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Construction and validation of a non-conventional elliptical zone
plate that generates auto-images singular optical fields
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The aim of this work is to construct an optical element which has the property of having a family of curves that possesses the same evolute and
common parallel. Also, the family of curves must be replicated as in a conventional zone plate, which by definition has a circular geometry.
The zone plate to be generated will be called non-conventional due to the fact that it does not have circular geometry. The focalization
properties of this plate are explained from the rays associated with a spherical wavefront emitted by each point of the transmittance,i.e.,
the parallel curves evolution by diffraction effects along the propagation axis, which replicate themselves when the constructive interference
exists due to the contribution of the different rings of the plate.
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1. Introduction

In optics there are several elements that are used as focusing
devices,e.g., zone plates, lenses, mirrors, etc. In particular,
zone plates can be used in different regions of the electro-
magnetic spectrum and can be used to produce multiple fo-
calization zones along its propagation axis [1-4].

Fresnel zone plates are used as beam splitters to build
double focus common path interferometers. The advantage
of such interferometers is that the resultant interference pat-
tern is not affected by thermal changes or vibrations. The
latter is due to the fact that the reference ray, as well as the
probe ray, has the same path length [5]. Also, the use of zone
plates as spatial filters to replicate images of a certain object
by using coherent illumination has been reported [6].

The advantages of using diffractive elements instead of
refractive objects are: less weight and size, its design can be
made by computer or by interferometric techniques [7], and
can be customized to be used for different electromagnetic
spectrum ranges [8].

The present work is based on the study made for conven-
tional zone plates, in which the family of curves with com-
mon evolute is analyzed. This family of curves is obtained by
projecting normal lines that emerge from the support curve,
giving as a result a common evolute,i.e., a common evolute
curve for the entire family. The latter gives rise to parallel
common curves to the same family. The parallel curves are
made by small displacements inward and outward of the ini-
tial curve.

The mathematical method proposed in this work assures
that the constructed zone plate, non-conventional zone plate,

will be constituted by a family of curves with a common evo-
lute as well as a common parallel. The latter helps to predict
the propagation of the diffracted field, which is constituted
by parallel curves along the optical axis. These curves will
be changing in form to repeat themselves later on,i.e., self-
images, contrary to what happens with regular zone plates
where the focalization geometries are present only at spe-
cific planes. An attempt of designing a non-conventional
zone plate has been done [9], but the restriction is that it is
not designed with the parallel common curves; therefore, the
propagation field reported at different distances is the field
that can be found in between common parallel curves,i.e.,
intermediate fields.

The main advantage of this method is that it allows con-
structing zone plates with different geometries, but assuring
-at the same time- that the family of curves will have the same
evolute and the same common parallel. This permits to ma-
nipulate the form of the propagated field to our needs.

In this work, for the first time, to the best of our knowl-
edge, the construction of a non-conventional zone plate is de-
scribed as well as its focalization properties.

2. Construction of an elliptical zone plate

By definition, a caustic is the envelope of a family of rays
in the transmittance plane. These rays are normal to a sup-
port curve and at the same time are tangent to an evolute
curve [10], Fig. 1.

In order to describe the propagation in free space of the
generated field, we use the fact that each normal line is on a
plane tangent to the evolute and perpendicular to the transmit-



CONSTRUCTION AND VALIDATION OF A NON-CONVENTIONAL ELLIPTICAL ZONE PLATE THAT GENERATES. . . 357

FIGURE 1. Formation of the evolute [11].

tance plane. The family of planes has, for every propagation
plane, the same envelope curve that the one generated on the
transmittance plane. This propagation generates a cylinder
that has the evolute of the support curve as base, known as
the caustic cylinder. For the particular case in which the sup-
port curve is an ellipse, the evolute curve obtained is known
as theastroid, and its shape remains along propagation vary-
ing only its irradiance [11].

2.1. Family of curves of common evolute

The basic idea in the design of this plate is to generate a fam-
ily of curves which has the same evolute, implying that the
normal lines that are traced for the support curve are the same
for the rest of the curves, which suggests the method of con-
struction. Let us consider an initial curve given byho and its
evoluteE, as it is shown in Fig. 2a).

Let NA and N′A′ be two norms to the curveho, which in-
tersects on Q. If A and A′ are two points, which are very close
to each other overho, then the curve described by NQ+QN′

can be approximated by the arc∪NN′, and from Fig. 2a) we
have

∪NN′ ≈ NQ + QN′ = (AN - AQ) + (A′Q− A′N′)

= (AN − A′N′) + (A′Q− AQ) (1)

Since A and A′ are very close together, then A′Q = AQ,
and, as a consequence,∪NN′=(AN-A ′N′), resulting in

AN = ∪NN′ + A′N′ (2)

FIGURE 2. a) Construction of the family of curves of common
evolute curve. b) Formation of the curves’ family.

Equation (2) allows us to think of a thread rolled to the
evolute curve passing by N′, following the segment N′A′, so
that its end point is on A′. Since∪NN′=(AN-A ′N′), the point
A′ can be moved to the point A, describing the curveho, see
Fig. 2b. The same can be done for points B′ and B by chang-
ing the length of the thread, but, in this case, the described
curve will behi, which has the same evolute asho. By mak-
ing different increments of the length of the thread, a family
of curves having the same evolute can be generated.

2.2. Family of curves of common parallel

A parallel curve has the property to maintain a certain dis-
tance, measured over the norm of the curve in each point,
from another curve. From this definition is evident that the
proposed family of curves of common evolute is at the same
time a family of curves of common parallel. To picture this,
let us suppose a support curve,f(t), and a parallel curve,
g(t), that is generated at a distancer from f(t), as seen in
Fig. 3.

The condition to generate parallel curves to a given curve
is that it must be regular. If the initial curve, represented in its
parametric form,f(t) = (x(t), y(t)), then the parallel curve
to it is given by

g(t) = f(t) + rn(t)

=
(

x(t)− r
y′(t)
‖f ′(t)‖ ), y(t) + r

x′(t)
‖f ′(t)‖

)
(3)

where

n(t) =
1

‖f ′(t)‖ (−y′(t), x′(t))

is the curve’s normal vector,r is the distance between the
curvesf(t) andg(t), andf ′(t) = (x′(t), y′(t)).

The derivative of the vectorg(t), is given by

g′(t) = (1− rTf (t))f ′(t) (4)

where the curvature of the curvef(t) is of the form,

Tf (t) =
x′(t)y′′(t)− x′′(t)y′(t)

‖f ′(t)‖3

FIGURE 3. Parallel curveg(t).
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From Eq. (4), we can say that iff(t) is a regular curve, as
long asr−1 does not belong to the rangeTf (t), g(t) will also
be a regular curve. The relationship between the curvatures
tures off(t) andg(t), andTf (t) andTg(t), can be shown by
derivating such equation,

g′(t)g′′(t) = [(1− rTf (t))f ′(t)]

× [(1− rTf (t))f ′′(t)− rT′f (t)f ′(t)]

= (1− rTf (t))2f ′(t)f ′′(t), (5)

then

Tg(t)=
‖g′(t)g′′(t)‖
‖g′(t)‖3 =

(1− rTf (t))2‖f ′(t)f ′′(t)‖)
|1− rTf (t)|3‖f ′(t)‖3 (6)

which represents the curvature of the parallel curve.
If f(t) is a closed curve,g(t) will also be a closed curve.

The regularity property off(t) can be lost ing(t), depending
of the existence of the roots of the equation(1−rTf (t))f ′=0,
in theg(t) domain [12].

2.3. Family of curves of common parallel with common
evolute generated from an ellipse

If the parallel curves use an ellipse as a support curve, then by
setting the major semi-axis of the ellipse asa and the minor
semi-axis asb, we obtain

f(t) = (x(t), y(t)) = (a cos(t), b sen(t)), (7)

with a travel path of (0, 2π), resulting inx′(t) = −a sen(t)
andy′(t) = b cos(t). Taking into account Eq. (3) and the cur-
vatureTf (t), and by substituting the values of the parametric
equations and their derivatives into them, the expression for
the family of parallel curves (for each value ofr) is of the
form

g(t) =




a cos(t)− rb cos(t)

(a2 sen2(t) + b2 cos2(t))
1
2

b sen(t)− ra sen(t)

(a2 sen2(t) + b2 cos2(t))
1
2


 , (8)

where

Tf (t) =
ab

(a2 sen2(t) + b2 cos2(t))
3
2
.

The curvature for the regular curveg(t) is given by,

Tg(t) = ± ab

(a2 sen2(t) + b2 cos2(t))
3
2 − rab

, (9)

where the plus sign (+) corresponds to the case in which
r < b2/a and as a result1 − rTf (t) > 0. The minus sign
(-) corresponds to the case where< a2/b, which is a mini-
mum absolute, and, therefore,1− rTf (t) < 0. By analyzing
the support curve, we have that the absolute extrema of this
function in the interval (0, 2π) are reached at:

Tf (0)=Tf (π)=
a

b2
, the maximum absolute, and (10)

Tf (π/2)=Tf (3π/2)=
b

a2
, the minimum absolute. (11)

Then, the limits ofr for the curve to be regular are:a2/b ≤
r ≤ b2/a.

It is clear, that every parallel curve tof(t) with r < 0 is
regular, sinceTf (t) > 0 and, thus,1 − rTf (t) > 0. Fig-
ure 4a) shows that for everyr < b2/a the obtained curves are
regular and have the same geometry of the support curve.

Also, the parallel curves for the same support curve but
for r > a2/b, are regular curves too, see Fig. 4b).

It can be seen from Fig. 4 that, as we approach to the cen-
ter of the ellipse, its parallel curves start suffering changes.
These changes are more pronounced when the parallel curves
are in the range ofb2/a < r < a2/b, where they stop be-
ing regular. At this point, the parallel curves start to inter-
sect each other and to change their direction. The parallel
curve cuts at thex-axis origin whenr = b, see Fig. 5b), and
whenr = a the curve cuts at they-axis origin, as shown in
Fig. 5c). Asr continue growing the curve becomes regular
until r = a2/b.

FIGURE 4. Parallel curve of the elliptical curve for: a)r < b2/a y b) r > a2/b.
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FIGURE 5. a) Auto-intersections of the parallel curves at thex-axis. b) Parallel curve cutting at the origin on thex-axis. c) Parallel curve
cutting at the origin on they-axis.

The cuts atx andy can be seen from Eq. (8). Centering
our attention onto the cut at thex-axis, we have

y = b sen(t)− ra sen(t)
(a2 sen2(t) + b2 cos2(t))1/2

= 0. (12)

From Eq. (12) the intersections of the curves with thex-
axis are seen. This equation has two roots (t = 0 y t = π),
but if

b− ra

(a2 sen2(t) + b2 cos2(t))1/2
= 0.

then there are two more roots that can be obtained. Ifr < 0,
these roots do not exist, and the outwards ellipse parallel
curves cut thex-axis only att = 0 andt = π, then by taking
into account onlyr > 0, we have

sen2(t) =
r2a2 − b4

b2a2 − b4
= 0. (13)

Theset values exist and are different from 0 andπ, if and
only if,

0 <
r2a2 − b4

b2a2 − b4
< 1,

so

t = arcsen

(
r2a2 − b4

b2a2 − b4

)1/2

,

i.e., that in b2/a < r < b an intersection of theg(t) curve
with thex-axis exists, and we are at the origin whenr = b,
see Fig. 5.

In analogy, it can be seen thatg(t) also has two intersec-
tions with they-axis, att = π/2 and att = 3π/2, which
comes from Eq. (8) whenx = 0. As a result, the cut on the
y-axis is:

x = a cos(t)− rb cos(t)
(a2 sen2(t) + b2 cos2(t))1/2

(14)

where

a− rb

(a2 sen2(t) + b2 cos2(t))1/2
= 0. (15)

There are no intersection for the case in whichr < 0 and
therefore

cos2(t) =
a4 − r2b2

a4 − b2a2
.

The latter values can only exist, if and only if,

0 =
a4 − r2b2

a4 − a2b2
.

2.4. Non-conventional zone plate of common parallel

In order to design a non-conventional zone plate of common
parallel, we chose an ellipse as a support curve. The family
of ellipses has a separation in between the curves of

√
n,

f(t) = [(a +
√

n− 1) cos(t), (b +
√

n− 1) sen(t)], (16)

from this equation we can see that

xn = (a +
√

n− 1) cos(t) = an cos(t) and

yn = (b +
√

n− 1) sen(t) = bn cos(t), (17)

where n can take the values of1, 2, 3, 4, . . . , etc., which
means that, for each n, we will have a ring. The zone plate
presented in this work has 20 rings,i.e., n = 20, see Fig. 6b).
And, the family of parallel curves is

g(t)=




an cos(t)− rbn cos(t)
(a2

n sen(t)2 + b2
n cos(t)2)1/2

bn sen(t)− ran sen(t)
(a2

n sen(t)2 + b2
n cos(t)2)1/2


 (18)

and the curvature of then-th curve is given by

Kgn(t) = ± anbn

(a2
n sen(t)2 + b2

n cos(t)2)3/2 − ranbn
. (19)

3. Experimental setup and results

In order to obtain the transmittance of Fig. 6b), computa-
tional software was used. The resultant graphic was printed
on a white paper sheet, then it was photographed and reduced
at (1:30) onto a high resolution plate (HRP). The size of the
resultant transmittance was< 5 mm2.

The characterization of the non-conventional zone plate
was carried out by using the experimental setup shown in
Fig. 6a). The obtained results are shown in Fig. 7.

The results shown in Fig. 7 are in total agreement with the
theory. By observing images b), e), and h) taken in different
propagation planes, we can see the existence of auto-images.
The same thing happens in the case of images c), f), and i).
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FIGURE 6. a) Experimental setup. b) Non-conventional zone plate of common parallel.

FIGURE 7. Evolution of the propagated field using the non-conventional zone plate of common parallel at the following distance from the
transmittance: a) 3.1 cm, b) 3.4 cm, c) 3.7 cm, d) 7.4 cm, e) 7.8 cm, f) 8.1cm, g) 10.9 cm, h) 11.1 cm, i) 11.6 cm.

4. Discussion

The focalization of the constructed zone plate can be ex-
plained based on the geometrical and mathematical descrip-

tion of Sec. 1 and 2, which gives as a result that the gener-
ated family of curves has a common evolute as well as a same
common parallel.
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FIGURE 8. Analysis of the evolution of the family of curves,fo

andf1, of common parallelg(t).

Since the non-conventional zone plate is a transmittance
plate, which is illuminated by a coherent plane wave, and by
taking the Huygens principle and the Fresnel postulate into
account, then the points in which the secondary waves inter-
fere in a constructive way can be considered.

Having the support curve,fo, we follow the propagation
of a ray that travels perpendicular to the curve. The same pro-
cedure is done for different rays and an instant of time later
we can see how the wavefront has evolved, points A, B, and
C of Fig. 8. By definition these points fall on the parallel
curveg(t), i.e., the parallel curveg(t) is a wavefront.

Let us analyze the emission of the second curve that con-
stitutes the family of curvesfo andf1. Due to the fact that
both of them have the same evolute and share the same family
of perpendicular lines for each propagation plane, the wave-
front coming fromf1 has a constant phase difference with
respect to the one coming fromfo. If the phase difference
is such that the wavefronts interfere in a constructive way,
then the geometrical focalization point will correspond to a
parallel curve, such that

K∆r = 2mπ

where∆r = mλ.
On the arbitrary points A, B, and C we will have a group

of parallel curves with a certain geometry of focalization; we
just need to make a displacement ofr + ∆r to move to a
different curve. Sincer is a continuous parameter, the gener-
ation of these curves is in the entire propagation plane. Each

of these curves has a constant phase, which is repeated by
a modulus of2π. Due to the latter, the generated family of
curves replicates itself as shown in Fig. 7. This self-image
or replica of the geometries is due to the periodicity of the
constructive interference regions. The total field for a certain
detection plane is formed by the superposition of the enve-
lope curve and the corresponding parallel curve for such a
displacement. If the propagation plane changes, a new paral-
lel curve will be obtained, as it has been seen.

The perpendicular rays associated to the parallel curves,
which are generated by the constructive interference of the
emission of the family of curves that constitutes the zone
plate along the propagation axis, have the same envelope,i.e.,
a caustic. The latter gives us an insight that we are obtaining
the evolution of the focalization region organizing itself in
the surroundings of the caustic.

5. Conclusions

The focalization properties of the constructed non-
conventional zone plate, evolving as parallel curves along
the propagation axis, are explained by using the Huygens-
Fresnel principle. The Fresnel diffraction patterns can be
seen as the redistribution of energy in a successive parallel
curves evolving along the propagation axis. The focalization
regions are seen as points of constructive interference and the
evolute as the normal envelope of the rays.

This treatment can be applied to some other type of
support curves, not only elliptical, which means that this
method can control the geometry of the focalization region
by changing the support curve used to generate the focaliza-
tion diffraction element. As a result, the diffraction element
can be customized in order to obtain a specific focalization
field.
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Técnico Auxiliar en Investigación, for his technical contri-
bution in the improvement of the images.

1. R. Guenther,Modern Optics, John Wiley & Sons, Inc., (United
States of America, 1990).

2. A. Ghatak,Optics, Mc Graw Hill, (New York USA, 2010).
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