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Optimal stabilization of unstable periodic orbits embedded in chaotic systems
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A gradient-flow-based approach is proposed in this paper for stabilizing unstable periodic orbits (UPO) embedded in chaotic systems
order to obtain an on-line stabilizing solution, the stabilization problem is considered to be an optimal control problem, and system s
sensitivities with respect to the control input are introduced. The resulting feedback controller is able to stabilize UPO embedded in
kind of systems, with or without an odd Floquet number. Moreover, the proposed approach is easily extended to identifying the period of
UPO to be stabilized when it is unknown. Simulation experiments of the proposed controller are carried out @sstbeddd the Lorenz
systems.
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En este aftulo se propone un enfoque basado en el flujo gradiente con égtople estabilizabrbitas pemddicas inestables inmersas en
sistemas daticos. Tal enfoque considera al problema de estabifizacomo un problema de controptimo, lo cual permite obtener una
solucbn en Inea al problema de intes, para lo cual se introduce éllculo de las sensibilidades de los estados con respecto a la entrada de
control. El controlador por retroalimentaai resultante permite estabilizabitas perbdicas inestables inmersas en ambas clases de sistemas
cabticos, con o sin amero de Floquet impar. Addim, el enfoque propuesto se extiende para identificar el periodoadbita perodica
inestable a ser estabilizada, en el caso engstie sea desconocido. Se realizan experimentos de sidnutiai controlador propuesto, para
estabilizarorbitas perbdicas inestables de los sistemas de Rossler y de Lorenz.

Descriptores: Estabilizacbn dptima; teora de sensitividad; flujo gradientérbitas perddicas inestables.

PACS: 05.45.Gg; 05.45.Pq

1. Introduction to identify such a period. However, most of them are off-line
methods [5], and that period should be known prior to the
Chaos is a phenomenon that occurs in several physical sysn line chaos suppression experiments. Online identification
tems. In the last few years, chaos control has been a topimethods have also been proposed, but a close initial estimate
of intensive research, and two main areas can be recognized:required [6].
chaos generation, where the unforced system is not chaotic
but the application requires it, and chaos suppression, where |n this work, an on-line optimal controller is proposed
the chaotic behavior is dangerous or not required. In chaofr stabilization of UPO’s embedded in chaotic systems. The
suppression, the control target consists in stabilizing an unperformance index considers the error between the actual and
stable periodic orbit (UPO) embedded in the chaotic attractothe delayed output of the system, as well as the energy con-
while the forcing is kept as small as possible. sumption. As the solution to this optimal control problem is
For chaos suppression there are three major branches béased on the gradient flow [7], the solution may be locally
controllers: the feed-forward control, the OGY method, andoptimal if the objective function is not convex. Therefore, we
the delayed feedback control method [1]. Due to its simplic-consider the square of the error added to the square of the
ity of implementation, the delayed feedback control methoccontrol effort as the objective function.
has been successfully employed to stabilize unstable periodic
orbits in a variety of experimental systems [2]. However, due  |n order to compute the gradient of the objective func-
to the odd number limitation [3], the delayed feedback contion with respect to the control input (the independent vari-
troller is not able to stabilize UPO’s embedded in any kindable), we propose to use the sensitivities of the states of the
of chaotic systems. In order to remove the odd-number limchaotic system with respect to the control input. The stabil-
itation, an unstable delayed controller has been proposed hyy of periodic solutions is proved when convex functions are
Pyragas [4] to stabilize UPO embedded in the Lorenz systenselected as performance indexes. Moreover, the controller
but a general methodology for designing the controller is notesign methodology is easily extended to consider the case
given. when the period of the UPO to be stabilized is unknown. Nu-
On the other hand, stabilization of UPO with the delayedmerical simulations show the effectiveness of the controller
feedback control method requires a time delay which is avhen it is applied to the stabilization of UPO’s embedded in
multiple of the period. Several methods have been proposedoth the Rssler and the Lorenz systems.
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2. Statement of the problem Proof. The time evolution ofg (y (t),y (t — T),u)

is given by (6), where the time derivative of
Let us consider the nonlinear control system (1), Whereg (t),y(t—T),u) is given by (7), where for read-

z(t) € R" is the state vectorf (1) : R"™™ — R"isa jpqg S|mpI|city the time dependency is not considered and
continuously differentiable vector function, andt) € R™ y(t—T)=yr
is the control input.
z(t)=f(z(t),u(t); =(0) =0 1) gy ),y —=T),u)=g(y(0),y(0-T),u(0))
Assumption 1For the free system (1j)e. v = 0, there p dg (-)
exists an unstable periodic orhif (¢) = x(t — T') with pe- + / ZT dr (6)
riod 7. 0

Under assumption 1, the control objective is to stabilize
the unstable periodic orbfiif (t), which can be stated as an
infinite time optimal control problem consisting of minimiz- dt dy Ou dyr Ou
ing the nonnegative differentiable function (2) subject to the dg (y,yr,u)] [du T
chaotic system dynamics (1), wheye= h(z) is the system + du} {dt} (7)
output andh () : R — R is a differentiable function

dg () _ [39 (y,yr,u) 9y 09 (y,yr,u) Oyr

J=gly®),yt—-T),u) (2) Finally, considering (5), the time evolution gf(-) is

Two cases are considered: the first one consifleas a  91v€n by (8), and the proof is finished

known parameter and in the second one we assumé@ ttsat
unknown. 9y @),y —T),u)=9(y(0),y(0-T1),u(0))

t

3. Case 1. Periodl" is known / (Vudn VL) dr (8)

The gradient of the objective function (2) with respect to the 0

control inputu is given as
Corollary 1. Under assumption 1, if an error function is

V,J = 99 (y(t),y(t —T),u) 9y (t) defined as (t) = y(t) — y (t — T), and if g () is consid-
y (t) u (t) ered to be a convex function of the error with the minimum
Ag(y(t),y(t—=T),u)dy(t—T) equal to zero, then the unstable periodic orbit embedded in
dy(t—T) du (t) the chaotic open loop system (1) will become stable for the
closed loop system (1), (4) and (5).
dg(y (@), y(t—T),u)
du (t) ’

wheredy (t) /Ou (t) represents the output sensitivity with re-

spect to the control input (¢) , given by Eq. (3) 4. Case 2. Period’" is unknown

Ay (t) _ Oh(x(t)) 9z (1) (3  In this section, the proposed approach is extended to deal
du (t) dz (t) Ou(t) with systems where the periddof the unstable periodic or-
The state sensitivity vector with respect to the control in-bit is unknown.
putdzx (t) /Ou (t) is the solution to the first order differential The derivative of the objective function (2) with respect
Eq. (4) to the time periodl is given by (9). In this case, the sensi-
d [0z (t) af (z (t),u(t) dz (t) tivity of the output with respect t@’ is required, and is given
dt [311 (t)} =T oz(t) ou() by (10)
RLACIGIIO)] @ o 09, y(t=T) u) oy (1)
du (t) r Ay (t) T
Theorem 1 .If u* (t) is the solutipn to thg _different_ial g (y(t),y(t—T),u)dy(t—T)
equation (5), withp, € R™*™ a definite positive matrix, + dy (t—T) T
then the objective function (2) is non-increasing along trajec-
toriesz* (¢t) andu* (t) , wherex™* (¢) is the solution to (1) n dg(y(@),y(t—T),u) 9)
with w (t) = u* (t) dT
d Oy (t) _ Oh(x(t)) Ox (1)
24O =—nVuJ ) T — ox(t) OT (10)
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The state sensitivity with respect to the time periods
given by (11)

Ox (t)
oT

Theorem 2 If u* (¢) is the solution to the differential
equation (5), withnp,, € R™*™ a definite positive matrix
andT™ is the solution to (12), witlyr > 0, then the objective
function (2) is non-increasing along trajectori€s(t) , u* ()
andT™ wherez* (t) is the solution to (1) withu (t) = u* (¢):

=f@(t-T),u(t-T)) 11

d
Zr=
dt

Proof. The proof is similar to the proof of Theorem 1,
but in this case the time evolution ¢f-) is given by (13).

—nNr VT J. (12)

9, yr,u) =g (y(0),y(0—T),u(0))

t
- / (Vud VLT + Ve JnrVrd)dr (13)
0

5. Applications

In this section, the feedback optimal control law is imple-
mented on two representative chaotic systems, thssRr
system and the Lorenz system.

5.1. Rossler system assuming@’ known

The Rossler system is given as
1"1 = —Xo — I3
afg =21 +are —u
(14)

r3 =b+ x103 — Ccr3

wherea = b = 0.2, ¢ = 5.7 andz represents the time deriva-
tive of x. The state sensitivity with respect to the control
input u (¢) is the solution to the differential equation (15),
wheres; = 0z;/0u.

8.1 = —89 — 83
5.22814—@82—1
(15)

53 = w381 + 53 (1 — )

For this exampleg, is the output variabld,e., y = zs,

and the objective function is a sum of squares of the error

e(t) = y(t) — y(t—1T) and the control actiom (t), as

given in (16). The purpose of such an objective function is

to stabilize the unstable periodic orbit while the control effort
is minimized.

J== (@2 (t) — 20 (t = T))* + 02 (t)} (16)

N =
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According to Sec. 3, the optimal control lavi () is the
solution to (17).

u=—nu (w2 (t) =22 (t=T)) (52 (t) =52 (t = T)) +u] (17)

The behavior of the controlled system when the target is
the period-one UPQ,e. T' = 5.861, is shown in Figs. 1-5
for the initial conditions

x (0)

[%1(0) 1‘2(0) 1‘3(0)]:[1 1 1}

s(0)=1[ s1(0) s2(0) s3(0)]=[01 01 01].

The time evolution of the controlled states, z» andxs are
shown in Fig. 1. The time evolution of the sensitivitigs so
andss are shown in Fig. 2. From the figures, it is clear that
both the states and the sensitivities reach a stable period-one
orbit. Figure 3 shows the control input, where it is noticed
that after a transient of approximately seventy seconds, the
control is also periodic with small magnitude. In Figs. 4 and 5
the stable periodic orbit for the states and the sensitivities,
respectively are shown; for these figures only the stationary
time series are considered.
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FIGURE 1. Time evolution of the controlled &ssler system states
for T=5.861.
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FIGURE 2. Time evolution of the controlled &ssler system sensi-
tivities for 7=5.861.
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FIGURE 3. Control input to the Rssler system, faf'=5.861.

FIGURE 4. Stationary period-one orbit for the states of the con-
trolled Rossler system.

FIGURE 5. Stationary period-one orbit for the sensitivities of the
controlled Rdssler system.

5.2. Lorenz system assuming’ known

The Lorenz system is given as
1y =c(z2 —21)
352 =7rry —To —T1T3+u
(18)

Tr3 = T1T2 — bl‘g

wherec = 10, r = 28 andb = 8/3. The state sensitivity
with respect to the control input (¢) is the solution to the
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differential equation (19).
s1=c¢ (s2 — s1)
Sy =(r—m3)s; — 89— w183+ 1

(19)

S3 = $1%9 + T182 — bs3

In this example;, is considered as the output variable,
and for illustrative purposes, the objective function is a differ-
entiable (but not continuously differentiable) convex function
of the errore (t) = x5 (t) — 22 (t — T') and the control action
u (t) , as given in (20). In this case, the control objective is to
stabilize the unstable period one orbit while the control effort
is minimized.

J =2 (t) =2 (t = T)) + |u(t)] (20)

The optimal control lawu* (t) is the solution to (21),
where sign(-) represents the sign function as defined
in (22), [8].

=~ [(52 () — 52 (t — T)) sign (x> (t)

— 29 (t—=T)) + sign (u)] (21)
1forz >0
sign(z) = —1forz <0 (22)

undefined forr = 0

For this experiment, the target is the period-one orbit,
with 7" = 1.5586. Figures 6-8 show the results obtained
when

and
s(0)=[01 01 01].

The time evolution of the control input is shown in Fig. 6,
in this case the control input does not exhibit a periodic be-
havior; however, the control objective is achieved, which can
be noticed in Figs. 7 and 8, where the stationary period-one
orbit and its {1, x2) projection are shown. In this case, the
state sensitivities are not shown, as they are unstable.
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FIGURE 6.
T=1.5586.

Optimal control input for the Lorenz system,
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= stationary solution.

" dT

. E:—T]T(I'Q(t)—(L’g(t—T))(iCl(t—T)

* +ars(t—T)—u(t—T)) (23)

FIGURE 10. Stationary period orbit for the &&sler system, with
estimated” = 5.8811 s.

FIGURES8. (x1, z2) projection of the period-one orbit of the Lorenz =~ « ¢
system. .

. FIGURE 11. Stationary period two orbit for the #&sler system,
TerTOR with estimated perio@'=11.7586 s.
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FIGURE 9. Time evolution of the Rssler system estimated delay
for four different initial conditions. 29

5.3. Rissler system assumin@’ unknown

In this section, the results of the controlle@$3ler system
are presented when it is assumed that the péfiofithe un-
stable periodic orbit is unknown. TheoBsler system (14),

as well as the sensitivities (15) are considered. The control ,

system is also the solution to Eq. (17), but in this casés ° ® " e = = ®
the solution to the differential equation (23). It should be no-Ficure 12. Time evolution of estimated period for the con-
ticed that the initial conditiol” (0) considerably affects the trolled Lorenz system.

Rev. Mex. .53 (5) (2007) 415-420
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FIGURE 13. Stabilized period orbit of the controlled Lorenz sys-
tem, for7'=2.4986.

L | L ! |
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time (5)

FIGURE 14. Control input for the Lorenz system assumifigun-
known.

The time evolution of the period is shown in Fig. 9 for

5.4. Lorenz system assumind@’ unknown

In this section, the results of the controlled Lorenz system are
presented when it is assumed that the pefiad the unstable
periodic orbit is unknown. The Lorenz system (18) as well
as the sensitivities (19) are considered. The control system is
also the solution to Eq. (21), but in this ca%&is the solution

to the differential equation (24).

dr

EZ—TIT(Iz(t)—M(t—T))

X(rer(t—=T)—x2(t—-T) =z, (t =T)
xxzg(t—T)+u(t—T)) (24)

The time evolution of the period is shown in Fig. 12; we
can observe that peridl converges to 2.4896 s, where the
stationary period-one orbit is shown in Fig. 13. In Fig. 14,
the time evolution of the control input is shown. It is clear
from these figures that the stabilization of an unstable peri-
odic orbit is fulfilled. However, for the case of the Lorenz
system, withT" unknown, the stabilization is not fulfilled in
the optimal sense, since the energy consumption is not mini-
mal.

6. Conclusions

An on-line optimal control approach has been proposed to
stabilize unstable periodic orbits embedded in chaotic sys-
tems. Such an approach strongly relies on the state sensitivi-
ties of the states with respect to both the control input and the
delay period. It is shown via numerical experiments that the
closed loop controller stabilizes the UPO embedded in sys-

four different initial conditions, we can observe that periodtems with and without the odd number limitation. In the first

T converges to two Steady values, one at 5.8811 s, where tH&Se, the state sensitivities with respect to the control input
stationary period one orbit is shown in Fig. 10, and other afre stable and periodic. In the second case, the state sensi-
11.7586 s, for which the stationary period two orbit is showntivities are unstable; this fact agrees with theoretical studies

in Fig. 11.

previously performed by Pyragas [4].
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