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Optimal stabilization of unstable periodic orbits embedded in chaotic systems
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A gradient-flow-based approach is proposed in this paper for stabilizing unstable periodic orbits (UPO) embedded in chaotic systems. In
order to obtain an on-line stabilizing solution, the stabilization problem is considered to be an optimal control problem, and system state
sensitivities with respect to the control input are introduced. The resulting feedback controller is able to stabilize UPO embedded in both
kind of systems, with or without an odd Floquet number. Moreover, the proposed approach is easily extended to identifying the period of the
UPO to be stabilized when it is unknown. Simulation experiments of the proposed controller are carried out on the Rössler and the Lorenz
systems.
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En este artı́culo se propone un enfoque basado en el flujo gradiente con el propósito de estabilizaŕorbitas períodicas inestables inmersas en
sistemas cáoticos. Tal enfoque considera al problema de estabilización como un problema de controlóptimo, lo cual permite obtener una
solucíon en ĺınea al problema de interés, para lo cual se introduce el cálculo de las sensibilidades de los estados con respecto a la entrada de
control. El controlador por retroalimentación resultante permite estabilizarórbitas períodicas inestables inmersas en ambas clases de sistemas
cáoticos, con o sin ńumero de Floquet impar. Adeḿas, el enfoque propuesto se extiende para identificar el periodo de laórbita períodica
inestable a ser estabilizada, en el caso en queéste sea desconocido. Se realizan experimentos de simulación del controlador propuesto, para
estabilizaŕorbitas períodicas inestables de los sistemas de Rossler y de Lorenz.

Descriptores: Estabilizacíon óptima; teoŕıa de sensitividad; flujo gradiente;órbitas períodicas inestables.

PACS: 05.45.Gg; 05.45.Pq

1. Introduction

Chaos is a phenomenon that occurs in several physical sys-
tems. In the last few years, chaos control has been a topic
of intensive research, and two main areas can be recognized:
chaos generation, where the unforced system is not chaotic
but the application requires it, and chaos suppression, where
the chaotic behavior is dangerous or not required. In chaos
suppression, the control target consists in stabilizing an un-
stable periodic orbit (UPO) embedded in the chaotic attractor,
while the forcing is kept as small as possible.

For chaos suppression there are three major branches of
controllers: the feed-forward control, the OGY method, and
the delayed feedback control method [1]. Due to its simplic-
ity of implementation, the delayed feedback control method
has been successfully employed to stabilize unstable periodic
orbits in a variety of experimental systems [2]. However, due
to the odd number limitation [3], the delayed feedback con-
troller is not able to stabilize UPO’s embedded in any kind
of chaotic systems. In order to remove the odd-number lim-
itation, an unstable delayed controller has been proposed by
Pyragas [4] to stabilize UPO embedded in the Lorenz system,
but a general methodology for designing the controller is not
given.

On the other hand, stabilization of UPO with the delayed
feedback control method requires a time delay which is a
multiple of the period. Several methods have been proposed

to identify such a period. However, most of them are off-line
methods [5], and that period should be known prior to the
on line chaos suppression experiments. Online identification
methods have also been proposed, but a close initial estimate
is required [6].

In this work, an on-line optimal controller is proposed
for stabilization of UPO’s embedded in chaotic systems. The
performance index considers the error between the actual and
the delayed output of the system, as well as the energy con-
sumption. As the solution to this optimal control problem is
based on the gradient flow [7], the solution may be locally
optimal if the objective function is not convex. Therefore, we
consider the square of the error added to the square of the
control effort as the objective function.

In order to compute the gradient of the objective func-
tion with respect to the control input (the independent vari-
able), we propose to use the sensitivities of the states of the
chaotic system with respect to the control input. The stabil-
ity of periodic solutions is proved when convex functions are
selected as performance indexes. Moreover, the controller
design methodology is easily extended to consider the case
when the period of the UPO to be stabilized is unknown. Nu-
merical simulations show the effectiveness of the controller
when it is applied to the stabilization of UPO’s embedded in
both the R̈ossler and the Lorenz systems.
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2. Statement of the problem

Let us consider the nonlinear control system (1), where
x (t) ∈ Rn is the state vector,f (·) : Rn+m → Rn is a
continuously differentiable vector function, andu (t) ∈ Rm

is the control input.
·
x (t) = f (x (t) , u (t)) ; x (0) = x0 (1)

Assumption 1. For the free system (1),i.e. u = 0, there
exists an unstable periodic orbitxT

p (t) = x(t − T ) with pe-
riod T.

Under assumption 1, the control objective is to stabilize
the unstable periodic orbitxT

p (t) , which can be stated as an
infinite time optimal control problem consisting of minimiz-
ing the nonnegative differentiable function (2) subject to the
chaotic system dynamics (1), wherey = h(x) is the system
output andh (·) : Rn → R1 is a differentiable function

J = g(y (t) , y (t− T ) , u) (2)

Two cases are considered: the first one considersT as a
known parameter and in the second one we assume thatT is
unknown.

3. Case 1. PeriodT is known

The gradient of the objective function (2) with respect to the
control inputu is given as

∇uJ =
∂g (y (t) , y (t− T ) , u)

∂y (t)
∂y (t)
∂u (t)

+
∂g (y (t) , y (t− T ) , u)

∂y (t− T )
∂y (t− T )

∂u (t)

+
dg (y (t) , y (t− T ) , u)

du (t)
,

where∂y (t) /∂u (t) represents the output sensitivity with re-
spect to the control inputu (t) , given by Eq. (3)

∂y (t)
∂u (t)

=
∂h (x (t))

∂x (t)
∂x (t)
∂u (t)

(3)

The state sensitivity vector with respect to the control in-
put∂x (t) /∂u (t) is the solution to the first order differential
Eq. (4)

d

dt

[
∂x (t)
∂u (t)

]
=

∂f (x (t) , u (t))
∂x (t)

∂x (t)
∂u (t)

+
df (x (t) , u (t))

du (t)
(4)

Theorem 1. If u∗ (t) is the solution to the differential
equation (5), withηu ∈ Rm×m a definite positive matrix,
then the objective function (2) is non-increasing along trajec-
toriesx∗ (t) andu∗ (t) , wherex∗ (t) is the solution to (1)
with u (t) = u∗ (t)

d

dt
u (t) = −ηu∇uJ (5)

Proof. The time evolution ofg (y (t) , y (t− T ) , u)
is given by (6), where the time derivative of
g (y (t) , y (t− T ) , u) is given by (7), where for read-
ing simplicity the time dependency is not considered and
y (t− T ) = yT

g (y (t) , y (t− T ) , u) = g (y (0) , y (0− T ) , u (0))

+

t∫

0

dg (·)
dτ

dτ (6)

dg (·)
dt

=
[
∂g (y, yT , u)

∂y

∂y

∂u
+

∂g (y, yT , u)
∂yT

∂yT

∂u

+
dg (y, yT , u)

du

] [
du

dt

]T

(7)

Finally, considering (5), the time evolution ofg (·) is
given by (8), and the proof is finished

g (y (t) , y (t− T ) , u) = g (y (0) , y (0− T ) , u (0))

−
t∫

0

(∇uJηu∇T
u J

)
dτ (8)

Corollary 1 . Under assumption 1, if an error function is
defined ase (t) = y(t) − y (t− T ), and if g (·) is consid-
ered to be a convex function of the error with the minimum
equal to zero, then the unstable periodic orbit embedded in
the chaotic open loop system (1) will become stable for the
closed loop system (1), (4) and (5).

4. Case 2. PeriodT is unknown

In this section, the proposed approach is extended to deal
with systems where the periodT of the unstable periodic or-
bit is unknown.

The derivative of the objective function (2) with respect
to the time periodT is given by (9). In this case, the sensi-
tivity of the output with respect toT is required, and is given
by (10)

∇T J =
∂g (y (t) , y (t− T ) , u)

∂y (t)
∂y (t)
∂T

+
∂g (y (t) , y (t− T ) , u)

∂y (t− T )
∂y (t− T )

∂T

+
dg (y (t) , y (t− T ) , u)

dT
(9)

∂y (t)
∂T

=
∂h (x (t))

∂x (t)
∂x (t)
∂T

(10)
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The state sensitivity with respect to the time periodT is
given by (11)

∂x (t)
∂T

= f (x (t− T ) , u (t− T )) (11)

Theorem 2. If u∗ (t) is the solution to the differential
equation (5), withηu ∈ Rm×m a definite positive matrix,
andT ∗ is the solution to (12), withηT > 0, then the objective
function (2) is non-increasing along trajectoriesx∗ (t) , u∗ (t)
andT ∗ wherex∗ (t) is the solution to (1) withu (t) = u∗ (t):

d

dt
T = −ηT∇T J. (12)

Proof. The proof is similar to the proof of Theorem 1,
but in this case the time evolution ofg (·) is given by (13).

g (y, yT , u) = g (y (0) , y (0− T ) , u (0))

−
t∫

0

(∇uJηu∇T
u J +∇T JηT∇T J

)
dτ (13)

5. Applications

In this section, the feedback optimal control law is imple-
mented on two representative chaotic systems, the Rössler
system and the Lorenz system.

5.1. Rössler system assumingT known

The R̈ossler system is given as

·
x1 = −x2 − x3

·
x2 = x1 + ax2 − u

·
x3 = b + x1x3 − cx3 (14)

wherea = b = 0.2, c = 5.7 and
·
x represents the time deriva-

tive of x. The state sensitivity with respect to the control
input u (t) is the solution to the differential equation (15),
wheresi = ∂xi/∂u.

·
s1 = −s2 − s3

·
s2 = s1 + as2 − 1
·

s3 = x3s1 + s3 (x1 − c) (15)

For this example,x2 is the output variable,i.e., y = x2,
and the objective function is a sum of squares of the error
e (t) = y (t) − y (t− T ) and the control actionu (t) , as
given in (16). The purpose of such an objective function is
to stabilize the unstable periodic orbit while the control effort
is minimized.

J =
1
2

[
(x2 (t)− x2 (t− T ))2 + u2 (t)

]
(16)

According to Sec. 3, the optimal control lawu∗ (t) is the
solution to (17).

·
u=−ηu [(x2 (t)−x2 (t−T )) (s2 (t)−s2 (t− T ))+u] (17)

The behavior of the controlled system when the target is
the period-one UPO,i.e. T = 5.861, is shown in Figs. 1-5
for the initial conditions

x (0) =
[

x1 (0) x2 (0) x3 (0)
]

=
[

1 1 1
]

and

s (0) =
[

s1 (0) s2 (0) s3 (0)
]

=
[

0.1 0.1 0.1
]
.

The time evolution of the controlled statesx1, x2 andx3 are
shown in Fig. 1. The time evolution of the sensitivitiess1, s2

ands3 are shown in Fig. 2. From the figures, it is clear that
both the states and the sensitivities reach a stable period-one
orbit. Figure 3 shows the control input, where it is noticed
that after a transient of approximately seventy seconds, the
control is also periodic with small magnitude. In Figs. 4 and 5
the stable periodic orbit for the states and the sensitivities,
respectively are shown; for these figures only the stationary
time series are considered.

FIGURE 1. Time evolution of the controlled R̈ossler system states
for T=5.861.

FIGURE 2. Time evolution of the controlled R̈ossler system sensi-
tivities for T=5.861.
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FIGURE 3. Control input to the R̈ossler system, forT=5.861.

FIGURE 4. Stationary period-one orbit for the states of the con-
trolled Rössler system.

FIGURE 5. Stationary period-one orbit for the sensitivities of the
controlled R̈ossler system.

5.2. Lorenz system assumingT known

The Lorenz system is given as

·
x1 = c (x2 − x1)
·

x2 = rx1 − x2 − x1x3 + u

·
x3 = x1x2 − bx3 (18)

wherec = 10, r = 28 andb = 8/3. The state sensitivity
with respect to the control inputu (t) is the solution to the

differential equation (19).
·

s1 = c (s2 − s1)
·

s2 = (r − x3) s1 − s2 − x1s3 + 1
·

s3 = s1x2 + x1s2 − bs3 (19)

In this example,x2 is considered as the output variable,
and for illustrative purposes, the objective function is a differ-
entiable (but not continuously differentiable) convex function
of the errore (t) = x2 (t)−x2 (t− T ) and the control action
u (t) , as given in (20). In this case, the control objective is to
stabilize the unstable period one orbit while the control effort
is minimized.

J = |(x2 (t)− x2 (t− T ))|+ |u (t)| (20)

The optimal control lawu∗ (t) is the solution to (21),
where sign(·) represents the sign function as defined
in (22), [8].

·
u = −ηu [(s2 (t)− s2 (t− T )) sign (x2 (t)

− x2 (t− T )) + sign (u)] (21)

sign(x) =





1 for x > 0
−1 for x < 0

undefined forx = 0
(22)

For this experiment, the target is the period-one orbit,
with T = 1.5586. Figures 6-8 show the results obtained
when

x (0) =
[

1 1 1
]

and

s (0) =
[

0.1 0.1 0.1
]
.

The time evolution of the control input is shown in Fig. 6,
in this case the control input does not exhibit a periodic be-
havior; however, the control objective is achieved, which can
be noticed in Figs. 7 and 8, where the stationary period-one
orbit and its (x1, x2) projection are shown. In this case, the
state sensitivities are not shown, as they are unstable.

FIGURE 6. Optimal control input for the Lorenz system,
T=1.5586.
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FIGURE 7. Stationary period-one orbit for the Lorenz system.

FIGURE 8. (x1, x2) projection of the period-one orbit of the Lorenz
system.

FIGURE 9. Time evolution of the R̈ossler system estimated delay
for four different initial conditions.

5.3. Rössler system assumingT unknown

In this section, the results of the controlled Rössler system
are presented when it is assumed that the periodT of the un-
stable periodic orbit is unknown. The Rössler system (14),
as well as the sensitivities (15) are considered. The control
system is also the solution to Eq. (17), but in this case,T is
the solution to the differential equation (23). It should be no-
ticed that the initial conditionT (0) considerably affects the

stationary solution.

dT

dt
=− ηT (x2 (t)− x2 (t− T )) (x1 (t− T )

+ ax2 (t− T )− u (t− T )) (23)

FIGURE 10. Stationary period orbit for the R̈ossler system, with
estimatedT = 5.8811 s.

FIGURE 11. Stationary period two orbit for the R̈ossler system,
with estimated periodT=11.7586 s.

FIGURE 12. Time evolution of estimated periodT for the con-
trolled Lorenz system.
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FIGURE 13. Stabilized period orbit of the controlled Lorenz sys-
tem, forT=2.4986.

FIGURE 14. Control input for the Lorenz system assumingT un-
known.

The time evolution of the periodT is shown in Fig. 9 for
four different initial conditions, we can observe that period
T converges to two steady values, one at 5.8811 s, where the
stationary period one orbit is shown in Fig. 10, and other at
11.7586 s, for which the stationary period two orbit is shown
in Fig. 11.

5.4. Lorenz system assumingT unknown

In this section, the results of the controlled Lorenz system are
presented when it is assumed that the periodT of the unstable
periodic orbit is unknown. The Lorenz system (18) as well
as the sensitivities (19) are considered. The control system is
also the solution to Eq. (21), but in this case,T is the solution
to the differential equation (24).

dT

dt
=− ηT (x2 (t)− x2 (t− T ))

× (rx1 (t− T )− x2 (t− T )− x1 (t− T )

× x3 (t− T ) + u (t− T )) (24)

The time evolution of the periodT is shown in Fig. 12; we
can observe that periodT converges to 2.4896 s, where the
stationary period-one orbit is shown in Fig. 13. In Fig. 14,
the time evolution of the control input is shown. It is clear
from these figures that the stabilization of an unstable peri-
odic orbit is fulfilled. However, for the case of the Lorenz
system, withT unknown, the stabilization is not fulfilled in
the optimal sense, since the energy consumption is not mini-
mal.

6. Conclusions

An on-line optimal control approach has been proposed to
stabilize unstable periodic orbits embedded in chaotic sys-
tems. Such an approach strongly relies on the state sensitivi-
ties of the states with respect to both the control input and the
delay period. It is shown via numerical experiments that the
closed loop controller stabilizes the UPO embedded in sys-
tems with and without the odd number limitation. In the first
case, the state sensitivities with respect to the control input
are stable and periodic. In the second case, the state sensi-
tivities are unstable; this fact agrees with theoretical studies
previously performed by Pyragas [4].
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