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The hydrogen atom via the four-dimensional spherical harmonics
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Using the fact that the Scbdinger equation for the stationary states of the hydrogen atom is equivalent to an integral equation on the u
sphere in a four-dimensional space, the eigenvalues, the eigenfunctions, and a dynamical symmetry group for this problem are obtained
the four-dimensional spherical harmonics and the group of rotations on the sphere. It is shown that the four-dimensional spherical harmc
separable in Euler angles correspond to solutions of the time-independeddiiger equation that are separable in parabolic coordinates.

Keywords: Hydrogen atom; hidden symmetries; four-dimensional spherical harmonics.

Usando el hecho de que la ecuatide Schiidinger para los estados estacionariosadeino de hidbgeno es equivalente a una ecéaci
integral sobre la esfera de radio 1 en un espacio de digegsiatro, los eigenvalores, las eigenfunciones y un grupo de &ndé@tamica

para este problema se obtienen a partir de lo$aitos eséricos en dimenéi cuatro y el grupo de rotaciones sobre la esfera. Se muestra
que los armnicos edfricos en dimenén cuatro separables @mgulos de Euler corresponden a soluciones de la énudei Schidinger

que son separables en coordenadas pécas.

Descriptores: Atomo de hidbgeno; simetas ocultas; ar@nicos esricos en dimenén cuatro.

PACS: 03.65.-w; 02.20.-a; 02.30.Gp

1. Introduction tween the generating function of the generalized associated
Legendre functions and that of the associated Laguerre poly-
The problem of a charged spinless particle in a Coulomiomials. We also show that the Runge—Lenz vector can be
field, in the framework of nonrelativistic quantum mechan-derived from the expressions for the generators of rotations
ics, which in what follows will be referred to as the problem in a four-dimensional space. A similar treatment for the two-
of the hydrogen atom, is perhaps the favorite example of &@imensional hydrogen atom has been given in Refs. 8 and 9.
system with hidden symmetries. The “obvious” rotational
invariance of the Hamiltonian implies that the energy eigen-

X In Sec. 2 the Sclidinger equation for the stationary
values cannot depend on the magnetic quantum number

X ' states of the hydrogen atom is expressed as an integral equa-
but actually the energy eigenvalues do not depenehamor  ion gyer the unit sphere in the four-dimensional Euclidean
on the azimuthal quantum number, space, which makes obvious a hidden SO(4) symmetry of the

This “accidental” degeneracy is related to the existenceyiginal equation (see also Refs. 5 and 7). In Sec. 3, some
of operators (the quantum analogs of the components of thelementary facts about the four-dimensional spherical har-
Runge-Lenz vector) that, just like the components of the anmonics are given, showing that these functions are the solu-
gular momentum, commute with the Hamiltonian. In fact, tions of the integral equation given in Sec. 2 (see also Ref. 7).
the components of the angular momentum and those of thg Sec. 4, following a procedure similar to that employed in
analog of the Runge—Lenz vector, restricted to the subspaqgef. 8, we find the explicit expression for the wavefunctions
H = E, with E < 0, are the basis of a Lie algebra iso- for the stationary states of the hydrogen atom in spherical co-
morphic to that of the group of rotations in four dimensions, ordinates, starting from the four-dimensional spherical har-
SO(4) [1-4]. One remarkable feature of the hydrogen atom ignonics in the spherical coordinates Bf. In Sec. 5 it is
that, by a suitable change of variables, the time-independerixplicitly shown that the infinitesimal generators of the ro-
Schiddinger equation can be expressed in such a form thahtions inR* correspond to the components of the angular
the invariance under rotations in a four-dimensional space anomentum and the quantum ana|og of the Runge_LenZ vec-
comes obvious [5-7]. tor (cf. Ref. 7). In Sec. 6 it is shown that the four-dimensional

In this paper we use the fact that the time-independenspherical harmonics expressed in terms of Euler angles cor-
Schibdinger equation for the hydrogen atom can be transrespond to the wavefunctions in parabolic coordinatés (
formed into an equation on the unit sphere in the four-Ref. 7), which leads to a relation between the Wighdunc-
dimensional Euclidean space to find the energy levels antlons (or the Jacobi polynomials) and products of associated
the stationary states explicitly, obtaining a relationship bedlaguerre polynomials.
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2. Symmetry of the Schibdinger equation
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wheren’ is the unit vector corresponding {8 according to
Eq. (4). Substituting Egs. (5), (8) and (9) into Eq. (3) one gets

By expressing the solution of the time-independent

Schibdinger equation for the hydrogen atom

R, ok,
— 5V — v = By, 1)

wherek is a positive constant, as a Fourier transform,
1 )
) 1p-r/hd3
(27T7:L)3/2 / (p)e p7

using the fact thaf (1/r)el®P—P) /2 d3r = 4xh?/|p — p/|?,
one obtains the integral equation

— /
77r27i/|p pl2 - G

wherep = |p|. In what follows we shall consider bound
states only, for whichZ < 0. Then, by means of the stere-
ographic projection, the vectgs can be replaced by anit
vectorn = (nq, ng, n3, ny) according to [5, 7]

P(r) = )

(p* — 2M E)®

(n1,m2,n3)
1 — N4

P = (Pa:Dy,Pz) = Po 4)
where

po=V—-2ME. (5)
Under the correspondence betweeandn g|ven by Eq. (4)

Mk
2m2hpg

esc(x/2)®(n) =

[ ) gy

|n —n'|?

hence, by introducing

b(n) = 272p;? ese’ (x/2)D(n)

2 212
p°+p
2 0 q)(p)7
2pg

3/2

(10)

one obtains the integral equation

.
27r2hp0/\n n’|?

The constant factors included in definition (10) are chosen in

such a way thad is dimensionless andl is normalized over

the sphere if and only if) is normalized over the space [7].
Since the distance between points on the sphere and the

solid angle elementQ) are invariant under rotations of the

sphere, Eq. (11) is explicitly invariant under these transfor-

mations, thus showing that the rotation group SO(4) is a sym-

metry group of the original equation (1) fé&f < 0. As we

shall show in the following section the solutions of the in-

(11)

in R4,
Defining the spherical coordinatesit, (r, x, 6, ¢), by
means of

x1 = rsin x sin 6 cos ¢,

T9 = 7 8in x sin 0 sin ¢,

x3 = rsiny cos 6,

(6)

according to Eq. (4), the vectgrcan be expressed in terms
of the spherical coordinates of the unit veatoas

Ty =T COSX,

p= % (sin x sin 6 cos ¢, sin y sin §'sin ¢, sin x cos 0)
= pg cot(x/2)(sin O cos ¢, sin O sin ¢, cos ); @)
therefore,
P =DPo COt(X/Q)’
3 33
] py d°Q2 :
d'p= {1 = ey ae. @

whered?Q = sin? y sin § dydfd¢ is the solid angle element
(or volume element) of 5 the unit sphere iR*, and

pojn — 1’|
na)2(1 — n})1/2

Ip—p'| =
(1-

= $pocsc(x/2) ese(x'/2) m—n'[, (9

monics [7]. Substituting Egs. (7) (8) and (10) into Eq. (2),
one obtains the wave functiafi(r) in terms of the solution
of the integral equation (11)

Y(r,y,2) = % (2]:)71)3/2/ (X, 0, ¢) csc® (x/2)

~ eipg cot(x/2)(x sin 0 cos ¢p+y sin 0 sin ¢+ 2z cos 9)/hd3Q (12)

3. Energy eigenvalues

The integral equation (11) contains the inverse ofsitpeared
distance between two points &f*, which can be expanded
with the aid of the generating function of the (generalized)
Legendre polynomials in four dimensions [10]:

(oo}

=Y (n+ 1P, a(a)t™,

n=0

1
B ym— 13
1— 2zt + 12 (13)
where P, 4 denotes the Legendre polynomial of order
in four dimensions. These polynomials are related to the
Tchebichef polynomials of the second kird,, the ultras-
phericaI,P,(f), or Gegenbauer polynomial§;}, by

— p

a(@) = Un(z) = By ()

(see, for example, Refs. 11 and 12).
As in the case of the (usual) Legendre polynomials
in three dimensions, the generalized Legendre polynomials

(n+1)P,, = Clx) (14)
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THE HYDROGEN ATOM VIA THE FOUR-DIMENSIONAL SPHERICAL HARMONICS 409

P, , are the regular angular parts of the axially symmetricwhere(y, ¢, ¢) and(x’,¢’,¢’) are the spherical coordinates
solutions of the Laplace equation [10]. In terms of the spherof n andn’, respectively.

ical coordinates oR?, defined by Eq. (6), the solutions ofthe ~ The integral equation (11) can be easily solved using the
Laplace equation in four dimensions that depend-@mdx  fact that the spherical harmonics form a complete set for the

only are of the form functions defined on the sphere; therefore the functiaran
o be expanded in the form
Z(Anr" + Bpr ") P, 4(cos x),
n=0
where theA,,, B,, are constants. The Laplace operatoR4f O(x.0,¢) = Z Z Z AnimYnim (X, 0,9),  (17)
is given by n=0 1=0 m=—I
10 /(40 1 1 0 0 i
V=< o ( 5 ) + = { 5 <sin2 Xa) where thea,,;,, are some constants. Substituting Eq. (17)
reor " S x OX X into Eq. (11), and making use of the expansion (16) and of
1 1 0 6 n 1 92 the orthonormality of the spherical harmonics, one obtains
sin?y | sin6 90 89 sin? 0 9¢?
. . o n l
and one finds that the solutions of the Laplace equation are Mk B
of the form Z ; Z |: hpo "+ 1):| anlm,ynlm(X707 (rb) =0,

n —n—2 l
Z_:O; ZZ(A"”"’T By 7)o a (005 X)Yim (05 0), - yich implies that, in order to have a nontrivial solution,
e e ME/(hpo) must be a natural number; hence, according to
where theA,,;,,., B, are constants, thB}%4 are the gener- Eq. (5),

alized associated Legendre functions
ME?

! E=——i—— 18
Py (x)=(1- x2)”2% .4() (15) 212 (n + 1)2 (18)
’ i
(I=0,1,...,n) and they;,, are the usual spherical harmon- (n» = 0,1,2,...), which coincides with the expression ob-
ics. _ tained in the standard manner, identifyimg 1 with theprin-
The functions cipal quantum numbefusually denoted by:). Furthermore,
for the value ofn appearing in Eq. (18), the» + 1)? coef-
ynlm(Xae ¢) an 4(COSX)Y—lm(0a¢) fiCientSanlm (l _ 0717”.,n;m — —l,—l + 177l) are
are four-dimensional spherical harmonids,,; is a normal-  arbitrary ands,,/;.,, = 0 for all n’ # n. Thus, the degeneracy
ization constant such that of the energy level (18) i& + 1)?; all the spherical harmon-
ics of ordern are solutions of Eq. (11), corresponding to the

1= /\ynlm(xa9,¢)|2d39 energy (18).

= / \anP,lLA(cos x)|? sin? x dy.
4. Explicit form of the wavefunctions

The spherical harmonicg,,;,,, satisfy the addition theorem
92 According to the preceding results, the solutions of the

P, 4(cosvy) = i1 Schibdinger equation (1), foE < 0, are given by Eq. (12),
n l 3/2
<3S Vi (0 ) Vi (X, 0, ), bla,y.2) =2 () / (x, 0, 6) cos(x/2)
=0 m=—1

. . . . ipo cot(x/2)(x sin 6 cos ¢+y sin 0 sin ¢+2z cos 0) /h
where v is the angle between the directions defined by x @0 COTXSTRE T erysmEsm e e M

(X', 0", ¢") and(x, 0, ¢) (the factor2z? is the solid angle of x sin 0dfdo, (19)
the sphere § while (n + 1)? is the number of terms on the
right hand side); therefore,

1 Whereé(x,q, ¢) is a four-dimensional spherical harmonic.

ﬁ = 972 Hence, with® = Y,,;,,, making use of the expansion
n—n’

oo n l
XD 2 Vi (X0 8) Vim0, 6), (16) iy Z i1 (k7)Y (5) Vi (7),

n=0 =0 m=-—1 =0 m=-1
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wherek and? are unit vectors in the direction &fandr, re-  functions of the Hamiltonian of the hydrogen atom in the
spectively (seee.g, Ref. 13), and the orthonormality of the spherical coordinates &?3.

usual spherical harmonics, we have The recurrence relation for the ultraspherical polynomi-
3/2 als [11]
wnlm( ) =87 ( Po ) anil
2mh d d L) !
. TP @) = TP (@) = 200+ )P ()

x| [ Phatcossi((wor /1) cortr2)

leads to
0

2(n 4 1)?sin x P, 4(cosx) = (n+ 2)P,llfl’4(cos X)

x cos?(x/2)dx | Yim (7), (20)

_”Prlill,zx(cos X)

which shows that the separable spherical harmonics in the

spherical coordinates &* correspond to separable eigen- [see Eqgs. (14) and (15)]; hence, introducing an auxiliary pa-
| rametert, we find that, for fixed,

[e.e] oo 00
n 1 n n
22(71 +1)2P! alcos )t = T lZ(n + Z)P,l;lm(cos )t — Z nPTlIth(cosx)t +1]
n=l| X n=lI[ n=I[+2
1 = ©
== l Z (n+ 1)Pf1§1(cos X)t" — Z (n+ 1)P,l:il (cos X)t"“]
s x n=I[+1 n=Il+1
~ L0 S e P (cos)
sinx £, .

_ (- t2) (1+1)1(2t) L sin'*
siny  (1—2tcosx+1t2) ’

the last equality is obtained by differentiatihg- 1 times the generating function (13) and making use of the definition (15).
Then, denoting by’ (r) the integral between brackets in Eq. (20), we have

> " r 1—12) (14 1)1(2t)"* sin' Tty
>+ 1P Ryt = [ C O (/) ot(n/2)) cost (/2
n=l 0

and, by replacing the variabjeby 1 = cot(x/2) and using the relatiog(x) = 4 /21Jl+1/2($), one finds that
T

0o 2 l+3/2J (p T/h) )
n+l _ z+1( -1+ 1) | wh 1+1/2| (Po

E 2(n 4 1)2Ryt" ™ = (4t) —pE onr d.

= 1+t

) }l+2

The last integral has been calculated in Ref. 8:

oo

(2m +1)! sz™ LT, (2y)
2mm! (22 4 s2)m+3/2
0

dx = y™e Y,

hence, making use of the duplication formula of the Gamma function,

oo —(2por/R)t/(1—t)
2 n+l _ ol 441 lo—por/h ©
n§:l 2(n +1)?Ryt" Tt = 2wttt (por/h) e P/ D
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Recalling that Schibdinger equation (1). As remarked above, Eq. (11) is ex-
o—vz/(1=2) X plicitly invariant under the rotations of the sphere and a set of
m = Z LE(x)2", generators of these rotations are the six operators
n=0

where L* denote the associated Laguerre polynomials (see, ﬁj = —ihejrmTKO0m, Kj = —ih(z;04 — x405) (22)
e.g, Ref. 10), we obtain

2 il I —por/h (4,4, k,... = 1,2,3), expressed in terms of Cartesian coor-
Zz 2(n+ 1)"Rput""" = m(2por/h)’e dinates(zy, z2, x3, 24), which satisfy the commutation rela-
" tions

X ZLQZ'H 2por/ k) et

n=l
therefore, W [Li, K;] = iheju Ky,
R'n.l ('I") = m(2p0’r’/h)leipo’r/ﬁLilj—ll(2p0,r/h)7 N ~

(K, K] = ihieiji Ly (23)
and substituting this result into Eq. (20) one finds that the
wavefunction corresponding to the spherical harm@njg,, The " indicates that these operators act on functions defined

is given by on the sphere.
3/2 472 N,y it . In terms of the spherical coordinatesRf, the operators
Ynim (1,0, ¢) = (Qﬁh) ICESE 1z (2por/h) L; andK; are given explicitly by

x e L2 (9por /) Yim (6, 6). (21

(Recall thatn differs by one unit from the usual principal
guantum number.)

L, = (smgi) +cot9cos¢a¢)

Ly =ih (—cosqba8 —|—cot951n¢8¢>

5. The generators of the symmetry
, Ly = —ih— (24)

As we have shown, Eq. (12) gives a correspondence between

the solutions of the integral equation (11) and those of the

| and

K, =1ih (sin&cos ¢% + cot)((:osﬁ(:osd)aa cotxcsc951n¢8a¢> )

. 9

Ky =ik ( sinfsin qb— + cotxcos@smqﬁ + cot y csc 8 cos ¢8¢ (25)
ox

K;; =1ih (cosﬁa — cotxsm@aao)

ox

By means of correspondence (12) we can find the operators on the wave functions that correspond to the generato
rotations (24) and (25). From Egs. (2), (7) and (10) it follows that the funcliaan the sphere corresponding to a wave
functiony(r) is

3/2 .
= p SH1 2 —1 sin S sin 0 sin S 1
$(n) = o 4(27rh)3;<2/ /w Po cot(x/2)(w sin 0 cos ¢-+y sin 0 sin ¢+z cos 0) /R 43, (26)
Hence, by applying, for example, the operatgrto both sides of the last equation we obtain
T & pg/2 Sin X/Q —1 r/h
L3® = T a2 P(r)e P/ 0 cot(x/2) (2 sin @ sin ¢ — y sin 6 cos ¢) d*
3/2 .
B sin™*(x/2) _ —ip-r/h 13
_ —(m b / D(x) ih(zd, — ydy)e PP Pr
3/2 . _
_ by s (X/Q) . —ip-r/h 13
= —4(27Th)3/2 [—ih(x0y — YO, )Y(r)] e P T/ d°r,
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after integrating by parts. Thus, under the correspondence between the fudgtitefined on the sphere, and the wavefunc-
tionsv(r), given by Eq. (26).L5 corresponds to the operateii(x0d, — y0d,), which is just thez-component of the angular
momentum. In a similar way, one finds that the operaforsnd L, correspond to the- andy-component of the angular
momentum.
On the other hand, by applying the operatoy to both sides of Eq. (26) we obtain
PN 3/2 6in /2)
K30 = W/w e PT/R19ih cot(x/2) cos B + po cot?(x/2)[z sin 6 cos 6 cos ¢

+ ysin @ cos Osin ¢ + z(cos® O — sin? 0) /2] + poz/2}d3r

1/2 _4
:W/w VR2[20, + 20,0, + yd,0. — (2/2)(9% + 02 — 2) — piz/(2h%)]e P/ dPr
™
pl/Qsin :
O(zw/{h2a + 20,0, + y0y0. — (2/2)(0% + 02 — 02) — pRz/(2h2)](x)} e P/ PPy,
m

where we have integrated by parts. Assuming thagtisfies Eq. (1), the last term of the expression between brackets can be
replaced according t¢y = h*V2¢ + (2Mk/r)+, and one finds that

3/2 . —4
~ & Do sinT (x/2) 111 _ _ _ Mkz —ip-r/h 13
K3;® = —4(27rh)3/2 o |2 (paLy + Lypy — pyLy — Lapy) . Y(r) o e d°r,

which is of the form (26), with) replaced by(1/pg) A4, whereA, is thez-component of the quantum analog of the Runge—

Lenz vector 1 M
A=Z(pxL-Lxp)———, (27)
T

andp andL are the usual linear and angular momentum operators. Thus, under the correspondence given by kg. (26),
corresponds t@l /pp) A,

~Ina similar manner, one finds that the operaté’rlsand
K, correspond tq1/py) A, and(1/pg)A,, respectively, re-

stricted to the subspace formed by the states with a fixed en- B2 1 o 9 9 9
— 2 — — —_
_ergyE = —po/_(QM). Thu_s, the Runge—Lenz vector (27) 9M 4€n(€2 + n?) [7785 <§8§> § (77677>
is associated with the manifest SO(4) symmetry of Eq. (11),
and the operator;, (1/p)A;, obey the same commutation n E+n 52] w— k b= B
relations ad;, K;, namely [see Eq. (23)] &n 092 &2 4+ n?
) and looking for  solutions of the form
[Li, Ly] = ihesjiLa, V(€ m, @) = f(€)g(n)h(4), one obtains the separate equa-
[Li, A]] = ihfi]‘kAk, tions

[A;, A] = —ihe;;,2ME Ly, (28)

1d /. df AMK  SMEE m?\ ,
(656) « (7 =2 &) 1=

3
Note that a similar procedure can be followed to find the 1
n

i % n 4Mk_'_8ME772_m72 _
action on the wavefunctions of a finite transformation belong- 7 dy Tay 72 72 2 )IT T
ing to SO(4).
d2h )
6. Separation of variables in parabolic coordi- wherem is an integer and is another separation constant.
nates By combining Egs. (30), so as to elimindig one finds that
As is well known, the Sclidinger equation (1) admits sepa- 1 {7725 <£5> 52 (718)
rable solutions in the parabolic coordinates 2+ [ £ 08 \"0¢ non \"on
4 4 2
o _ . 2 2 6 -1 8 4M,Z€ 2 2
v =2ncosd, y=20nsing, z=€-n* (29 “CEm ey T E M| Y=
(see also Ref. 2). In fact, in these coordinates, thend a straightforward computation shows that the operator
Schibdinger equation (1) reads on the left-hand side of this equation 4si,/h?. Hence,

Rev. Mex. .53 (5) (2007) 407-414



THE HYDROGEN ATOM VIA THE FOUR-DIMENSIONAL SPHERICAL HARMONICS 413

the separable solutions of the Sgtiinger equation (1) in and the solid angle element

parabolic coordinates are eigenfunctionsigfand A, and 1

correspond, via the relation (26), to eigenfunctiong gfind 4’ = 1 sin § dadfdy.
Ks5. As we shall show below, such eigenfunctions are the

four-dimensional spherical harmonics separable in Euler an Thizphe”.fﬁl harmorlucs of ordgr are th? e|genfun|c-
gles (see also Ref. 7). ions of Ags with eigenvalue—n(n + 2) (see, for example,

Since by means of an appropriate rotation about the origir?ef' 10); hence, the separable spherical harmonics of erder
in R*, one can map the; z»-plane onto any other two-plane, in the Euler anglego, 5, v) are of the form
all the operatorsii andK; are unitarily related to each other Ml B gm (cos 3), (34)
and, therefore, have the same spectrum. Hence, for a given ) ) )
value ofn (the order of the four-dimensional spherical har-Wherem andq are integers ang,,,,, (x) is a solution of the
monics), the eigenvalues dt; are of the formmh, where ~ ordinary differential equation

m = —n,—n + 1,...,n, with degeneracies + 1 — |m/|, as d dB 1m?+¢?
g Im| [(1—:52)7“""} {n(n_i_l)_m +q

in the case of.5. dz dz 2 \3 21— a2

We conclude that, for a given value of the separation

constant), appearing in Egs. (30), can take on the values . 1(m* — q2)x} By, — 0. (35)

A = 4poq/h, with g = —n, —n + 1,...,n, and, by making 2 1—2a2 !

use of the expression (18) féf, one obtains, for example,  The solutions to this equation can be expressed in terms of
1d df ,  m? Jacobi polynomials or of WigneP functions. The spherical
I <udu) + [4(” +1) —du® =5 —dg| f =0, harmonics (34) are simultaneous eigenfunctions,pfand

0, and, by means of a straightforward computation, making
whereu = /po/h&. The solution of this last equation is use of Egs. (33), one finds that these two operators amount
given in terms of associated Laguerre polynomials by to x102 — 2201 andx3dy — 403, respectively, that is, to the

_ g gl 002 operators.s /(—ih) and K /(—ih) [see Eq. (22)].
f=u"e (n—|m|—q)/2(2") Thus, the wavefunctions corresponding to the spherical
or, equivalently, harmonics (34) are eigenfunctionsiof and A, and must be,
) therefore, the separable solutions of the 8dimger equation
F(©)=(/po/h&)Imle7rot /EL‘(T_\m|_q)/2(2P0§2/h) (31) (1) in the parabolic coordinates. Substituting Egs. (4), (8),

and. therefore (10), (29), (33), and (34) into Eg. (2) one obtains

3/2

g(m)=( pO/hn)lm‘efp0n2/hL‘(Zl‘_\m|+q)/2(2p0772/h)- (32) (&, o) = 4(2}:?7?)3/2/ei"mei‘”Bnqm(cosﬁ)

In place of the spherical coordinatesRf defined in (6), . 9 2 9
we can also parameterize the sphere by means of the Euler X exp {lp()(f - )Sm(ﬁ/. )Cosq
angles, 3, v, defined by h(1 — sin(3/2) sin~)

2ipo&n cos(3/2)
= 2 y —

x1 = cos(f/2) cos X exp {h(l — sin(3/2) sm7) cos(¢ — )

To = COS(/8/2) Sin «, y Sin 6dad/6d’)/

x3 = sin(5/2) cos v, 1 —sin(3/2)siny’

x4 = sin(3/2) siny, (33)  Making use of the Jacobi-Anger expansion,
with0 < o < 27,0 < <7, 0 < v < 2m. Then one plsing _ i eim'@Jm/(m)
readily finds that the standard metricit, restricted to the 00
sphere, is . . )

and integrating ol one finds
(dl’l)Q -+ (d$2)2 + (d$3)2 + (d$4)2 = 0082(5/2)(d04)2 7Tp3/2
— 0 ime¢ iqy
+i(d[)’)2 +Sin2(ﬁ/2)(d'y)2; w(§a7’h¢> 2(271’71)3/26 /e Bnqm(cosﬁ)

therefore, the Laplace—Beltrami operator of the sphaeg, ipo (&2 — n?) sin(3/2) cos vy
is given by ORI sin(8/2) sinny)

1 0 f 4 0 ( . 8f> 2poén cos(B/2)

Agf=—— "+ —— |sinf= -m PosT
s/ cos?(3/2) 0a?  sinB 9P ﬂaﬂ XA T (h(l —sin(3/2) sin'y))
n 1 & y sin fdBdy
sin?(3/2) 02 1 —sin(3/2)siny’
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which is clearly an eigenfunction df, ; according to the pre- Among the advantages of the approach followed in this
vious results, the double integral appearing in the last expregaper in the solution of the hydrogen atom, we have found
sion must be the product of the functions (31) and (32), up tdhat the relationship of the components of the quantum ana-
a constant factor. log of the Runge—Lenz4;, with the generators of rotations

in four dimensions allows us to conclude that all the operators
A;/po have the same spectrum &sg, in spite of the differ-
ences in the commutation relations satisfied by these opera-

As pointed out in Ref. 7, the hydrogen atom in two or moretors [Egs. (28)].

dimensions shows several regularities. The results of this

paper and those of Ref. 8 suggest the existence of a relagxcknowledgment

tion between the generalized associated Legendre functions

in any dimension and the associated Laguerre polynomial®ne of the authors (J.L.C.A.) wishes to thank CONACyYT and
[see Egs. (20) and (21)]. Dr. Roberto Cartas Fuentevilla for financial support.
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