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This letter presents a remarkably simple approach to the first-principles determination of the ergodic/non-ergodic transition in monodisperse
colloidal suspensions. It consists of an equation for the long-time asymptotic valueγ of the mean squared displacement of the colloidal
particles, whose finite real solutions signal the non-ergodic state, and determines the non-ergodic parameterf(k). We illustrate its con-
crete application to three simple model colloidal systems, namely, hard-spheres, hard-spheres plus repulsive (screened Coulomb) Yukawa
interaction, and hard-sphere plus attractive Yukawa tail. The results indicate that this is quite a competitive theory, similar in spirit to, but
conceptually independent from, the well-known mode coupling theory.
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Esta carta presenta un método notablemente simple para la determinación, de primeros principios, de la transición erǵodico/no-erǵodico
en suspensiones coloidales monodispersas. Dicho método consiste en una ecuación para el valor asintótico a tiempos largos,γ, del des-
plazamiento cuadrático medio de las partı́culas coloidales, cuyas soluciones reales finitas son sinónimo de no-ergodicidad, y determinan
el paŕametro no-erǵodico f(k). Ilustramos su aplicación concreta en tres modelos simples de sistemas coloidales, a saber, esferas duras,
esferas duras con interacción de Yukawa repulsiva (Coulombica apantallada), y esferas duras con interacción de Yukawa atractiva (fuerzas
de deplecíon). Los resultados indican queésta es una teorı́a muy competitiva, similar en espı́ritu, pero conceptualmente diferente, a la bien
conocida teoŕıa deacoplamiento de modos.

Descriptores:Dinámica coloidal; transición v́ıtrea; arresto dińamico.

PACS: 64.70.Pf; 61.20.Gy; 47.57.J-

The most basic and elementary information on the thermo-
dynamic properties of a material is its phase diagram. The
description of the gas-liquid transition provided by the van
der Waals equation of state is the earliest and most paradig-
matic example of the construction of a phase diagram start-
ing from molecular considerations [1]. The most outstanding
achievement of statistical mechanics, however, has been the
establishing of the microscopic version of the second law of
thermodynamics, which provides the basis for the system-
atic calculation, given the intermolecular forces, of phase di-
agrams, by the simple conceptual procedure of identifying
the phase with the lowest free energy. This very fundamen-
tal principle permitted the development of the wide range of
methods, approaches, techniques and applications of equilib-
rium statistical thermodynamics [2].

At the same time, one of the most obvious limitations
of statistical mechanics has been its inability to identify an
equally general and simple description of non-equilibrium
states of matter, given the molecular interactions. From a
practical and fundamental perspective, this is quite disturb-
ing, given the fact that a large variety of the materials with
which we actually interact in everyday life are not in their

thermodynamic equilibrium state. Thus, it is permanently
important to search for first-principles approaches to describe
the most elementary properties of such “phases” and the tran-
sitions between them, even in the context of specific classes
of non-equilibrium states. Perhaps the simplest of them re-
fer to the states that result when kinetic barriers prevent
a material from reaching its thermodynamically most sta-
ble state, thus being trapped in dynamically arrested states,
such as glasses or gels. One would then like to have first-
principles criteria to predict the location of the boundary be-
tween the ergodic fluid phase and such arrested non-ergodic
states. Contrary to its thermodynamic analog, in this case we
only have a single theory of this sort, namely, the mode cou-
pling theory (MCT) of the ideal glass transition [3,4], some of
whose predictions have found beautiful experimental confir-
mation [5,6]. Unfortunately, its criterion to decide in a prac-
tical manner if a system is in an ergodic or in an arrested
state is obscured by the conceptual complexity of this theory
and by the many other issues addressed [3]. Thus, the need
exists for simpler and more straightforward approaches that
focus on this specific and important issue. The main purpose
of this communication is to illustrate the application, and to
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outline the derivation, of a new first-principles prescription
to locate the ergodic-non-ergodic transition in monodisperse
colloidal dispersions in a remarkably practical and simple
manner, completely independent of the MCT and its recent
variants [7,8].

This prescription consists of an equation for the basic “or-
der parameter” of the transition from an equilibrium fluid
phase to a glass or gel state, namely, the long-time asymp-
totic value,

γ ≡ lim
t→∞

〈(∆x(t))2〉,

of the mean squared displacement (msd) of individual parti-
cles. In the arrested states, this parameter is finite, represent-
ing the localization of the particles, whereas in the ergodic
phase it diverges. This equation reads

1
γ

=
1

6π2n

∫ ∞

0

dkk4 [S(k)− 1]2 λ2(k)
[λ(k)S(k) + k2γ] [λ(k) + k2γ]

, (1)

whereS(k) is the static structure factor of the system,

λ(k) ≡ [1 + (k/kc)2]−1,

with kc being the position of the first minimum ofS(k), andn
the particle number concentration. The very form of this cri-
terion exhibits its simplicity: given the effective inter-particle
forces, statistical thermodynamic methods allow one to deter-
mineS(k), and the absence or existence offinitepositive real
solutions of this equation will indicate if the system remains
in the ergodic phase or not (notice thatγ = ∞ is always a
solution, representing ergodic states). The next objective of
this letter is to illustrate the practical application of this crite-
rion, in the context of three simple model colloidal systems,
and to explain very briefly its conceptual origin.

FIGURE 1. Real solutionsγ to Eq. (1). Belowφg = 0.563, this
equation has no real solutions. Aboveφg, two solutions appear,
illustrated by the two branches that bifurcate atφg. The branch
for which γ decreases withφ (solid line) corresponds to the phys-
ical solution of the glass state. In the inset we plot the functional
Φ [γ; S] as a function ofγ for φ = 0.50, 0.55, 0.60, and0.65 (from
bottom to top).

To illustrate the use of this criterion, let us notice thatγ
times the right-hand side of Eq. (1) is a functional ofS(k) and
an ordinary function ofγ, which we denote byΦ [γ; S]. Thus,
for a fixed state [i.e., fixedS(k)], this equation may be solved
by plotting Φ [γ;S] as a function ofγ, to see if it crosses
unity, and for which value(s) ofγ it does so; notice that this
functional must vanish in the limits of large and smallγ. This
very simple procedure leads to the determination of the finite
solutions of Eq. (1), as illustrated in Fig. 1 for the hard sphere
(HS) system with the static structure factorS(k) given by the
Percus-Yevick (PY) approximation [9] with the Verlet-Weis
(VW) correction [10]. The inset of Fig. 1 exhibits the de-
pendence of the functional onγ for various volume fractions.
Clearly, below a threshold valueφg, Φ [γ; S] remains below
1.0 for all γ, and hence, there are no real solutions; thus, the
system must be in the ergodic state forφ < φg. Aboveφg

there are two real solutions, the smallest one corresponding
to the glass state, since in the glass the msd must decrease
with n. In this manner, we determine this threshold value
to beφg = 0.563. This quantitative prediction is closer to
the experimental values than those of the original MCT or its
extensions.

The criterion above emerges from the long-time asymp-
totic analysis [11] of the self-consistent generalized Langevin
equation (SCGLE) theory of colloidal dynamics [12, 13].
This theory was originally developed to describe the dynamic
properties of colloidal dispersions. Thus, it permits the cal-
culation of properties such as the msd of the particles, or the
intermediate scattering functionF (k, t) and itsself compo-
nent,FS(k, t) [14,15], given the effective pair potentialu(r)
between colloidal particles. The relaxation ofF (k, t) from
its initial valueS(k) towards zero provides a description, in
Fourier space, of the relaxation of the local concentration
profile n(r , t) from an arbitrary initial profilen0(r) towards
its equilibrium valuen. In an ergodic fluid, this relaxation
is complete, and hence,F (k, t) relaxes to zero, whereas in
a glass or a gel state, the initial concentration profile only
evolves due to the local motion of the arrested particles, with-
out the complete structural rearranging that would permit the
full dissipation of the initial profile. Thus, in a non-ergodic
state,F (k, t) does not decay to zero, but to some finite value
denoted byf(k)S(k). From the long-time analysis men-
tioned above (and reviewed below), one can also derive [11]
a remarkably simple expression for this experimentally im-
portant property. This expression reads

f(k) =
λ(k)S(k)

λ(k)S(k) + k2γ
, (2)

with γ being the physical solution to Eq. (1). Let us no-
tice that this result only involvesS(k) and λ(k) as static
inputs. We may illustrate its use by applying it to the
HS system above, for which we just foundφg = 0.563.
Right at φg, there is only a single solution forγ, namely,
γ = 1.06× 10−2σ2, with σ being the HS diameter. This so-
lution for γ may then be employed in Eq. (2) to determine the
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non-ergodic parameterf(k). Fig. 2 compares this prediction
for f(k) with the experimental data from Ref. 5. A similar
comparison is also included in this figure, corresponding to
a higher volume fraction,φ = 0.58, and to the experimental
data of Ref. 6.

The next example refers to dispersions of charged col-
loidal particles, with effective pair potential modeled by
the HS plus the repulsive screened Coulomb potential,
βu(r) = K exp[−z(r/σ − 1)]/(r/σ) for r > σ. The in-
teraction parametersz andK are, respectively, the inverse
Debye screening length (in units ofσ), and the intensity of

FIGURE 2. Non-ergodic parameterf(k) (solid lines) calculated
with Eqs. (1) and (2) for the HS system, withS(k) given by the
PY approximation with the VW correction, at the theoretically-
predicted ideal glass transition,φg = 0.563 (lower curve), and
at the larger volume fractionφ = 0.58 (upper curve, shifted up-
wards one unit, for visual clarity). Symbols are the experimental
data from Ref. 5 (filled circles) and Ref. 6 (empty circles).

FIGURE 3. Theoretical prediction of the non-ergodic parameter
f(k) (solid line) calculated with Eqs. (1) and (2) for the hard-sphere
plus thescreenedCoulomb tail, withφ = 0.27, z = 3.14, and
K = 11.56. The symbols are the experimental data from Ref. 6.

FIGURE 4. Theoretical glass transition line in the plane (T ∗, φ) for
the HSAY system, calculated with Eq. (1) (thick solid and dashed
curve), and from the MCT (symbols, taken from Ref. 19). The
lighter (solid and dashed) line corresponds to the freezing line, ac-
cording to the HV criterium. The dotted curve corresponds to the
spinodal line. The inset displays the same information in the (K, φ)
plane.

the pair potential at hard-sphere contact (in units of the ther-
mal energyβ−1 ≡ kBT ). We employed as the static input of
Eqs. (1) and (2) the experimentally-determined static struc-
ture factor of a sample withσ = 272nm and φ = 0.27,
provided in Ref. 6. For this, we used the hyper-netted chain
approximation [2] to provide a smooth fit of the data, lead-
ing to z = 3.14 andK = 11.56. The solution to Eq. (1)
is γ = 0.00293σ2, and the results forf(k) from Eq. (2)
are compared with the corresponding experimental data in
Fig. 3. Given that no fitting parameters are involved in the
theoretically-predicted non-ergodic parameterf(k) in Figs. 2
and 3, we consider that the overall quantitative accuracy of
our theory is quite remarkable, and is certainly better than
that of the MCT. Of course, one can easily determine the full
liquid-glass “phase” diagram in the space (K, z, φ), but this
is not discussed here.

The last illustrative example refers to another simple
model of a colloidal dispersion, this time involving the
hard-sphere plus anattractive Yukawa (HSAY) potential,
βu(r) = −K exp[−z(r/σ − 1)]/(r/σ), modeling depletion
forces [16]. In this case we only emphasize some qualita-
tive aspects of the predictions of our theory, obtained using
the mean spherical approximation (MSA) [17] forS(k). Fig-
ure 4 presents the ergodic-non-ergodic transition line of this
system forz = 20 in the plane (T ∗, φ) of state parameters,
with T ∗ ≡ K−1 being a reduced temperature. For reference
we also plot the line where the maximum ofS(k) reaches
2.85 (the freezing line, according to the Hansen-Verlet (HV)
criterion [18]), as well as the spinodal curve. To illustrate
the qualitative similarity between our results and those of the
MCT, we have also included the MCT transition line [19].
The inset re-plots the same curves, now in the plane (K, φ), to
illustrate the experimentally observed [16] shape of the glass
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transition line at its high density end. This describes the re-
entrant behavior of a system upon lowering its temperature at
fixed volume fraction, from a hard-sphere glass to an ergodic
state, followed by the re-entrance from the ergodic state to a
second (“attractive”) glass state.

This completes the illustration of the practical use of the
general results in Eqs. (1) and (2). Let us now comment on
their physical origin. Of course, the physics behind them is
the physics behind the full self-consistent theory from which
they derive. Hence, let us summarize the four distinct fun-
damental elements of this theory. The first consists of gen-
eral memory-function expressions forF (k, t) and FS(k, t)
derived with the generalized Langevin equation (GLE) for-
malism [11,12], which in Laplace space read

F (k, z) =
S(k)

z + k2D0S−1(k)
1+C(k,z)

, (3)

FS(k, z) =
1

z + k2D0
1+CS(k,z)

, (4)

whereD0 is the free-diffusion coefficient, andC(k, z) and
CS(k, z) are the corresponding memory functions.

The second element is an approximate relation between
collective and self-dynamics. We approximate the difference
[C(k, t)−CS(k, t)] by its exact short-time/large-k limit, thus
defining what we refer to as the “additive” Vineyard-like ap-
proximation [12],

C(k, t) = CS(k, t) + [CSEXP (k, t)− CSEXP
S (k, t)]. (5)

In this equation,CSEXP (k, t) and CSEXP
S (k, t) are the

exact short-time expressions for these memory functions,
which also define the so-called [15, 20] single exponential
(SEXP) approximation, and for which well-established ex-
pressions, in terms of equilibrium structural properties, are
available [11].

The third ingredient consists of the independent approx-
imate determination ofFS(k, t) [or CS(k, t)]. One intu-
itively expects that thesek-dependent self-diffusion prop-
erties should be simply related to the properties that de-
scribe the Brownian motion of individual particles, just
like in the Gaussian approximation [14], which expresses
FS(k, t) in terms of the mean-squared displacementW (t) as
FS(k, t) = exp[−k2W (t)]. We introduce an analogous
approximate connection, but at the level of their respective
memory functions. The memory function ofW (t) is the so-
called time-dependent friction function∆ζ(t). This function,
normalized by the solvent frictionζ0 = kBT/D0, is the large
wave-vector limit ofCS(k, t). Thus, we interpolateCS(k, t)
between its two exact limits, namely,

CS(k, t) = CSEXP
S (k, t)

+
[
∆ζ∗(t)− CSEXP

S (k, t)
]
λ(k), (6)

where∆ζ∗(t) ≡ ∆ζ(t)/ζ0. The fourth ingredient of our the-
ory is a general expression for this property, also derived with

the GLE approach [21], namely,

∆ζ∗(t) =
D0

3 (2π)3 n

×
∫

dk
[
k[S(k)− 1]

S(k)

]2

F (k, t)FS(k, t). (7)

Equations (3)–(7) constitute the SCGLE theory of col-
loidal dynamics. Besides the unknown dynamic proper-
ties, it only involves the static structural propertiesS(k),
CSEXP (k, t) and CSEXP

S (k, t), determined by the meth-
ods of equilibrium statistical thermodynamics. Concern-
ing the interpolating functionλ(k), phenomenological argu-
ments were given [12] that led to the definition given above
[immediately after Eq. (1)]. Although no fundamental basis
is available for this choice ofλ(k), this definition is universal
(in the sense that it is the same for any system or state), and
renders the resulting self-consistent scheme free from any
form of adjustable parameters.

The derivation of the results in Eqs. (1) and (2) from the
SCGLE scheme in Eqs. (3)–(7) is rather straightforward. It
consists of the assuming that the unknown dynamic proper-
tiesF (k, t), FS(k, t), C(k, t), CS(k, t), and∆ζ∗(t), which
in an ergodic state decay to zero, in a non-ergodic state decay
to a finite asymptotic value, referred to as the non-ergodic
parameters, denoted byf(k)S(k), fS(k), c(k), cS(k), and
∆ζ∗(∞). One then re-writes Eqs. (3)–(7) in terms of these
asymptotic values plus a regular contribution that does decay
to zero. Taking the long-time limit of the resulting equations
leads to a system of five equations for these five unknown
non-ergodic parameters. This system of equations can be re-
duced to a single equation for the scalar parameter∆ζ∗(∞),
which is precisely Eq. (1), with the parameterγ defined as
γ ≡ D0/∆ζ∗(∞). Thatγ thus defined is the mean squared
displacement, follows from the fact that the effective force on
a tracer particle includes a term given by [21]

ζ0

∞∫

0

∆ζ∗(t− t′)v(t′)dt′;

in an arrested state, the non-ergodic part of∆ζ∗(t) generates
a harmonic force whose elastic constant, given byζ0∆ζ∗(∞),
is related toγ by the definition above, through the equipar-
tition theorem. The other four equations for the non-ergodic
parameters can then be used to express those quantities in
terms ofγ. The equation for the non-ergodic parameterf(k)
is precisely Eq. (2).

We have also solved numerically the full self-consistent
theory for the systems discussed here. Of course, we con-
firmed, with this lengthier method, the quantitative results
obtained in a much more economical manner from Eqs. (1)
and (2). The numerical solution, however, provides the whole
scenario of the relaxation processes. On the basis of such
results, which we shall discuss separately, we may say that
the general scenario of the glass transition provided by the
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present theory is consistent with the available experimental
data, and is quite similar to that provided by the MCT. We
should point out, however, that for the HS system, our theory
does not have to appeal to any sort of re-scaling of the volume
fraction, as the MCT is forced to invoke due to its numerically
low predicted glass transition volume fraction (φg = 0.52).
In fact, none of our theoretical results presented here involved
any form of adjustable parameter. Thus, we conclude that in
many respects, the present theory of dynamic arrest is a sound
and competitive theoretical description of dynamic arrest in
colloidal systems.
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