fa® ™). Forxp =, it follows  Wwork would be required. We can conclude that, in general, in
from Eq. (30), that = 0.705, Pe=139.2 and3=2.38x10-7.  fractured formations the traditional and the two new bound-
Although the tracer breakthrough data shows high dispersiofry conditions yield relatively similar results regarding the
(see Fig. 6), the models give very similar parameter valuereakthrough curve. Larger data precision in field tracer tests
This result might be attributed to the larBevalue, as in the Would be required to observe significant discrepancies. How-

previous two cases. The valiea 0 could indicate a poor €ver, regarding space dependence and mass conservation, the
porous matrix participation in the system fluid flow. models contain relevant differences. The traditional model

shows physical inconsistencies, particularly at short transit
times.
5. Summary and conclusions

This paper concerns a controversial boundary condition freAppendix A: The tracer mass

guently employed in models for tracer transport in fractured

underground formations. The effects of using this condition o

have been previously analyzed for non-fractured media, buf-1- The total injected tracer mass

not for fractured media. In the first case, tracer breakthrough

curve differences of 30% have been reported in compariThe total amount of tracer injected in the system can be eval-
son to models with physically sounder boundary conditionsuated using the solutions in Laplace space by noticing [12]
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Minj = ¢1S/J1(1‘ = O,t)dt = gblS/ {’U,Cl(.’L' = O,t) — D1 I:W] }dt = ¢1Su /Cl(az,t)e_Stdt
ox 20 s—=0
0 0 0
9 = st _ . _ 9C(z, s)
_¢1SD1{8I [/0 Cy(z,t)e dt}} s—=0 = ¢1SuCy(x =0,5s=0) — 15D, s | s=0 (A1)
=0 =0
The first term on the RHS gives the tracer inflow due
to the convection process and the second term provides tflle ForC§M), the total system mass is given by
net inflow due to dispersion. In terms of the dimension-
less variables defined in Egs. (11) and (12), and using m(M)(sD) = ¢:1SL
C1(sp) = (u/L)C:(s) with sp = sL/u, this yields .
Mmj = ¢1SL?1($D =0,sp = O) X / €($D,SD)d$D + /6(1‘D,SD)d$D . (A8)
¢1SD1 8?1(1‘,5) — o0 0
— A.2
u Oxp sp=10 (A-2)

Substituting Eg. (15) into Eq. (A.8) yields the same result
thatm/) (s p) does, namely
For the model C@, after substitution of Eg. (9),

Tp —

. . . . 1
E(C)follows that the dispersion term vanishes and M (sp) = M <) ' (A.9)
C, '(z=0,s=0)=M/$1SL; the results givel;,;=M, as oD
expected. The same results follow for modfé[é” ) andC{‘”
using Egs. (15) and (19), respectively. It should be noticed that, fa8 = 0 (no diffusion losses),
op(s) = sp follows, and the inverse Laplace transform of

A-2. The total tracer mass inside the system m™M)(sp) andm'’) (sp) yieldsm(t) = M. Therefore, the

o ) oy total tracer mass inside the system is constant and equal to
The total tracer mass inside the system(’rlﬁ? andC)"’ is the total injected mass. This simple result does not hold for

m(t) = ¢1S/C(x,t)dx. (A.3) The general case wity > 0 shows the presence of
; tracer losses due to diffusion into the porous matrix; there-

fore m(’)(t) [= m(*)(¢)] is no longer a constant, but is re-

The Laplace transform of Eq. (A.3) intermsif = tu/L  quced in time. In Fig. 7, two plots ofi(¢) /M are shown, in

andsp = sL/u yields (@) for 3 = 0 and in (b) foB = 0.5. In both casesPe=10
oo was taken. Here, the improper behaviomof®) (¢) is appar-
m(sp) = ¢1SL/6(33D7 sp)dzp. (A.4)  ent, since itis infinite at the initial time, while.(”) correctly
] yieldsm/)(t = 0)/M = 1.
Thus, the expressions for the tracer concentration
in Laplace spaceC; can be employed to evaluate ™™ o fz(‘D)’M &
m(sp). The expression foﬁgc) and 5@ has the form
A(s) exp [zpA(s)]; therefore, the integral in EqQ.(A.4) can be. m m'
It follows that 3 3
— ¢1SLA(s) : m® _ @ !
m(SD) = —W. (A.5) 2l 2 || ™ _p®
_ . \
By substituting expression (9) and (19), we get \ ‘\
M 1= —Reee————— 1 '\'i‘ﬁ; ------------------ -
—(¢ _ —'!a\._“_____-
m (sp) = : (A.6)
Le [T+ 40p/Pe—1]
° 9 0.5 T o 0.5 14
and b o
oM 1 FIGURE 7. Total tracer mass inside the system accordingly to the
m(“’)(sD): Pe =M (> . (A7) three models, in (a) faB = 0, and in (b) for3 = 0.5. In both plots
S (1 +4op/Pe) —1] 9D Pe=10was set.
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Appendix B: Solution in Laplace space of the
Cc™)-Model

M. CORONADO, J. RAMREZ-SABAG, AND O. VALDIVIEZO-MIJANGOS

This last equation foC; (z, s) should be solved using the
boundary conditions in Egs. (13) and (14); after substitution
of Eq. (13), it follows that

In this section, the solution in Laplace space of Egs. (1)

and (2) subject to conditions in Egs. (3) to (5), (13) and (14)
is presented. The Laplace transform of Eq. (2) together with

initial condition (3) yields

D, 0?Cq(x, 2, 8)
R, 022

sCo(x,2,8) — = 0. (B.1)
By seeking solutions of the typ€, o exp(zy) it follows
that

?2(1.7275) :Z+(1.7s)e’Y+Z+Zi(x7s)e’YfZ’ (BZ)

whereZ,andZ_ are functions to be determined and
SRa/DQ.

v+ =% (B.3)

The Laplace transform of boundary condition (5), which
establishes the presence of multiple parallel fractures, gives

Z_(x,5) = Zy(2,5)e0+ 2 (B.A)

wherey, /v = —1 was set. Boundary condition (3b) gives
a relationship betweefi, andC7, namely

Co(z,z,5) = Cp(x,5)er+ W)
1+ e+ =7-)(E/2=2)
. L T ) (B/2-w)

J.

This expression makes it possible to fiéd once the func-
tion Cy is known. The Laplace transform of Eq. (1) yields

(B.5)

_ 90 (z, s) 9*Ci(z, s)
sChi(x,s) +u O - Dy 02
B ¢2D2 802(37a Z, S) — Cl(l}t = 0)7 (BG)
w 82 Z=w

after the substitution of expression (B.5), the fourth term on

the LHS becomes

¢2Dq 8@(%2,5) - —Cil(x,s)%DQ%r
w 0z o w
X tanh {(’H — fyi)Q(E/Q — w)] , (B.7)

wheretanh(y) = (e?¥ —1)/(e* + 1) was used. By us-
ing (B.3) and defining

¢2\/ D2Ra SRa
w

tanh Dy (E/Q—w)l, (B.8)

o(s)=s+v/s

equation (B.6) translates into

— 9C (x,s) 0?C1(x,s)
o(s)Ci(z,s) +u o — Dy 922
= Cy(z,t =0). (B.9)

o(s)C1(z,s) +

aC, (x, s) 0?C1(z, s)
Yor T Dy Ox?
M

= So

Forxz # 0, the RHS of Eq. (B.10) disappears and thus
it has solutions to the exponential typg « exp(z§). The
characteristic equation fd@ryields

5(z). (B.10)

u

{x = 5D,

[1 /11 4D10/u2] . (31)
Here, it is true thatt, > 0 and¢_ < 0. Therefore, for
x # 0, the solution in Laplace space that satisfies conditions

in Eq. (14) is

Ci(r>0,8) = X(s)e*="

Ci(x <0,8) = X(s)e5+" (A.12)
where the continuity conditiof; (=0, s)=C; (z=0_, s)
was imposed. HereX (s) is a function to be determined
through a flow continuity condition that can be derived from
Eqg. (B.10) by integrating it from: = —e to z = and then
takinge — 0. The first two terms on the LHS of the resulting
equation vanish, leaving

aC; (x, s) M

-D =——.
! or o_ S¢1

(A.13)

After substituting Eq. (B.12) in the last condition, it follows
(&+ —&_)X(s) = M/D,S¢; and therefore for any it fol-
lows

M/Sou
vat —&-40’D1/U2.
By employing the dimensionless variables and parameters
defined in Egs. (11) and (12), together with = sL/u and

op = oL/u, and realizing thaly(sp) =  (u/L)C1(s),
the solution shown in Eq. (15) follows.

X(s) = (A.14)

Appendix C: Solution in Laplace space of the
Cc)-Model

In this case the boundary conditions are set in Egs. (11). The
whole formalism developed in Appendix B fd¥,(x, z, s)

and C (x, s)up to Eq. (B.9) is still valid; here however,
Cy(z,t = 0) = 0, as established in Eq. (16). The solution
for x > 0 is therefore

Ci(z,s) =Y (s)es"%, (C.1)

Rev. Mex. 5. 53 (4) (2007) 260-269



ON THE BOUNDARY CONDITIONS IN TRACER TRANSPORT MODELS FOR FRACTURED... 269

where the Laplace transformed condition of Eq. (18) was im-and Eq. (C.1), it follows that
posed, and’(s)is an unknown function to be determined by
the Laplace transform of Eq. (17). This gives the following uY (s) — Di€-Y (s) = (M/S¢1), (C.3)

condition on the flow:
and therefore

T B oM /Sdru
Ji(x=0,8)=(M/S S(ty)e stdt=(M/S¢1). (C.2 Y(s) = C4
(2=0,)= /¢10/ (M/S6). (€2) Oy ©9
i By employing the dimensionless variables and parameters
Using the Laplace transform of the flow defined in Eqgs. (11) and (12), together with = sL/u,
op =oL/uandCi(sp) = (u/L)C:(s), the solution shown
Ji(z =0,t) = uCi(z = 0,t) — D1 [0C: (2, 1) /2], in Eq. (19) follows.
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