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Capacitance of a plate capacitor with one band-limited fractal rough surface

N.C. Bruce and A. Gaia-Valenzuela
Centro de Ciencias Aplicadas y Desarrollo Tedgito, Universidad Nacional Adhoma de Mxico
Apartado Postal 70-186, 04510&ico, D.F.

Recibido el 30 de marzo de 2007; aceptado el 20 de junio de 2007

The problem of the capacitance between a band-limited, zero-mean, fractal shaped-rough surface and a plane electrode is investigated. Five

parameters are required to define the rough surfacehe rms heightD (1 < D < 2), the fractal dimension of the roughnegs;, the
fundamental spatial frequencly;(b > 1), the spatial frequency scaling parameter; ahdthe number of spatial frequency components in
the surface structure. We find that the graph of inverse capacitance against nearest electrode separation dep@wdd,omhereas it

is nearly independent dko, b, and N for N > 4. The numerical results also indicate that the surface roughness can be interpreted as an
equivalent dielectric film with an effective dielectric constant and effective thickness for surprisingly small minimum electrode separations.
Our findings in this paper can be used to complement established techniques for the experimental determination of the statistical parameters

of the surface roughness of conducting surfaces.
Keywords: Capacitance; fractal surfaces; capacitance microscopy.

Se investiga nugricamente el problema de la capacitancia entre una superficie rugosa con rugosidad fractal y una superficie lisa.
requieren cinco pametros para definir la rugosidag; la altura rms;D (1 < D < 2), la dimensbn fractal de la rugosidady, la frecuencia
espacial fundamental; (b > 1), el paémetro de escalamiento de la frecuencia espacid; ¥l nimero de componentes de frecuencia
espacial en la superficie. Se encuentra que el inverso de la capacitancia contra latsepanatia entre los electrodos dependeae

y D, mientras que es independiente Bg, b, y N paraN > 4. Los resultados nuermicos indican que la rugosidad superficial se puede
interpretar como una pgella diekctrica equivalente con una constanteé&titlica equivalente y grosor efectivo. Los resultados presentados
en este aftulo se pueden utilizar para complemenénicas conocidas para la meditiexperimental de las propiedades efstigchs de la
rugosidad superficial de superficies conductoras.

Descriptores: Capacitancia; superficies fractales; microscopia capacitiva.

PACS: 84.32.Tt; 84.37.+q

1. Introduction dard separation between the mean plane of the rough elec-
trode and the plane of the flat electrode and is the scaling pa-

There has been a great deal of interest recently in the me@ameter for this problem) [6]. We study the two-dimensional

surement of rough surfaces using capacitance probes. Resuifoblem due to the limitations of the numerical calculations

have been presented for the capacitance between a planefer the full 3D problem.

pointer probe electrode and deterministic (cosine or rectan-

gular surface shape) conducting surfaces [1-10]. Recentl2. Theory

we presented a study of the capacitance obtained between a

known probe electrode (which could be planar or with an ar-The band-limited fractal function used to describe the rough

ray of pointers) and a random rough surface with Gaussiagurface height distributiorh, (), is the following [13]:

height statistics and a Gaussian correlation function [11]. In N_1

that work it was shown that the capacitance obtal_ned W|th the hiz)=0oC Z (D — 1)"sin (Kob™x + ¢p), (1)

planar probe electrode depended only on the height statistics s

and not the correlation statistics of the Gaussian rough sur- ) , ) .

face, but that measurement with an electrode with a series (Wherea is the rms height(' is a normalizing factor for the

pointers gave information about the correlation function. ~ 'MS eight,

However, in practical situations, rough surfaces do not 1/2
have Gaussian statistics; in general, rough surfaces are de- C = 2D (2-D) )
scribed by fractal functions [12]. In this paper, we study (1 —(D— 1)21\’)

the simplest problem involving a rough surface with fractal

statistics, that is, the capacitance of a parallel plate capacitdp (1 < D < 2) is the fractal dimension of roughnedsy

with one rough electrode. We report the results of a numericab the fundamental spatial frequenéyp > 1) is the spatial
study, assuming a rough surface described by a band-limiteflequency scaling parametey, is the number of spatial fre-
fractal. We require the use of a band-limited function becausguency components in the surface structure, @ndre ran-

the numerical method we use to calculate the capacitance bdem phases which give the different realizations of surfaces
comes unstable and inaccurate for high spatial frequenciesith the same fractal structure. Another important parame-
(v > 2Dy wherev is the spatial frequency and, is a stan-  ter for rough surfaces is the correlation length, which is

Se
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obtained from the correlation functign(r): where () means the ensemble average, and the correlation
(h(2) b (z+ 7)) lengthT = 7. is found wherp (1) = e~ 1 Figure 1 shows
p(r)= iy examples of rough surfaces generated with Eg. (1) and the as-
(h? () sociated parameters. It can be seen that for smaller values of
(1 —(D- 1)2> No1 D the rough surface is close to a sinusoidal shape, and as this
- (D —1)*"cos (Kob"r), (3) Parameter increases, the roughness increases and the surfac
(1 — (D - 1)2N) ot finally looks nothing like a sinusoidal surface. For compari-
son, a surface with Gaussian statistics (height statistics and a
| Gaussian correlation function) is also shown in Fig. 1.
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FIGURE 1. Examples of the band-limited fractal rough surface profiles and the parameters of the surfaces. Also shown for comparison
Gaussian random rough surface with the same standard deviation of height and a correlation length comparable with the band-limited fr
surfaces.
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The electric potentiap satisfies the Laplace equation plane
electrode a
V2 (r) = 0. @ Do
fractal _ M\AAJ“WA Hvﬂﬂ\ M_ - mean plane
We can use Green’s theorem to obtain the integral equa—BIGCtrOde b of fractal
tion - L > electrode
o
7{ (G (r— ") dp(r) o () oG (r—r )) ds FIGURE 2. The geometry of the problem.
DR 3n an
[ p()ifr eR
{OifT'géR IO o
c
o
whereG () is the Green function for this problem °
&
G(r—1") = —=n(jr 7'} -
Y= — — In(lyr —
T T o T T 5 'E)
n is the normal to the surface in the direction towards the g
volume R which is surrounded by the surfadeR, and S
d/0n = n - V. Taking the point”’ to be (i) infinitesimally
below the plane probe surface (denoted by subsariptthe
following equations) and (ii) infinitesimally above the rough
test surface (denoted by subscript(see Fig. 2), we obtain 0 : : : :
the two equations [6] 0 10 20 30 40

8(;ba

J (s

— 00

— GB (:z:)> dz

T 0Ga -
— / <Uaay — GaaA (x)) dx = 0
[ (. G
/ (Ubaj\l;b — beB (33)) dz
T aC:ab
J— —_— A =
/ (Ua By Gap (x)) dr =0, (6)

Nearest electrode separation (units of D )

FIGURE 3. Graphs of normalized capacitance against nearest elec-
trode separation for different values efand D. Black curves,

o = 0.2Dy; red curvesg = 0.4Dy; green curvesg = 0.6Dy;

blue curvesg = 0.9D,. The values ofD are, from the top curve

to the bottom curve for each value 6f 1.9, 1.8, 1.6, 1.4, 1.2 and
1.02. The value ob is 1.5. The open circles are the results for a
Gaussian random rough surface with the same valuesafd a
correlation length of = 1.0D.

The equality of the capacitance calculated from the two
electrodes is used as a check on the validity of the calcula-
tion. In the calculations presented here, the difference was
typically less thari0~3, although the roughest surface calcu-
lated showed a difference of the order16f-2.

where the subscripts to the Green function indicate the sourcg  Results and discussion

and field points of the field, for examplé&;,;, is the field at
a point on surfacé due to a unit source on surfaee Nis

The results presented here were calculated by dividing a sur-

the normal to the rough surface and the normal to the flaface segment of length, = 30.0D, into 512 points and as-

surface is in the direction of thg-axis. A (x) and B (z)

suming a periodic surface with 100 periods of these surface

are the charge densities on the top and bottom surfaces, reegments. The value @ is given by
spectively, normalized by the free space permittivity constant

g0 = 8.854 x 10~12C? /N m?2. Equations (6) are discretized,

converted to matrix equations and solved in a computer to

find A () and B (). The normalized capacitance per unit
length is then given by

L

0/

L
ev=1
0

1 1
I Al(z) dz I B (z) dz.

_ 2T
AS/P7

wherep controls the number of periods of the spatial fre-
quency contributions in the surface segment. One aspect
which is important to emphasize in the results presented here
is that the values of capacitance are plotted against the near-
est electrode separatiore. the smallest distance between a
point on the rough surface and the planar probe electrode.

Ky
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This separation is measurable, whereas the distance betweer
the average plane of the rough surface and the planar elec-
trode is not [12]. The calculation for one value of the near-
est electrode separation took approximately 15 minutes on a
167MHz SUN ULTRA 1 workstation.

Figure 3 shows the normalized capacitance values against
the nearest electrode separation for fractal rough surfaces
[Eq. (1)] with different values of the parametersand Dand
with the parameters andp constant, and, for comparison,

a similar curve for Gaussian rough surfaces with a constant

correlation length, and the same values for the width of the

height probability distributior as the fractal surfaces. As in

0.0 -— previous work [11], the Gaussian height distribution is cut at

0 10 20 30 40 50 30 to limit the extent of the surface (a Gaussian distribution

Nearest electrode separation (units of D) has a small but non-zero probability of producing a very high
art of the surface which would mask the effect of the other

‘parts of the surface on the capacitance). It can be seen that,

for all cases shown, including the Gaussian surface case, the

curves of the normalized capacitance versus nearest electrode

1.0+

0.8+

0.6

0.4 1

0.2

Normalized inverse capacitance

FIGURE 4. Graphs of inverse normalized capacitance against near
est electrode separation for the same data as in Fig. 2.

“g’- 0.0205 . separation have the same shape. However, the normalized ca-
z ] pacitance is reduced as the paramé?és reduced or as is
o
S 0.0204 - reduced. o |
-‘é ] The shape of the curves in Fig. 3 appear to follow a sim-
2 00203 s ple inverse relationship with the nearest electrode separation,
3 ] R soin Fig. 4 we plot the inverse of the normalized capacitance
@ . . . .
N 5.02024 A “ o in Fig. 3 against nearest electrode separation. It can be seen
g ] X that all the cases calculated here are straight lines in Fig. 4,
2 002014 . . " B showing that for all cases the normalized capacitance is an in-
verse function of the nearest electrode separation. Note that
0.02004 % s * the curves in Fig. 4 should actually “dive down” to zero at the
I % - origin, that is, when the nearest electrode separation is zero
08 10 12 14 16 18 20 the normalized capacitance is infinite, and thus its inverse is
Value of D zero. It is rather surprising that the curves of the inverse ca-
- ] = 8 1.04
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FIGURE 5. Graphs of the intersect point (lower) and the slope (up- Nearest electrode separation (Units of D)
per) of the curves in Fig. 3 against the valuelof Filled squares,
o = 0.9Dy; open trianglesg = 0.6D; crossesg = 0.4Dy; FIGURE 6. Graph of inverse normalized capacitance against near-

asterisks,c = 0.2Dy. The lines are the results for a Gaussian est electrode separation for a band-limited fractal surface with
rough surface with the values of given by: dashed and dotted o = 0.2D, and a correlation length varying from 1.0 to 6.0. In
line,oc = 0.9Dy; dotted lineg = 0.6 Dy; dashed lineg = 0.4Dy; this graph there are 7 different curves, which are indistinguishable.
continuous lineg = 0.2Dy.
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FIGURE 7. Graphs of normalized capacitance against the nunibenf spatial frequency components used in the surface generation for
o = 0.2Dy, left, ando = 0.4 D, right. The correlation distance for the cases shown4s5D.

1.04 the data and is the y-intercept. From this figure, we see that
: the slopes of the curves are independent of the paramters
ando (note the small change in the vertical scale of the graph
for the gradientn) whereas the intercept, does depend on
the parameteD, as well as on the parameter
Figure 6 shows the variation of the curve of the normal-
ized capacitance versus the nearest electrode separation when
the surface is stretched or shrunk in the horizontal direction.
Here it is important to note that all cases had the same sur-
face shape; this surface was only scaled in the horizontal di-
rection. It can be seen that, as has been seen before for a
randomly rough surface with Gaussian statistics, the capaci-
tance obtained with a planar electrode is independent of the
0.0 - ' ; ' ; ' ; ' lateral structure for the fractal surface for the values of the
0 L 2 3 correlation length shown here.
Nearest electrode separation (units of D) Figure 7 shows the variation of the normalized capaci-
FIGURE 8. Graph of nhormalized capacitance against nearest elec-tance with the number of spatial frequehcy components
L . From the graphs it can be seen that with 4 or more terms
trode separation for different values of the paraméter a band- the capacitance is unchanged, i.e. the spatial frequencies in
limited fractal surface witlr = 0.2Dy andD = 1.5. The crosses P
are for the case ob — 1.02; continuous lineb = 1.2 open the surface shape for 4 or more terms have no effgct_on the
squaresp = 1.5; filled circles, b = 2.0; and open triangles, Measured capacitance. It can also be seen that the limit on the
b=2.5. number of terms which affects the capacitance is independent
of the standard deviation of the height. Although the value of
pacitance remain linear down to a value of the nearest eledy Which affects the capacitance is small, from Figs. 3 and 4
trode separation of.01D,, which corresponds to the first it can be seen that the capacitance varies for cases with differ-
point in the graphs. It is worth pointing out that taking a ent parameters, so the fact that the surface is a band-limited
different separation parameterg. the separation between fractal does affect the capacitance value.
the average plane of the rough electrode and the plane elec- Finally, Fig. 8 shows the variation of the inverse nor-
trode, would give the same straight lines, with the same gramalized capacitance against nearest electrode separation with
dients, but shifted along the x-axis. For separations smallgparameteb, the spatial frequency scaling parameter. For the
than0.01Dy, the errors in the numerical method used here incases shown here, it can be seen that the normalized capaci-
crease and the values of the capacitance calculated from tfi@nce is independent of this parameter.
two electrodes differ by more than the valuel6f > men- The results in Figs. 3-8 have a simple and appealing inter-
tioned above. Figure 5 shows the variation of the slope angretation: the surface roughness on a flat electrode is equiva-
the intersection point on the y-axis of the different curies, lent to an artificial effective dielectric film on a flat conduct-
fits the functiony = mx 4 ¢, wherey is the inverse capaci- ing surface. To see this, let us recall that the capacitance of a
tance,z is the nearest electrode separationis the slope of  parallel plate capacitor with a dielectric film covering one of

0.8 1

0.6

0.4 1

Normalized inverse capacitance

0.2 =™
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the capacitance between the rough surface and a parallel

its electrodes is given by
plane electrode for two or more values of the nearest elec-

C = Agoh , (8)  trode separation. The data from Fig. 4 can be used to produce
d+ - a calibration curve as shown in Fig. 9, where the possible val-
hereA is th fth it ues ofo andD can _be found from_the int_ersection ofthe pl_ane
whereA 1s the area ot the capacttor, for the measured inverse capacitance intersect value with the
co = 8.854 x 1071202 /N m? curve of the inverse cap_acitance intersect vqlue against
and D. However, separating andogould require another

is the permittivity of free space, is the relative permittivity independent measurement. Recently, it has been shown that

of the dielectric materiali is the thickness of the dielectric it iS, in principle, possible to determine the thickness and di-
material, andi is the free space distance between the top oflectric constant of a dielectric coating from two capacitive
the dielectric layer and the second electrode. The normafmeasurements using two electrodes of different shapes [14].
ized capacitance in this case is obtained by dividing Eq. (8] this reference, it was shown that for two different elec-

by Aeo, and the inverse capacitance of this system is therefodesg.g.one plane and one circular, the dependence on the
fore measured capacitance of the dielectric constant and the film
h

1 —g4 (9) thickness is different and that one measurement with each
C Er electrode is sufficient to separate these two parameters. In
i.e. the inverse capacitance is a linear function of the nearview of our finding that a fractal rough surface is equivalent
est electrode separatioh and the gradient of the linear de- to an effective dielectric film, it may be possible to use the
pendence is independent of the parameters of the dielectriéchnique proposed in Ref. 14 to obtain the values of an ef-
layer. The intersection point of the@/versusd line is the  fectiveh and an effective, and then separate the valuedf
ratio h/e,., and so it does depend on the dielectric layer. Thisandou To obtain information on other statistical parameters
is the same situation as was found for the fractal surface cag¥ the rough surface, that i$, Ko, and N, other indepen-
above: the gradient of the line is constant and the intersectiofient measurements must be takey, optical scattering or
point depends on the surface parameters. microscopy measurements.

Therefore our results indicate that the ratio of the effec- .
tive coating thicknessh, and the effective dielectric con- 4. Conclusions
stante, depends mai”'y on the values of statistical ParaMyye have found that the inverse of the capacitance between a
etersD) ando, an_d IS n_early independent of the other param- lane probe electrode and a band-limited fractal rough sur-
eters. The relationship between the rough surface param ice (us for a Gaussian random rough surface) is a linear

helght. of the surface roughness, is stud_led in the Appef‘d'x' entinverse normalized capacitance intersection values. There
This means that one could determine a relationship beélre 5 parameters which define the band-limited fractal rough

tween the statistical parameters of the rough surfdee, fsurfaces used in this papew which is the rms height,

ando, from the experimental measurement of the values of (1 < D < 2) which is the fractal dimension of the

roughness Ky which is the fundamental spatial frequency,

b (b > 1) which is the spatial frequency scaling parameter,

0.40 5 and N which is the number of spatial frequency components
0.35 g in the surface structure. Of these 5 parameters, the inter-
kS section point of the graph of the inverse capacitance value
0.30 8 against nearest electrode separation dependsand D, as
0.25 § shown in Fig. 9. The slope of the inverse capacitance ver-
S sus nearest electrode separation is independent of the surface
e § parameters. This means that surface roughness with fractal
015 o statistics can be modeled by an artificial dielectric film with
1.(()) i 0.10 § an effective thickness and an effective dielectric constant and
: £ that the ratio of the effective thickness and the effective di-
L&/ ' 0.4 1.8 0.05 electric constant is a function of and Donly. Some other,
% 0.2 14 1.6 independent, measurement is required to separate these twc
”, T o 12 Jave ok © parameters.

FIGURE 9. The calibration graph for the inverse capacitance inter- Appendix

sect versug and D. The intersection of the plane for a measured ' -~ . _ .
value of the inverse capacitance with this curve gives the possibleThere is a specific case in which the relation between the pa-

values ofo and D for the surface. rameters of an effective thin dielectric layer over a conducting
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surface can be related to the shape of the rough surface in a Comparing Egs. (A.1) and (A.3), it can be seen that the
simple way. For the case when the separation between thegjuivalent thin dielectric covering parameters are given by
two electrodes is very largéd, >> h, in the case of the thin
film, we have for the normalized capacitance

—1
R EEARCH (B

d+ ;- d erd d &rd and, from Eq. (9) above, this parameter defines the intersec-

1 1 h tion point of the inverse capacitance curves. This expression

“d aE (A-1) s true for any form of surface roughnes®. there will be

an equivalent thin dielectric film for any shape of roughness.

where we have used the binomial expansion and cut the sé-the roughness is zero-mean (as is the case for the fractal
ries after the second term sinde>>> h. The local height surfaces), then the integral term in Eq. (A.4) is equal to zero
approximation for the normalized capacitance in a rough surand we have the equivalent thin dielectric covering parame-

h 1

- S A4

c, hmax L /h(l‘) dx ( )
L

face capacitor is [4,5] ters given by
1 1 h
= — _— A.2 - = h/nr X5 A.5
C L/deaXih(x)dx, (A.2) - a (A.5)
L

i.e. the intersection point of the @/ versusd curve depends
wheredis the nearest electrode separation andx is the  only on the maximum value of the height of the rough sur-
maximum value of the surface height above the mean planfce. This means that, measuring with a plane electrode,
of the rough electrode, and the ted# hunax i the separation it s not possible to extract the surface statistics for a zero-
between the flat electrode and the mean plane of the rougiean surface from the inverse capacitance intersection point,
electrode. Performing the binomial expansion as in (A.1), W&t is only possible to extract the maximum value of the sur-

obtain face height. In the case of the fractal surfaces, the maximum
1 height of the surface depends on the value pivhich gives
C = 1 / 1 (1 + hmdx_h(x)) dr the rms of the height variations, and #h which defines the

L 7 d d amplitudes of the different harmonic components. The other

parameters should not affect the maximum height. This is the
oL / 1 (1 _ hmax —h (96)) . behavior found in the results above. If we choose a value of
d

L) d h = 20, then, from Eq. (A.5), we have
20
1 1 1 & =7 (A.6)
= g — ﬁ Ahnlax — z /h (I) dl' . (A3) max
L which could be used as a comparative parameter between sur-

faces with different statistics.
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