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Using the fact that the Schrödinger equation for the stationary states of the hydrogen atom is equivalent to an integral equation on the unit
sphere in a four-dimensional space, the eigenvalues, the eigenfunctions, and a dynamical symmetry group for this problem are obtained from
the four-dimensional spherical harmonics and the group of rotations on the sphere. It is shown that the four-dimensional spherical harmonics
separable in Euler angles correspond to solutions of the time-independent Schrödinger equation that are separable in parabolic coordinates.
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Usando el hecho de que la ecuación de Schr̈odinger para los estados estacionarios delátomo de hidŕogeno es equivalente a una ecuación
integral sobre la esfera de radio 1 en un espacio de dimensión cuatro, los eigenvalores, las eigenfunciones y un grupo de simetrı́a dińamica
para este problema se obtienen a partir de los armónicos esf́ericos en dimensión cuatro y el grupo de rotaciones sobre la esfera. Se muestra
que los arḿonicos esf́ericos en dimensión cuatro separables enángulos de Euler corresponden a soluciones de la ecuación de Schr̈odinger
que son separables en coordenadas parabólicas.

Descriptores: Átomo de hidŕogeno; simetŕıas ocultas; arḿonicos esf́ericos en dimensión cuatro.

PACS: 03.65.-w; 02.20.-a; 02.30.Gp

1. Introduction

The problem of a charged spinless particle in a Coulomb
field, in the framework of nonrelativistic quantum mechan-
ics, which in what follows will be referred to as the problem
of the hydrogen atom, is perhaps the favorite example of a
system with hidden symmetries. The “obvious” rotational
invariance of the Hamiltonian implies that the energy eigen-
values cannot depend on the magnetic quantum number,m,
but actually the energy eigenvalues do not depend onm nor
on the azimuthal quantum number,l.

This “accidental” degeneracy is related to the existence
of operators (the quantum analogs of the components of the
Runge–Lenz vector) that, just like the components of the an-
gular momentum, commute with the Hamiltonian. In fact,
the components of the angular momentum and those of the
analog of the Runge–Lenz vector, restricted to the subspace
H = E, with E < 0, are the basis of a Lie algebra iso-
morphic to that of the group of rotations in four dimensions,
SO(4) [1–4]. One remarkable feature of the hydrogen atom is
that, by a suitable change of variables, the time-independent
Schr̈odinger equation can be expressed in such a form that
the invariance under rotations in a four-dimensional space be-
comes obvious [5–7].

In this paper we use the fact that the time-independent
Schr̈odinger equation for the hydrogen atom can be trans-
formed into an equation on the unit sphere in the four-
dimensional Euclidean space to find the energy levels and
the stationary states explicitly, obtaining a relationship be-

tween the generating function of the generalized associated
Legendre functions and that of the associated Laguerre poly-
nomials. We also show that the Runge–Lenz vector can be
derived from the expressions for the generators of rotations
in a four-dimensional space. A similar treatment for the two-
dimensional hydrogen atom has been given in Refs. 8 and 9.

In Sec. 2 the Schrödinger equation for the stationary
states of the hydrogen atom is expressed as an integral equa-
tion over the unit sphere in the four-dimensional Euclidean
space, which makes obvious a hidden SO(4) symmetry of the
original equation (see also Refs. 5 and 7). In Sec. 3, some
elementary facts about the four-dimensional spherical har-
monics are given, showing that these functions are the solu-
tions of the integral equation given in Sec. 2 (see also Ref. 7).
In Sec. 4, following a procedure similar to that employed in
Ref. 8, we find the explicit expression for the wavefunctions
for the stationary states of the hydrogen atom in spherical co-
ordinates, starting from the four-dimensional spherical har-
monics in the spherical coordinates ofR4. In Sec. 5 it is
explicitly shown that the infinitesimal generators of the ro-
tations inR4 correspond to the components of the angular
momentum and the quantum analog of the Runge–Lenz vec-
tor (cf.Ref. 7). In Sec. 6 it is shown that the four-dimensional
spherical harmonics expressed in terms of Euler angles cor-
respond to the wavefunctions in parabolic coordinates (cf.
Ref. 7), which leads to a relation between the WignerD func-
tions (or the Jacobi polynomials) and products of associated
Laguerre polynomials.
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2. Symmetry of the Schr̈odinger equation

By expressing the solution of the time-independent
Schr̈odinger equation for the hydrogen atom

− ~2

2M
∇2ψ − k

r
ψ = Eψ, (1)

wherek is a positive constant, as a Fourier transform,

ψ(r) =
1

(2π~)3/2

∫
Φ(p)eip·r/~d3p, (2)

using the fact that
∫

(1/r)ei(p−p′)·r/~d3r = 4π~2/|p−p′|2,
one obtains the integral equation

(p2 − 2ME)Φ(p) =
Mk

π2~

∫
Φ(p′)
|p− p′|2 d3p′, (3)

wherep ≡ |p|. In what follows we shall consider bound
states only, for whichE < 0. Then, by means of the stere-
ographic projection, the vectorp can be replaced by aunit
vectorn = (n1, n2, n3, n4) according to [5,7]

p = (px, py, pz) = p0
(n1, n2, n3)

1− n4
, (4)

where
p0 ≡

√
−2ME. (5)

Under the correspondence betweenp andn given by Eq. (4),
the three-dimensional space is mapped into the unit sphere
in R4.

Defining the spherical coordinates inR4, (r, χ, θ, φ), by
means of

x1 = r sin χ sin θ cosφ,

x2 = r sin χ sin θ sin φ,

x3 = r sin χ cos θ,

x4 = r cosχ, (6)

according to Eq. (4), the vectorp can be expressed in terms
of the spherical coordinates of the unit vectorn as

p =
p0

1− cosχ
(sinχ sin θ cosφ, sin χ sin θ sin φ, sin χ cos θ)

= p0 cot(χ/2)(sin θ cos φ, sin θ sin φ, cos θ); (7)

therefore,

p = p0 cot(χ/2),

d3p =
p3
0 d3Ω

(1− n4)3
= 1

8p3
0 csc6(χ/2) d3Ω, (8)

whered3Ω = sin2 χ sin θ dχdθdφ is the solid angle element
(or volume element) of S3, the unit sphere inR4, and

|p− p′| = p0|n− n′|
(1− n4)1/2(1− n′4)1/2

= 1
2p0 csc(χ/2) csc(χ′/2) |n− n′|, (9)

wheren′ is the unit vector corresponding top′ according to
Eq. (4). Substituting Eqs. (5), (8) and (9) into Eq. (3) one gets

csc4(χ/2)Φ(n) =
Mk

2π2~p0

∫
csc4(χ′/2)Φ(n′)

|n− n′|2 d3Ω′;

hence, by introducing

Φ̂(n) ≡ 2−2p
3/2
0 csc4(χ/2)Φ(n)

= p
3/2
0

[
p2 + p2

0

2p2
0

]2

Φ(p), (10)

one obtains the integral equation

Φ̂(n) =
Mk

2π2~p0

∫
Φ̂(n′)
|n− n′|2 d3Ω′. (11)

The constant factors included in definition (10) are chosen in
such a way that̂Φ is dimensionless and̂Φ is normalized over
the sphere if and only ifψ is normalized over the space [7].

Since the distance between points on the sphere and the
solid angle elementd3Ω are invariant under rotations of the
sphere, Eq. (11) is explicitly invariant under these transfor-
mations, thus showing that the rotation group SO(4) is a sym-
metry group of the original equation (1) forE < 0. As we
shall show in the following section, the solutions of the in-
tegral equation (11) are the four-dimensional spherical har-
monics [7]. Substituting Eqs. (7), (8) and (10) into Eq. (2),
one obtains the wave functionψ(r) in terms of the solution
of the integral equation (11)

ψ(x, y, z) =
1
2

( p0

2π~

)3/2
∫

Φ̂(χ, θ, φ) csc2(χ/2)

×eip0 cot(χ/2)(x sin θ cos φ+y sin θ sin φ+z cos θ)/~d3Ω. (12)

3. Energy eigenvalues

The integral equation (11) contains the inverse of thesquared
distance between two points ofR4, which can be expanded
with the aid of the generating function of the (generalized)
Legendre polynomials in four dimensions [10]:

1
1− 2xt + t2

=
∞∑

n=0

(n + 1)Pn,4(x)tn, (13)

where Pn,4 denotes the Legendre polynomial of ordern
in four dimensions. These polynomials are related to the
Tchebichef polynomials of the second kind,Un, the ultras-
pherical,P (1)

n , or Gegenbauer polynomials,C1
n, by

(n + 1)Pn,4(x) = Un(x) = P (1)
n (x) = C1

n(x) (14)

(see, for example, Refs. 11 and 12).
As in the case of the (usual) Legendre polynomials

in three dimensions, the generalized Legendre polynomials
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Pn,4 are the regular angular parts of the axially symmetric
solutions of the Laplace equation [10]. In terms of the spher-
ical coordinates ofR4, defined by Eq. (6), the solutions of the
Laplace equation in four dimensions that depend onr andχ
only are of the form

∞∑
n=0

(Anrn + Bnr−n−2)Pn,4(cos χ),

where theAn, Bn are constants. The Laplace operator ofR4

is given by

∇2 =
1
r3

∂

∂r

(
r3 ∂

∂r

)
+

1
r2

{
1

sin2 χ

∂

∂χ

(
sin2 χ

∂

∂χ

)

+
1

sin2 χ

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]}
,

and one finds that the solutions of the Laplace equation are
of the form
∞∑

n=0

n∑

l=0

l∑

m=−l

(Anlmrn+Bnlmr−n−2)P l
n,4(cos χ)Ylm(θ, φ),

where theAnlm, Bnlm are constants, theP l
n,4 are the gener-

alized associated Legendre functions

P l
n,4(x) ≡ (1− x2)l/2 dl

dxl
Pn,4(x) (15)

(l = 0, 1, . . . , n) and theYlm are the usual spherical harmon-
ics.

The functions

Ynlm(χ, θ, φ) = NnlP
l
n,4(cos χ)Ylm(θ, φ)

are four-dimensional spherical harmonics.Nnl is a normal-
ization constant such that

1 =
∫
|Ynlm(χ, θ, φ)|2d3Ω

=

π∫

0

|NnlP
l
n,4(cos χ)|2 sin2 χdχ.

The spherical harmonicsYnlm satisfy the addition theorem

Pn,4(cos γ) =
2π2

(n + 1)2

×
n∑

l=0

l∑

m=−l

Y∗nlm(χ′, θ′, φ′)Ynlm(χ, θ, φ),

where γ is the angle between the directions defined by
(χ′, θ′, φ′) and(χ, θ, φ) (the factor2π2 is the solid angle of
the sphere S3, while (n + 1)2 is the number of terms on the
right hand side); therefore,

1
|n− n′|2 = 2π2

×
∞∑

n=0

n∑

l=0

l∑

m=−l

1
n + 1

Y∗nlm(χ′, θ′, φ′)Ynlm(χ, θ, φ), (16)

where(χ, θ, φ) and(χ′, θ′, φ′) are the spherical coordinates
of n andn′, respectively.

The integral equation (11) can be easily solved using the
fact that the spherical harmonics form a complete set for the
functions defined on the sphere; therefore the functionΦ̂ can
be expanded in the form

Φ̂(χ, θ, φ) =
∞∑

n=0

n∑

l=0

l∑

m=−l

anlmYnlm(χ, θ, φ), (17)

where theanlm are some constants. Substituting Eq. (17)
into Eq. (11), and making use of the expansion (16) and of
the orthonormality of the spherical harmonics, one obtains

∞∑
n=0

n∑

l=0

l∑

m=−l

[
1− Mk

~p0(n + 1)

]
anlmYnlm(χ, θ, φ) = 0,

which implies that, in order to have a nontrivial solution,
Mk/(~p0) must be a natural number; hence, according to
Eq. (5),

E = − Mk2

2~2(n + 1)2
(18)

(n = 0, 1, 2, . . .), which coincides with the expression ob-
tained in the standard manner, identifyingn+1 with theprin-
cipal quantum number(usually denoted byn). Furthermore,
for the value ofn appearing in Eq. (18), the(n + 1)2 coef-
ficientsanlm (l = 0, 1, . . . , n;m = −l,−l + 1, . . . , l) are
arbitrary andan′lm = 0 for all n′ 6= n. Thus, the degeneracy
of the energy level (18) is(n + 1)2; all the spherical harmon-
ics of ordern are solutions of Eq. (11), corresponding to the
energy (18).

4. Explicit form of the wavefunctions

According to the preceding results, the solutions of the
Schr̈odinger equation (1), forE < 0, are given by Eq. (12),

ψ(x, y, z) = 2
( p0

2π~

)3/2
∫

Φ̂(χ, θ, φ) cos2(χ/2)

× eip0 cot(χ/2)(x sin θ cos φ+y sin θ sin φ+z cos θ)/~dχ

× sin θdθdφ, (19)

whereΦ̂(χ, θ, φ) is a four-dimensional spherical harmonic.
Hence, withΦ̂ = Ynlm, making use of the expansion

eik·r = 4π

∞∑

l=0

l∑

m=−l

iljl(kr)Y ∗
lm(k̂)Ylm(r̂),
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wherek̂ andr̂ are unit vectors in the direction ofk andr , re-
spectively (see,e.g., Ref. 13), and the orthonormality of the
usual spherical harmonics, we have

ψnlm(r) = 8π
( p0

2π~

)3/2

Nnlil

×



π∫

0

P l
n,4(cos χ)jl

(
(p0r/~) cot(χ/2)

)

× cos2(χ/2)dχ

]
Ylm(r̂), (20)

which shows that the separable spherical harmonics in the
spherical coordinates ofR4 correspond to separable eigen-

functions of the Hamiltonian of the hydrogen atom in the
spherical coordinates ofR3.

The recurrence relation for the ultraspherical polynomi-
als [11]

d
dx

P
(1)
n+1(x)− d

dx
P

(1)
n−1(x) = 2(n + 1)P (1)

n (x)

leads to

2(n + 1)2 sin χP l
n,4(cos χ) = (n + 2)P l+1

n+1,4(cos χ)

−nP l+1
n−1,4(cos χ)

[see Eqs. (14) and (15)]; hence, introducing an auxiliary pa-
rametert, we find that, for fixedl,

∞∑

n=l

2(n + 1)2P l
n,4(cos χ)tn+1 =

1
sin χ

[ ∞∑

n=l

(n + 2)P l+1
n+1,4(cos χ)tn+1 −

∞∑

n=l+2

nP l+1
n−1,4(cos χ)tn+1

]

=
1

sin χ

[ ∞∑

n=l+1

(n + 1)P l+1
n,4 (cos χ)tn −

∞∑

n=l+1

(n + 1)P l+1
n,4 (cosχ)tn+2

]

=
1− t2

sin χ

∞∑

n=l+1

(n + 1)P l+1
n,4 (cos χ)tn

=
(1− t2)
sin χ

(l + 1)!(2t)l+1 sinl+1 χ

(1− 2t cosχ + t2)
;

the last equality is obtained by differentiatingl + 1 times the generating function (13) and making use of the definition (15).
Then, denoting byRnl(r) the integral between brackets in Eq. (20), we have

∞∑

n=l

2(n + 1)2Rnlt
n+1 =

π∫

0

(1− t2)
sin χ

(l + 1)!(2t)l+1 sinl+1 χ

(1− 2t cosχ + t2)
jl

(
(p0r/~) cot(χ/2)

)
cos2(χ/2)dχ

and, by replacing the variableχ by µ ≡ cot(χ/2) and using the relationjl(x) =
√

π

2x
Jl+1/2(x), one finds that

∞∑

n=l

2(n + 1)2Rnlt
n+1 = (4t)l+1 (1− t2)(l + 1)!

(1− t)2l+4

√
π~

2p0r

∞∫

0

µl+3/2Jl+1/2

(
(p0r/~)µ

)

[
µ2 +

(
1+t
1−t

)2
]l+2

dµ.

The last integral has been calculated in Ref. 8:

∞∫

0

(2m + 1)!
2mm!

sxm+1Jm(xy)
(x2 + s2)m+3/2

dx = yme−ys,

hence, making use of the duplication formula of the Gamma function,

∞∑

n=l

2(n + 1)2Rnlt
n+1 = 2lπtl+1(p0r/~)le−p0r/~ e−(2p0r/~)t/(1−t)

(1− t)2l+2
.
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Recalling that

e−xz/(1−z)

(1− z)k+1
=

∞∑
n=0

Lk
n(x)zn,

whereLk
n denote the associated Laguerre polynomials (see,

e.g., Ref. 10), we obtain
∞∑

n=l

2(n + 1)2Rnlt
n+1 = π(2p0r/~)le−p0r/~

×
∞∑

n=l

L2l+1
n−l (2p0r/~)tn+1;

therefore,

Rnl(r) =
π

2(n + 1)2
(2p0r/~)le−p0r/~L2l+1

n−l (2p0r/~),

and substituting this result into Eq. (20) one finds that the
wavefunction corresponding to the spherical harmonicYnlm

is given by

ψnlm(r, θ, φ) =
( p0

2π~

)3/2 4π2Nnlil

(n + 1)2
(2p0r/~)l

× e−p0r/~L2l+1
n−l (2p0r/~)Ylm(θ, φ). (21)

(Recall thatn differs by one unit from the usual principal
quantum number.)

5. The generators of the symmetry

As we have shown, Eq. (12) gives a correspondence between
the solutions of the integral equation (11) and those of the

Schr̈odinger equation (1). As remarked above, Eq. (11) is ex-
plicitly invariant under the rotations of the sphere and a set of
generators of these rotations are the six operators

L̂j ≡ −i~εjkmxk∂m, K̂j ≡ −i~(xj∂4 − x4∂j) (22)

(i, j, k, . . . = 1, 2, 3), expressed in terms of Cartesian coor-
dinates(x1, x2, x3, x4), which satisfy the commutation rela-
tions

[L̂i, L̂j ] = i~εijkL̂k,

[L̂i, K̂j ] = i~εijkK̂k,

[K̂i, K̂j ] = i~εijkL̂k. (23)

Theˆ indicates that these operators act on functions defined
on the sphere.

In terms of the spherical coordinates ofR4, the operators
L̂i andK̂i are given explicitly by

L̂1 = i~
(

sin φ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
,

L̂2 = i~
(
− cos φ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)
,

L̂3 = −i~
∂

∂φ
, (24)

and

K̂1 = i~
(

sin θ cos φ
∂

∂χ
+ cot χ cos θ cosφ

∂

∂θ
− cot χ csc θ sin φ

∂

∂φ

)
,

K̂2 = i~
(

sin θ sin φ
∂

∂χ
+ cot χ cos θ sin φ

∂

∂θ
+ cot χ csc θ cosφ

∂

∂φ

)
, (25)

K̂3 = i~
(

cos θ
∂

∂χ
− cotχ sin θ

∂

∂θ

)
.

By means of correspondence (12) we can find the operators on the wave functions that correspond to the generators of
rotations (24) and (25). From Eqs. (2), (7) and (10) it follows that the functionΦ̂ on the sphere corresponding to a wave
functionψ(r) is

Φ̂(n) =
p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫
ψ(r)e−ip0 cot(χ/2)(x sin θ cos φ+y sin θ sin φ+z cos θ)/~ d3r. (26)

Hence, by applying, for example, the operatorL̂3 to both sides of the last equation we obtain

L̂3Φ̂ =
p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫
ψ(r)e−ip·r/~ p0 cot(χ/2)(x sin θ sinφ− y sin θ cos φ) d3r

=
p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫
ψ(r) i~(x∂y − y∂x)e−ip·r/~ d3r

=
p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫
[−i~(x∂y − y∂x)ψ(r)] e−ip·r/~ d3r,

Rev. Mex. F́ıs. 53 (5) (2007) 407–414
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after integrating by parts. Thus, under the correspondence between the functionsΦ̂, defined on the sphere, and the wavefunc-
tionsψ(r), given by Eq. (26),̂L3 corresponds to the operator−i~(x∂y − y∂x), which is just thez-component of the angular
momentum. In a similar way, one finds that the operatorsL̂1 andL̂2 correspond to thex- andy-component of the angular
momentum.

On the other hand, by applying the operatorK̂3 to both sides of Eq. (26) we obtain

K̂3Φ̂ = −p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫
ψ(r)e−ip·r/~{2i~ cot(χ/2) cos θ + p0 cot2(χ/2)[x sin θ cos θ cos φ

+ y sin θ cos θ sin φ + z(cos2 θ − sin2 θ)/2] + p0z/2}d3r

=
p
1/2
0 sin−4(χ/2)

4(2π~)3/2

∫
ψ(r)~2[2∂z + x∂x∂z + y∂y∂z − (z/2)(∂2

x + ∂2
y − ∂2

z )− p2
0z/(2~2)]e−ip·r/~d3r

=
p
1/2
0 sin−4(χ/2)

4(2π~)3/2

∫
{~2[∂z + x∂x∂z + y∂y∂z − (z/2)(∂2

x + ∂2
y − ∂2

z )− p2
0z/(2~2)]ψ(r)} e−ip·r/~d3r,

where we have integrated by parts. Assuming thatψ satisfies Eq. (1), the last term of the expression between brackets can be
replaced according top2

0ψ = ~2∇2ψ + (2Mk/r)ψ, and one finds that

K̂3Φ̂ =
p
3/2
0 sin−4(χ/2)

4(2π~)3/2

∫ {
1
p0

[
1
2
(pxLy + Lypx − pyLx − Lxpy)− Mkz

r

]
ψ(r)

}
e−ip·r/~ d3r,

which is of the form (26), withψ replaced by(1/p0)Azψ, whereAz is thez-component of the quantum analog of the Runge–
Lenz vector

A =
1
2
(p× L− L× p)− Mkr

r
, (27)

andp andL are the usual linear and angular momentum operators. Thus, under the correspondence given by Eq. (26),K̂3

corresponds to(1/p0)Az.

In a similar manner, one finds that the operatorsK̂1 and
K̂2 correspond to(1/p0)Ax and(1/p0)Ay, respectively, re-
stricted to the subspace formed by the states with a fixed en-
ergy E = −p2

0/(2M). Thus, the Runge–Lenz vector (27)
is associated with the manifest SO(4) symmetry of Eq. (11),
and the operatorsLi, (1/p0)Ai, obey the same commutation
relations aŝLi, K̂i, namely [see Eq. (23)]

[Li, Lj ] = i~εijkLk,

[Li, Aj ] = i~εijkAk,

[Ai, Aj ] = −i~εijk2ME Lk. (28)

Note that a similar procedure can be followed to find the
action on the wavefunctions of a finite transformation belong-
ing to SO(4).

6. Separation of variables in parabolic coordi-
nates

As is well known, the Schr̈odinger equation (1) admits sepa-
rable solutions in the parabolic coordinates

x = 2ξη cosφ, y = 2ξη sin φ, z = ξ2 − η2 (29)

(see also Ref. 2). In fact, in these coordinates, the
Schr̈odinger equation (1) reads

− ~2

2M

1
4ξη(ξ2 + η2)

[
η

∂

∂ξ

(
ξ

∂

∂ξ

)
+ ξ

∂

∂η

(
η

∂

∂η

)

+
ξ2 + η2

ξη

∂2

∂φ2

]
ψ − k

ξ2 + η2
ψ = Eψ

and looking for solutions of the form
ψ(ξ, η, φ) = f(ξ)g(η)h(φ), one obtains the separate equa-
tions

1
ξ

d
dξ

(
ξ
df

dξ

)
+

(
4Mk

~2
+

8MEξ2

~2
− m2

ξ2

)
f = λf,

1
η

d
dη

(
η
dg

dη

)
+

(
4Mk

~2
+

8MEη2

~2
− m2

η2

)
g = −λg,

d2h

dφ2
= −m2h, (30)

wherem is an integer andλ is another separation constant.
By combining Eqs. (30), so as to eliminateE, one finds that

1
ξ2 + η2

[
η2

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)
− ξ2

η

∂

∂η

(
η

∂

∂η

)

− ξ4 − η4

ξ2η2

∂2

∂φ2
− 4Mk

~2
(ξ2 − η2)

]
ψ = λψ

and a straightforward computation shows that the operator
on the left-hand side of this equation is4Az/~2. Hence,
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the separable solutions of the Schrödinger equation (1) in
parabolic coordinates are eigenfunctions ofLz andAz and
correspond, via the relation (26), to eigenfunctions ofL̂3 and
K̂3. As we shall show below, such eigenfunctions are the
four-dimensional spherical harmonics separable in Euler an-
gles (see also Ref. 7).

Since by means of an appropriate rotation about the origin
in R4, one can map thex1x2-plane onto any other two-plane,
all the operatorŝLi andK̂i are unitarily related to each other
and, therefore, have the same spectrum. Hence, for a given
value ofn (the order of the four-dimensional spherical har-
monics), the eigenvalues of̂K3 are of the formm~, where
m = −n,−n + 1, . . . , n, with degeneraciesn + 1− |m|, as
in the case of̂L3.

We conclude that, for a given value ofn, the separation
constantλ, appearing in Eqs. (30), can take on the values
λ = 4p0q/~, with q = −n,−n + 1, . . . , n, and, by making
use of the expression (18) forE, one obtains, for example,

1
u

d
du

(
u

df

du

)
+

[
4(n + 1)− 4u2 − m2

u2
− 4q

]
f = 0,

whereu ≡
√

p0/~ ξ. The solution of this last equation is
given in terms of associated Laguerre polynomials by

f = u|m|e−u2
L
|m|
(n−|m|−q)/2(2u2)

or, equivalently,

f(ξ)=(
√

p0/~ξ)|m|e−p0ξ2/~L|m|(n−|m|−q)/2(2p0ξ
2/~) (31)

and, therefore,

g(η)=(
√

p0/~η)|m|e−p0η2/~L|m|(n−|m|+q)/2(2p0η
2/~). (32)

In place of the spherical coordinates ofR4 defined in (6),
we can also parameterize the sphere by means of the Euler
anglesα, β, γ, defined by

x1 = cos(β/2) cos α,

x2 = cos(β/2) sin α,

x3 = sin(β/2) cos γ,

x4 = sin(β/2) sin γ, (33)

with 0 6 α 6 2π, 0 6 β 6 π, 0 6 γ 6 2π. Then one
readily finds that the standard metric ofR4, restricted to the
sphere, is

(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 = cos2(β/2)(dα)2

+ 1
4 (dβ)2 + sin2(β/2)(dγ)2;

therefore, the Laplace–Beltrami operator of the sphere,∆S3 ,
is given by

∆S3f =
1

cos2(β/2)
∂2f

∂α2
+

4
sin β

∂

∂β

(
sinβ

∂f

∂β

)

+
1

sin2(β/2)
∂2f

∂γ2

and the solid angle element

d3Ω =
1
4

sin β dαdβdγ.

The spherical harmonics of ordern are the eigenfunc-
tions of∆S3 with eigenvalue−n(n + 2) (see, for example,
Ref. 10); hence, the separable spherical harmonics of ordern
in the Euler angles(α, β, γ) are of the form

eimαeiqγBnqm(cos β), (34)

wherem andq are integers andBnqm(x) is a solution of the
ordinary differential equation

d
dx

[
(1− x2)

dBnqm

dx

]
+

[
n

2

(n

2
+ 1

)
− 1

2
m2 + q2

1− x2

+
1
2

(m2 − q2)x
1− x2

]
Bnqm = 0. (35)

The solutions to this equation can be expressed in terms of
Jacobi polynomials or of WignerD functions. The spherical
harmonics (34) are simultaneous eigenfunctions of∂α and
∂γ and, by means of a straightforward computation, making
use of Eqs. (33), one finds that these two operators amount
to x1∂2 − x2∂1 andx3∂4 − x4∂3, respectively, that is, to the
operatorŝL3/(−i~) andK̂3/(−i~) [see Eq. (22)].

Thus, the wavefunctions corresponding to the spherical
harmonics (34) are eigenfunctions ofLz andAz and must be,
therefore, the separable solutions of the Schrödinger equation
(1) in the parabolic coordinates. Substituting Eqs. (4), (8),
(10), (29), (33), and (34) into Eq. (2) one obtains

ψ(ξ, η, φ) =
p
3/2
0

4(2π~)3/2

∫
eimαeiqγBnqm(cos β)

× exp
[
ip0(ξ2 − η2) sin(β/2) cos γ

~(1− sin(β/2) sin γ)

]

× exp
[

2ip0ξη cos(β/2)
~(1− sin(β/2) sin γ)

cos(φ− α)
]

× sin βdαdβdγ

1− sin(β/2) sin γ
.

Making use of the Jacobi–Anger expansion,

eix sin θ =
∞∑

m′=−∞
eim′θJm′(x)

and integrating onα one finds

ψ(ξ, η, φ) =
πp

3/2
0

2(2π~)3/2
eimφ

∫
eiqγBnqm(cos β)

× exp
[
ip0(ξ2 − η2) sin(β/2) cos γ

~(1− sin(β/2) sin γ)

]

× imJm

(
2p0ξη cos(β/2)

~(1− sin(β/2) sin γ)

)

× sin βdβdγ

1− sin(β/2) sin γ
,
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which is clearly an eigenfunction ofLz; according to the pre-
vious results, the double integral appearing in the last expres-
sion must be the product of the functions (31) and (32), up to
a constant factor.

7. Concluding remarks

As pointed out in Ref. 7, the hydrogen atom in two or more
dimensions shows several regularities. The results of this
paper and those of Ref. 8 suggest the existence of a rela-
tion between the generalized associated Legendre functions
in any dimension and the associated Laguerre polynomials
[see Eqs. (20) and (21)].

Among the advantages of the approach followed in this
paper in the solution of the hydrogen atom, we have found
that the relationship of the components of the quantum ana-
log of the Runge–Lenz,Ai, with the generators of rotations
in four dimensions allows us to conclude that all the operators
Ai/p0 have the same spectrum asLz, in spite of the differ-
ences in the commutation relations satisfied by these opera-
tors [Eqs. (28)].
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