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Construction and validation of a non-conventional elliptical zone
plate that generates auto-images singular optical fields
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The aim of this work is to construct an optical element which has the property of having a family of curves that possesses the same evolute and
common parallel. Also, the family of curves must be replicated as in a conventional zone plate, which by definition has a circular geometry.
The zone plate to be generated will be called non-conventional due to the fact that it does not have circular geometry. The focalization
properties of this plate are explained from the rays associated with a spherical wavefront emitted by each point of the trangmjttance,

the parallel curves evolution by diffraction effects along the propagation axis, which replicate themselves when the constructive interference
exists due to the contribution of the different rings of the plate.
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1. Introduction will be constituted by a family of curves with a common evo-
lute as well as a common parallel. The latter helps to predict
In optics there are several elements that are used as focusititge propagation of the diffracted field, which is constituted
devices,e.g, zone plates, lenses, mirrors, etc. In particular,by parallel curves along the optical axis. These curves will
zone plates can be used in different regions of the electrdse changing in form to repeat themselves laterien, self-
magnetic spectrum and can be used to produce multiple fdmages, contrary to what happens with regular zone plates
calization zones along its propagation axis [1-4]. where the focalization geometries are present only at spe-
Fresnel zone plates are used as beam splitters to buikific planes. An attempt of designing a non-conventional
double focus common path interferometers. The advantagéone plate has been done [9], but the restriction is that it is
of such interferometers is that the resultant interference paf?ot designed with the parallel common curves; therefore, the
tern is not affected by thermal changes or vibrations. Thdropagation field reported at different distances is the field
latter is due to the fact that the reference ray, as well as théhat can be found in between common parallel curves,
probe ray, has the same path length [5]. Also, the use of zorigtermediate fields.
plates as spatial filters to replicate images of a certain object The main advantage of this method is that it allows con-
by using coherent illumination has been reported [6]. structing zone plates with different geometries, but assuring
The advantages of using diffractive elements instead ofat the same time- that the family of curves will have the same
refractive objects are: less weight and size, its design can gevolute and the same common parallel. This permits to ma-
made by computer or by interferometric techniques [7], andliPulate the form of the propagated field to our needs.

can be customized to be used for different electromagnetic In this work, for the first time, to the best of our knowl-
spectrum ranges [8]. edge, the construction of a non-conventional zone plate is de-

The present work is based on the study made for convens-cr'bed as well as its focalization properties.

tional zone plates, in which the family of curves with com-

mon evolute is analyzed. This family of curves is obtained by Construction of an elliptical zone plate

projecting normal lines that emerge from the support curve,

giving as a result a common evolutes., a common evolute By definition, a caustic is the envelope of a family of rays

curve for the entire family. The latter gives rise to parallelin the transmittance plane. These rays are normal to a sup-

common curves to the same family. The parallel curves argort curve and at the same time are tangent to an evolute

made by small displacements inward and outward of the inicurve [10], Fig. 1.

tial curve. In order to describe the propagation in free space of the
The mathematical method proposed in this work assuregenerated field, we use the fact that each normal line is on a

that the constructed zone plate, hon-conventional zone platplane tangent to the evolute and perpendicular to the transmit-
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Equation (2) allows us to think of a thread rolled to the
evolute curve passing by’ Nollowing the segment M\’, so
that its end point is on A SinceUNN’=(AN-A’N’), the point
A’ can be moved to the point A, describing the cubyesee
Fig. 2b. The same can be done for pointsaBd B by chang-
ing the length of the thread, but, in this case, the described
curve will beh;, which has the same evolute /as By mak-
support ing different increments of the length of the thread, a family
curve of curves having the same evolute can be generated.

evolute

normal
lines

FIGURE 1. Formation of the evolute [11].
2.2. Family of curves of common parallel
tance plane. The family of planes has, for every propagation
plane, the same envelope curve that the one generated on theparallel curve has the property to maintain a certain dis-
transmittance plane. This propagation generates a cylindeance, measured over the norm of the curve in each point,
that has the evolute of the support curve as base, known dgm another curve. From this definition is evident that the
the caustic cylinder. For the particular case in which the Supproposed family of curves of common evolute is at the same
port curve is an ellipse, the evolute curve obtained is knownime a family of curves of common parallel. To picture this,
as theastroid and its shape remains along propagation vary{et us suppose a support curvg(t), and a parallel curve,
ing only its irradiance [11]. g(t), that is generated at a distancérom f(t), as seen in
Fig. 3.

The condition to generate parallel curves to a given curve
rﬁ'g that it must be regular. If the initial curve, represented in its
eparametric formf(t) = (x(¢),y(t)), then the parallel curve

2.1. Family of curves of common evolute

The basic idea in the design of this plate is to generate a fa
ily of curves which has the same evolute, implying that th

normal lines that are traced for the support curve are the sarﬁg itis given by
for the rest of the curves, which suggests the method of con-
struction. Let us consider an initial curve givenhyand its 9(t) = f(t) +rn(t)
evoluteF, as it is shown in Fig. 2a). Yy (t) 2’ (t)
Let NA and NA’ be two norms to the curve,, which in- = (I(t) -T 7@l ), y(t) +r G ) ®)

tersects on Q. If A and 2are two points, which are very close
to each other ovet,, then the curve described by NQ+QN \where

can be approximated by the astN’, and from Fig. 2a) we 1
have n(t) = m(—y/(t),x/(t))
UNN’~ NQ+ QN = (AN - AQ) + (A'Q — A'N") is the curve’s normal vector; is the distance between the

curvesf(t) andg(t), andf’(t) = (2'(t),y'(t)).

_ AN A
= (AN =AN)+ (AQ-AQ) (1) The derivative of the vectgy(t), is given by

Since A and A are very close together, theri@ = AQ,

and, as a consequencg\N'=(AN-A’N’), resulting in g'(t) = (1 —rTs()f(t) (4)
AN = UNN’ + A'N’ (2)  where the curvature of the curyét) is of the form,
' (t)y"(t) — x"(t)y'(t)
T(t) = e
1@l
no
L_/f — f(t)
g(t)
2) E rn(t)

FIGURE 2. a) Construction of the family of curves of common
evolute curve. b) Formation of the curves’ family. FIGURE 3. Parallel curvey(t).
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From Eqg. (4), we can say that ff(¢) is a regular curve, as where
long asr—! does not belong to the rangg (), g(¢) will also b
be a regular curve. The relationship between the curvatures Tp(t) = a =
tures off(¢) andg(t), and¥ ;(t) and¥,(t), can be shown by (a?sen?(t) + b cos?(t)) 2
derivating such equation,

g (®)g" () = [(1 = rTs (1) f'(1)]

The curvature for the regular curyét) is given by,

ab
< (L= (O)f" (1) = r Ty (O] B = a0 + oo @) — vt
— _ 2 ¢l 1"
= A =rE ) F O, ®) where the plus sign (+) corresponds to the case in which
then r < b*/a and as a result — rT¢(t) > 0. The minus sign
ovae, 1— T N2 (1) (¢ (-) corresponds to the case whetea? /b, which is a mini-
Ty(t)= ”g”( ,)(“Z) ”(3)” _ = ié)zt)nglgjé)ﬁﬁ) (6)  mum absolute, and, thereforie- % ;(t) < 0. By analyzing
g f the support curve, we have that the absolute extrema of this
which represents the curvature of the parallel curve. function in the interval, 2) are reached at:
If f(t)is a closed curvey(t) will also be a closed curve.
The regularity property of (¢) can be lost iy(¢), depending T4(0)=F4(m)=15, the maximum absolute, and (10)
of the existence of the roots of the equatidr-rZ ¢ (¢)) f'=0, b

in the g(¢) domain [12]. Ty(m/2)=F;(3m/2)= ’

—, the minimum absolute.  (11)
a

2.3. Family of curves of common parallel with common
evolute generated from an ellipse Then, the limits ofr for the curve to be regular are?/b <

r <b?/a.
If the parallel curves use an ellipse as a support curve, then by |t is clear, that every parallel curve §t) with » < 0 is
setting the major semi-axis of the ellipsecaand the minor  regular, sinceZ;(t) > 0 and, thus,1 — rZ;(t) > 0. Fig-

semi-axis a$, we obtain ure 4a) shows that for every< b2 /a the obtained curves are
regular and have the same geometry of the support curve.
t) = (z(t),y(t)) = t),bsen(t)), 7
F() = (2(2), y(t)) = (acos(t), bsen(?)) Q) Also, the parallel curves for the same support curve but
with a travel path of @, 27), resulting inz’(t) = —asen(¢t)  forr > a?/b, are regular curves too, see Fig. 4b).
andy’(t) = bcos(t). Taking into account Eq. (3) and the cur- It can be seen from Fig. 4 that, as we approach to the cen-

vature(t), and by substituting the values of the parametricter of the ellipse, its parallel curves start suffering changes.
equations and their derivatives into them, the expression forhese changes are more pronounced when the parallel curves
the family of parallel curves (for each value of is of the  are in the range of?/a < r < a?/b, where they stop be-

form ing regular. At this point, the parallel curves start to inter-
rbcos(t) sect each other and to change their direction. The parallel
acos(t) — ——— P RCTY: curve cuts at the-axis origin when: = b, see Fig. 5b), and
g(t) = (a” sen (mz ;n(t‘;OS (1)) , (8) whenr = a the curve cuts at thg-axis origin, as shown in
bsen(t) — . Fig. 5c). Asr continue growing the curve becomes regular
(a®sen?(t) + b? cos®(t)) 2 until 7 = a2 /b.
0.2
0.1

a)

b)

FIGURE 4. Parallel curve of the elliptical curve for: a)< b*/ay b)r > a?/b.
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005 0.1 015

FIGURE 5. a) Auto-intersections of the parallel curves at thexis. b) Parallel curve cutting at the origin on thexis. c) Parallel curve
cutting at the origin on thg-axis.

The cuts atr andy can be seen from Eq. (8). Centering 2.4. Non-conventional zone plate of common parallel
our attention onto the cut at theaxis, we have
In order to design a hon-conventional zone plate of common
=0. (12) parallel, we chose an ellipse as a support curve. The family
of ellipses has a separation in between the curvegiof

rasen(t)
(a? sen?(t) + b2 cos?(t))1/2
From Eqg. (12) the intersections of the curves with the

y = bsen(t) —

axis are seen. This equation has two roots-(0 y t = ), F(t) = [(a+ v/n — 1) cos(t), (b + v/n — 1) sen(t)], (16)
but if

ra

(a2 sen?(t) + b2 cos2(t))1/2 =0. from this equation we can see that
then there are two more roots that can be obtained.<if0,
these roots do not exist, and the outwards ellipse parallel n = (a+ v/n — 1) cos(t) = a, cos(t) and
curves cut thec-axis only att = 0 andt = , then by taking yn = (b+ /i — 1) sen(t) = by, cos(t) (17)
into account only > 0, we have ’
r2a? — bt wheren can take the values df,2,3,4,..., etc., which
sen’(t) = —5—— =0 (13) ; :
T 02a2 —pt means that, for each n, we will have a ring. The zone plate
Theset values exist and are different from 0 angif and presented in .th's work has 20 NG, n = 20, see Fig. 6D).
only if And, the family of parallel curves is
7 r2a? — b*
0< 55— <L rby, cos(t)
b%a® —b an, cos(t) —
so (a2 sen(t)2 + b2 cos(t)2)1/2
2 2 g4y 1/2 g(t)= (18)
t= arcser<m> b ) ran sen(t)
b2a® — bt n ST a2 sen(t)? + b2 cos(t)2)1/2

i.e, that inb?/a < r < b an intersection of thg(t) curve
with the z-axis exists, and we are at the origin wher- b,  and the curvature of the-th curve is given by
see Fig. 5.

In analogy, it can be seen thaft) also has two intersec- - (t) = + anbn . (19)
tions with they-axis, att = =/2 and att = 3/2, which o (a2 sen(t)? + b2 cos(t)2)3/2 — ra,by,
comes from Eq. (8) whem = 0. As a result, the cut on the
y-axis is:
3. Experimental setup and results
rbcos(t)
z=acos(t) — —5—— 2312 (14)
(a2 sen?(t) + b2 cos?(t)) In order to obtain the transmittance of Fig. 6b), computa-
where tional software was used. The resultant graphic was printed
rb on a white paper sheet, then it was photographed and reduced
 laZson?() 1 b2 oos2 (1)1 =0. (15)  at (1:30) onto a high resolution plate (HRP). The size of the

resultant transmittance was5 mn?.
The characterization of the non-conventional zone plate
at — r2p2 was carried out by using the experimental setup shown in
cos?(t) = eyl Fig. 6a). The obtained results are shown in Fig. 7.
The latter values can only exist, if and only if, The results shqwn.in Fig. 7 are in total agreemgnt vyith the
W oo theory. By observing images b), e), anq h) taken in d|fferent
0= " b . propagation planes, we can see the existence of auto-images.
a* — a2b? The same thing happens in the case of images c), f), and i).

There are no intersection for the case in which 0 and
therefore
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Collimating Transmittance Observation
lens plane plane

Expanded
laser

a) i |

FIGURE 6. a) Experimental setup. b) Non-conventional zone plate of common parallel.

,«;‘/2'5 R .
o~y € ™ i 2
e 3 iy

FIGURE 7. Evolution of the propagated field using the non-conventional zone plate of common parallel at the following distance from the
transmittance: a) 3.1 cm, b) 3.4 cm, ¢) 3.7 cm, d) 7.4 cm, e) 7.8 cm, f) 8.1cm, g) 10.9 cm, h) 11.1 cm, i) 11.6 cm.

tion of Sec. 1 and 2, which gives as a result that the gener-
o ated family of curves has a common evolute as well as a same
The focalization of the constructed zone plate can be eXxcommon parallel.

plained based on the geometrical and mathematical descrip-

4. Discussion

Rev. Mex. Fis63(2017) 356-362
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of these curves has a constant phase, which is repeated by
a modulus of27r. Due to the latter, the generated family of
curves replicates itself as shown in Fig. 7. This self-image
or replica of the geometries is due to the periodicity of the
constructive interference regions. The total field for a certain
detection plane is formed by the superposition of the enve-
lope curve and the corresponding parallel curve for such a
displacement. If the propagation plane changes, a new paral-
lel curve will be obtained, as it has been seen.

The perpendicular rays associated to the parallel curves,
FIGURE 8. Analysis of the evolution of the family of curveg,  which are generated by the constructive interference of the
and f1, of common parallef(t). emission of the family of curves that constitutes the zone

, ) ) ) plate along the propagation axis, have the same envelepe,

Since the non-conventional zone plate is a transmittancg ¢ stic. The latter gives us an insight that we are obtaining
plate, which is illuminated by a coherent plane wave, and bype eyojution of the focalization region organizing itself in
taking the Huygens prmc_:lple :_:md the Fresnel postulate_ intQha surroundings of the caustic.
account, then the points in which the secondary waves inter-
fere in a constructive way can be considered.

Having the support curve,,, we follow the propagation 5. Conclusions
of a ray that travels perpendicular to the curve. The same pro-
cedure is done for different rays and an instant of time latefhe focalization properties of the constructed non-
we can see how the wavefront has evolved, points A, B, angonventional zone plate, evolving as parallel curves along
C of Fig. 8. By definition these points fall on the parallel the propagation axis, are explained by using the Huygens-
curveg(t), i.e, the parallel curvg(t) is a wavefront. Fresnel principle. The Fresnel diffraction patterns can be

Let us analyze the emission of the second curve that corfeen as the redistribution of energy in a successive parallel
stitutes the family of curve$, and f,. Due to the fact that Ccurves evolving along the propagation axis. The focalization
both of them have the same evolute and share the same famn9gions are seen as points of constructive interference and the
of perpendicular lines for each propagation plane, the waveeVvolute as the normal envelope of the rays.
front coming from f; has a constant phase difference with ~ This treatment can be applied to some other type of
respect to the one coming froffy. If the phase difference Support curves, not only elliptical, which means that this
is such that the wavefronts interfere in a constructive waymethod can control the geometry of the focalization region
then the geometrical focalization point will correspond to aby changing the support curve used to generate the focaliza-

parallel curve, such that tion diffraction element. As a result, the diffraction element
can be customized in order to obtain a specific focalization
KAr =2mn field.

whereAr = m.

On the arbitrary points A, B, and C we will have a group Acknowledgments
of parallel curves with a certain geometry of focalization; we
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different curve. Since is a continuous parameter, the gener-Técnico Auxiliar en Investigabn, for his technical contri-
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