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A geometric analysis of the screens used for testing convex optical surfaces is presented. Some properties of the transformation betwe
image plane and the screen plane, such as symmetry and magnification, are presented for the case when the reflecting surface is a ¢
Due to the intrinsic variations in the magnification, the geometric relationship between the image and the object shows some unexpe
behavior. Two cases are analyzed in detail: i) a set of concentric circles centered on the origin of coordinates of the image plane with a s
radial straight lines; and ii) a square grid and a square array of circles of the same size.

Keywords: Null screens; convex optical surfaces; testing of optical surfaces.

Se presenta un aftisis geongtrico de las pantallas utilizadas para probar superfagitisas convexas. Para el caso en el que la superficie
reflectora es una esfera, se hace una r@vide algunas propiedades de la transforgraentre el plano de laimagen y el plano de la pantalla,
tales como la simefa y la amplificacbn. Debido a la variadn intfinseca de la amplifica@n, la relacbn geongtrica entre la imagen y el
objeto muestra caracisticas inesperadas. Se analizan dos casos en detalle: i) un conjuirtubiessconéntricos centrados en el origen de
coordenadas del plano de laimagen con un conjunttndas radiales; y ii) una malla cuadrada y un arreglo cuadradoalgas del mismo
tamdio.

Descriptores: Pantallas nulas; superficiépticas convexas; pruebépticas.

PACS: 42.15.-i; 42.30.-d; 42.62.Eh; 42.87.-d

1. Introduction in the cylinder to obtain the normal vector to the test sur-

face at each point of incidence. After a numerical integration
The testing of optical surfaces using null screens is based omethod, the sagitta of the test surface is obtained. Then, it
the analysis of the image of a cylindrical screen with a set ofs possible to compare the sagittas of an ideal surface with
curves drawn on it in such a way that its image, which is prothose of the test surface [2]. A problem in calculating the
duced by reflection on the test surface, yields a pattern previaormal vectors to the test surface is that on the image there
ously determined [1]. The screen, made of a sheet of papare no single, isolated points; instead, there are finite sized
which hereafter will be called the “plane screen” or simply spots. Thus, the geometric centroids of the spots are usually
the “screeri, is rolled up to make a cylindrical screen. The assigned as the points on the image to obtain the sagittas.
test surface is placed inside the cylinder and is illuminated
from outside by white light; the light rays transmitted to the
inside of the cylinder are reflected on the test surface, col-
lected by a lens, passed through a pinhole, and the image it
captured with a CCD camera (Fig. 1). The CCD sensor is in
the image plane.

A qualitative test of the optical surface consists of check- —
ing that the image of the cylindrical screen, defined previ- |-
ously, is the same as the design image. Usually, the image ||
of the cylindrical screen is chosen to be a simple geomet-
ric array such as a perfect square grid, concentric circles or
straight lines, in order to detect easily, with the naked eye,
any departure from the prescribed geometry. For simplicity,
through out this paper the cylindrical screen will be called the
“cylinder’ or “screefi and the image screen therfage.

To test quantitatively the optical surface, it is necessaryFicure 1. Optical setup for testing convex surfaces with the null
to associate a point of the image with its corresponding poinscreen.
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The goal of this paper, for a better understanding of theand
relationship between the image and the screen is to show, Ua—Vp
particular characteristics of some types of curves on the im- Z = Up+Va
age and their corresponding curves on the screen for the case
when the surface is a sphere. In addition, it will be shownwhere
that the positions of geometric elements of the curves on the
image do not always correspond to the same geometric posi- U = E-W? V=2W and W=z —7r. (4)
tions on the screen. The results obtained here can be easily
extended to any other convex and conic optical surfaces. In the last equationsz andr are the radii of the cylinder
In Sec. 2, the transformation function that relates the cognd spherical surface, respectively.
ordinates of the points on the image to the coordinates of the e relationship between the cartesian coordi-
points on the cylinder, as well as other useful definitions arg,5teg &,Y) on the screen and the cylindrical coordinates
presented. Some simple arrays of curves on the image aS(R, ¢, z3) on the cylinder is given by:
square grid and a square array of circles of the same size, Is
presented in Sec. 3; in this section, it is also shown, through X = Ré )
a particular example, that it is possible to obtain the screen
of any picture on the image. In Sec. 4, the magnification of
. . . . . and
the image, defined as the size ratio of a segment on the inft
age to the corresponding one on the screen, is analyzed. The Y =25(p). (6)
conservation of symmetry of the transformation function is
analyzed in Sec. 5. Finally, in Sec. 6, comments and conclu- To design real screens, it is important to know the trans-
sions are presented. formation range. So, for the angular coordinate, it is clear
from Eq. (5) thatX is a linear function ofp and is defined
for all values of¢. Even thoughX and¢ are defined for all
2. Transformation from the image to the values, they can be considered to be restricted by

(€ —R)+ 223 ®)

screen
0<¢<2r (7)
In order to introduce the transformation between the points
on the image and the points on the cylinder, it is importanty g
to see how the image is produced. From the bundle of rays
scattered from a poinP; (see Fig. 1) on the cylinder, only 0< X <2rR. (8)

one ray strikes the optical surface (poit); it is reflected . . _

and then passes through the pinhBlEFina”y7 this ray im- For the radial COOI’dInate, in order to have Only real num-
pinges on the CCD to form the imag#() of the pointP;.  bers of the coordinat¥, p must satisfy

As this happens for every point on the cylinder, an image of

the cylinder is formed at the CCD. p < ar T 9)
For each point on the image, the positions of the corre- [b(b+2r)]

sponding points on the cylinder are obtained with the reverse ) ]

ray calculation method proposed in Ref. ik, opposite to From Egs. (1) and (2) it can be seen thatp ifends to

the actual ray propagation direction. Unless otherwise stated€'0, therng andz; tend to zero, and from Egs. (3) and (6)

this will be the ray direction analyzed throughout this paperit iS obtained that; — —oc. Thus, as tends to zero, the

In Ref. 1, the transformation is developed for any conical opJength of the screen tends to be very large. The points with

tical surface; in the present paper, only the spherical case wil€ry smallp correspond to the images of the points near the

be considered. reflecting surface vertex. The limit= 0 corresponds to the
Due to the symmetry of revolution of the problem, Fig. image of the r(_aflecting surface vertex (see Fig. 1) so, in or-

1, it is better to use cylindrical coordinates to describe thef€" 10 see the image of the sphere vertex, the screen must be

curves on the cylinder and on the image. So, in referencidefinitely long. Since it is not possible to construct such a
0 Fig. 1P = (p,¢,—a—1b), P = (6,6 + m,25) and  Screen, the origin of the image coordinate system is always

Py = (R, ¢+, 23). absent from the image, arp.d>.0. ' .
The transformation is given by the following equations: !N order to have some insight into the behavior of the ra-
dial coordinate of the transformation, Eq. (6) is plotted in
a(b+1) — (a®r? — p*b(b + 2r)) /2 Fig. 2 for a particular case. It can be seen that for small
§= 22 (1) values ofp, Y grows very fast; ap > 0.5 approximately, it
begins to grow slower. For values pfsuch thaty” is near
2y = §a _ b (2) zero, the transformation is almost linear. For larger values of
P p, Y starts to grow faster.
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50 : : ; : : : respectively, where, m = 0,+1,4+2, ... &N, NI =d/2; d
= = ‘ : is the length side of the smallest side of the CCD (for more
0 details see Ref. 1).
The points on the image that satisfy both Egs. (10) at the
-50 same time are the crossing points between the horizontal and
vertical lines. On the plane screen, it is not enough to plot
Y -100 only the corresponding crossing points, it is better to find the
position of several points; between the crossing points. Ten
-150 equally-spaced points are adequate. Along the horizontal di-
rection, the coordinates of the ten equally-spaced points be-
-200 tween the crossing points{, y.,) and @1, y.,) are
2500 Tn, = nl+ % and y,, = ml, (11)

wherem=0, £1,... £N, n=0, £1,... £2N—1 and for each
FIGURE 2. Plot of the transformation from the image to the plane value ofn, j=0,...,10. . .
screen. For the vertical direction, the coordinates of the ten points

between the crossing points,{, v.,) and @, ym+1) are

kl
C J}; Image A Ymy = ml + TO and Tp = nl (12)
:1 wheren=0, +1,... &N, m=0, £1,... £N -1 and for each
12 o value ofm,k=0,...,10.

D ”E”: H In order to plot the plane screen, Egs. (5) and (6) are ap-
"i T x plied to the polar coordinates of the points given by Egs. (11)
man and (12),.e. they are applied to:

. 2 1/2
E =7 G —tan—1 m — S 2
F oW NN ¢=tan (n—i—j/lO) p= (n—!— 10) +m I, (13)
(a) (b)
FIGURE 3. (a) Square grid on the image. (bjrapezoidson the ~ and
screen. ;

911/2
¢=tan"! (W) p=|n’+ <m+1k0> 1 [ (14)

) In Fig. 3b, the calculated points are joined with straight lines.
In order to use the null screen method to test optical surfaces, For g better understanding of the geometry of the image

it is best to observe images formed by very simple patterngng its screen in Fig. 3, some points on the image are indi-
in such a way that it is easy to detect any difference betweegated with capital letters and their corresponding points on
the images formed by the real surface and those that were dgye screen with the same prime capital letter. The points on
signed. So, in the following sections, two simple patterns ofthe plane screen will be denoted by primed capital letters, and
the image are presented. the corresponding points on the image will be written without
primes.
3.1. Square grid It can be seen that the points on the image with the largest
o ) value ofp, i.e. the square grid vertex (points C, E andG)
In order to test qualitatively an optical surface, one of thegre transformed into the points on the screen with the largest
most useful and simple patterns for the image is a square grigt yajues. The points on the image with the smallest values
(see Ref. 1). This pattern (Fig. 3a) is obtained on the imaggg p (points1, J, K and L) correspond to the points on the
when the plane screen is designed with a set of curves thakreen with the smallest values ¥ It is interesting to note
appear as shown in Fig. 3b. Since the objects on Fig. 3b angat the straight lines defined by the pairs of polhtsJB, KD
like trapezoids with curved sides, they will be called simply 3nd| F are the only ones that are transformed on the screen
trapezoids into straight lines; any other straight line on the image is seen
The square grid on the image is formed with vertical andyp, the screen as a curve. This result is due to the fact that, in
horizontal lines with equations the image, these are radial lines.
In addition, on the same image, Fig. 3a, three squares are
marked with dark lines and their vertices are numbered in a

3. Some simple patterns on the image

x=nl and y=mli, (20)
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Screen

YA Image marked with dark lines show the three kindsrapezoidsn
i the screen. Thaapezoidwith vertices 5, 6’, 7' and 8’ is the
only one showing symmetry; it is symmetric with respect to
1"""’0‘0',"'5' “.‘o,.'.;'.;lu i l"“:.o'o;',,'ll a vertical line. Tharapezoidwith vertices 9 10, 11 and'
| i L l“‘w"l “‘o;';q"ll I"‘o;.;q"'l 12" has one straight side and that one defined by the vertices

1’, 2, 3’ and 4’ has its four sides curved and does not present

any symmetry. Any othetrapezoidon the screen is like one

of these three but with a smaller dimensions, or perhaps re-
flected 180 with respect to a vertical line.

From Fig. 3b it can be seen that ttrapezoidarea de-
pends mainly on the vertical position: those farthest from
the X-axis have the largest area, and this decreases as they
are nearer to th& axis. This fact means that, while on the

image the distribution of the lines forming the squares is uni-
(a) (b) f .
orm over the area of the screen, on the plane screen, Fig. 3b,
FIGURE 4. On the image, the line density is constant. (b) On the 5t the top, the curve density is greater than at the bottom. In
screen, at the top, the curve density is greater than at the bottom. Fig. 4, this effect is more clearly shown: in (a) a square grid
with constant density of lines is plotted and its plane screen,
Image Y Screen which shows a clear variation of the curves density in the
vertical direction, is plotted in (b). On the plane screen, the
dependence on the vertical direction of the line density is a
consequence of the transformation dependence on the radial
coordinates [Eq. (6)].

.

.

3.2. Square array of circles on the image

The accuracy of the testing of a surface depends on the accu-
racy of the evaluation of the coordinates of the centroids, as
discussed in Ref. 2. Many authors [5-8] have proposed differ-
[, XX 4 ent methods and techniques in order to increase the accuracy
X @ of the centroid estimation; all of them use statistical analysis
_ _ _ on the evaluation of the centroid. Therfore, it is important to
FIGURE 5'. (a) Array.of circles of the same size on the image. (b) |;ge bright spots instead of single points on the image.
Screen with curves likerops. The interest in analyzing an array of circles on the image
clockwise direction. On the screen, Fig. 3b, their correspond(-:omes from the idea Of. haymg images W.'th asimple spot ge-
ing trapezoidsare also marked with dark lines and the ver- _ometry n o rdgr to easily find t he centroid of eac_:h qut. AS
. o is_known, in this case the positions of the centroids coincide
tices are numbered to maintain the correspondence between ; .
the vertices on the image and those on the screen. Itis inte\r'\-”th _the centers of the_cwcles provided that they are evenly
esting to note that: llluminated. In Re_f. 3, it was prqposed that the bright spots
should become circles. The objects on the screen that pro-
i) while the numbers of the vertices of the squares growduce circles on the image have oval-like forms (see Refs. 3
in the clockwise direction, on the vertexes of thepe- ~ and 4), that will be calledirops because of the asymmetry
zoids they grow in the counter clockwise direction;  that will be shown later.
A squared array of equal circles on the image is proposed,
i) in each square, the upper right vertex has been identiso the centers of the circles are set on a square grid and the

fied with the smallest number of the four vertices. Nev-circles radii are equal. Then, each circle is defined by the
ertheless, on theapezoidshe relative position of the equation

vertex marked with the smallest number is not the same (z — xO)Q +(y — y0)2 =72, (15)
with respect to the other three vertexes. For instance, B _ i
for one square on the image (Fig. 3a), vertex 4 is atVherezo, yo = 0, =d, £2d, ... £Nd, Nr = d/2 andr is the

the upper left corner and on its correspondirape-  radius of the circles.
zoid on the screen (Fig. 3b), it is placed at the bottom. To obtain the curves on the plane screen, the transforma-

For other squares, the result is different. tion (E_qs. (5) and (6)) is applied to the polar coordinates of
the points given by Eq. (15).
The form and size of tlapezoidon the screen depend on Each circle in Fig. 5a was formed with 72 points joined
the position of its corresponding square on the image. Lookwith straight lines, with one point every’5 In this case,
ing carefully at Fig. 3b, it can be seen that tin@pezoids the parameters indicated in Fig. 1 wef=15.85mm,
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a=20.77mm andb =64 mm, the test surface radius longitudinal axis of thelrops In Fig. 6a,C is the center of

r =11.125 mm; the lens focal distance of the camera usethe circle andl/’, the longitudinal axis middle point of the

to take the photo shown in Fig. 5a wfis= 16 mm and the drop in Fig. 6b, is not its corresponding point. It is worth

width of the CCD square gridi =4.4 mm. The parameters

a andb (Fig. 1) were chosen so that the diameter of the test y

surface fit the area of the CCD (for details see Ref. 1). " L_____ ¢l Image Y
In order to observe circles of the same size on the CCD,

the sizes and shapes of thmpsmust be different, depend- N

ing on their position on the screen. The bottom end of each

drop on the most negative side of théaxis (such aslrop A '

in Fig. 5b) is narrower than its top end, whdeopsnear the ,,

X-axis are more symmetric, more like ellipses. This is be- |/ —

cause the radial magnification is nearly constant around the [/--—" ¢ Q } M

X-axis, while far from there the magnification varies, as will B X : |

be shown later. : § Lo
The images of thelropsare seen on the CCD plane as | |

circles inscribed in an imaginary region defined by the points , ;

a, b, c andd, as is indicated by dotted lines in Fig. 6a. Each B I | T

drop on the plane screen is inscribed in an imaginary rectan- @ ®)

gle with verticesa’, v/, ¢ andd’, as shown in Fig. 6b. Itis

not difficult to find that, in general, the centers of the circlesFIGURE 6. (a) Some points of interest on the image are marked.

on the image are not transformed into the middle point of theb) The corresponding points on the screen are marked.

Screen

Y(p:)-

a)

| | | 1 | | | |
10 20 30 40 S0 60 70 80
FIGURE 7. (a). Image of the “Puma” of the Universidad Nacional &mbma de Mexico; (b). Screen which produces the “Puma” when it is
reflected on a sphere with 11.125 mm of radius of curvature (a steel ball 7/8-in diameter is adequated). Dimensions in mm.
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noting that the only point inside the circle (on the image) that  Figure 7b can easily be used for observing the Puma im-
can geometrically be easily related to its corresponding poinage. Figure 7b should be copied to form a cylinder. Also, the
on thedrop (on the screen) is the poidt in Fig. 6a. This discontinuous line in the figure should be aligned with the
point results from intersecting the circfe passing through Y'-axis. A steel sphere 7/8-in diameter should be introduced
pointse and f (where the radial lines are tangent to the cir-into the cylinder. Special care must be taken in order to en-
cle) and the radial line passing throughand joining the  sure that the top of the sphere (vertex, see Fig. 1) is level with
pointsh andi. The arc of the circlé is transformed, on the the X-axis in the figure; while looking inside the cylinder, it
plane screen, into the horizontal line passing through pointsnay be necessary to come closer or to move further away
e’ and f’ (the points where the vertical lines are tangent tofrom the steel ball in order to bring the image into focus It
thedrop), while the radial line is transformed into the vertical is recommended that the screen be printed on paper which is
line passing through’ andi’. The point G’ is the intersection not completely opaque.
point between these two lines. About the positions of points
C and M (on the image) and their corresponding points on
the screerC’ and M’, along the azimuthal direction, it can 4. Magnification of the image
be said that they are on the same vertical line as the point G'.
Along the radial direction, the answer is not so direct and will The magnification of an image/ can be defined, as in parax-
be discussed in Sec. 4. ial optics, as the quotient of an image segméntdivided by
its corresponding object segm@' on the plane screen:
3.3. Any picture on the image L
m=28
A’'B

In previous sections, images with very simple patterns such (16)

as lines, squares and circles were shown. However, it is pos-
sible to develop screens in order to observe any picture on |tis clear that the magnification will depend on the orien-
the image. As an example, in this section, a stylized Pumaation of the chosen segments. Since Egs. (5) and (6) define
in Fig. 7a and its screen in Fig. 7b are shown. The Puma ithe transformation in parametric form, where the parameters
one of the emblems of the Universidad Nacional@wima arep and¢, it is possible to define two basic magnifications:
de México. aradial magnificatiod/,, which relates vertical segments on
Using a computer program, the coordinates of the pixethe screen\Y with radial segmentg\p in the image, and an
vertices and the coordinates of five points between two conazimuthal magnificatiod/,, that relates horizontal segments
secutive vertices were calculated. Note that Fig. 7a is am\X on the screen with arc segmentd ¢ in the image (see
array of squares. The transformation is applied to the coorFig. 10).
dinates of each vertex and to the additional five points be-
tween them, in order to obtain their corresponding points oy 4
the screen. Then they are joined with straight lines to ob- "
tain the screen shown in Fig. 7b. It is important to keep therp o radial ma
real scale while plotting a screen. To develop the screen in
Fig. 7b, the optical parameters used were 11.125 mm, Ap
R=13 mm,a = 30 mm and = 86 mm. M, =<+ (17)
Although the image presented in this section is black and
white, it is possible to obtain screens in order to see color To obtain this, the inverse of Eq. (3) must be known. This
images. To do this, the color assigned to each pixel of thés not easy to obtain analytically, so the radial magnification
picture must be assigned to the correspondiiagezoidarea  is calculated through the derivative bf with respect top,
obtained after applying the transformation. and then taking their multiplicative inverse. Using Egs. (1)
|  to (6), the following expression is obtained:

Radial magnification

gnificatiod/,, is given by

w08 (ot ] oo ] v s

- = ~R)+ — " : 18
dp (Up+Va)® (E-R) Up+Vadp ' dp (18)
where I
% . (g‘ilz; n Wfli) , (19) and
. . ds _ pb (a®+p?) (b+2r) 3 ( B 2p? ) 21)
=2 b ) (20) dp (a2r2—p2b (b+2r)V/2 p ' a2+p?
dp p* \'dp

The radial magnification is plotted in Fig. 8, for the case
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of R=13 mm,r = 11.125 mmg = 30 mm and = 86.05 mm. 0.30
It can be seen that it grows smoothly for valueg ¢dss than 025
2.6 and reaches its maximum at a valug afose to 2.6. For )
larger values op, the radial magnification rapidly decreases. 0.20
M, o.15 e

4.2. Azimuthal ificati

zimuthal magnification 0.01
The azimuthal magnification/y, is defined as 0.05

Ag 0.00 =
My =222 (22) 00 05 1.0 15 20 25 30 35

T AXC
p

Substituting Eq. (5) in Eqg. (22), the azimuthal magnifi- FIGURE 9. Azimuthal magnification.

cation can be expressed in a very simple form:

Case 1. Itis assumed that > p.q..- In this case, the radial
My = =; (23)  magnification decreasing with Sincep, < pc < p;, then
Mg > Mg, so Yg < Y. This means thaf’ is nearerh/

i.e. along a circle of radiug on the image, the azimuthal thani’, i.c.C" is below the mid-point of thelrop /.

magnification is constant, because it does not depend on the ) .
azimuthal angle. For Y = const, the azimuthal magnifica- €as€ 2. In this case, it is assumed thak< pas, SO that
tion is constant too becauseis directly related t through ~ te circle in Fig. 6(a) is in the region where the radial mag-
Eq. (3). M, changes linearly with, as is shown in Fig. 9. Nification is increasing wittp. Sincepn < pc < pi, then
: o . . o M M7, which impliesY; Y. n th r !
It is quite interesting to note that the azimuthal magnifi- o< M, ¢ pliesY’; > 17. So, on the screei/

Som AT . . . e is farther fromh’ thani’. This means tha€” is above the
cation is a linear function g#, while the radial magnification : . y
L mid-point of thedrop M’.
depends implicitly orp.

Going back to the point of knowing the relative position c55e 3. In the case that ~ pme. andr is small enough so
in radial (on the image) and vertical (on the screen) direc’[hatMH ~ M;, C' coincides with)M’.

tions between the points, M andG in Fig. 6, it has been
f‘?“”d that this depends on whether (point C radial coor- On the image, when the centroid coordinates of the circu-
dinate) is greater than, equal to or less than.(the value of |5 so4ts are calculated, it must be remembered that, in gen-
p where the radial magnification reaches its maximum valug, 5| “their values do not coincide with the geometric center
(see Fig. 8). There are three possible cases to be analyzed.., dinates of thelrop.

In order to analyze these cases, consider the following
definitions. On the image, let= p;- pc=pc- py be the cir- _
cle radius; on the screeliy = Yo — Y, andY; =Y, —Ye, 5. Symmetry of the transformation

and the radial magnificatioh y = r/Y g andM; = r/Y | .
From Egs. (1)-(3) it can be seen tlfat, andz; depend only

on p; then, for a given value o4, z3 is constant. This means

0.14
0.12

0.10
0.08 / \
A0

MRY 0.06 \

0.04 / \

0.02 \

0.00 5
00 05 10 15 20 25 30 3.5 @ )

Screen

AY

p FIGURE 10. (a) On the image, circumferences centered at the ori-
gin and straight lines with equatios= const are transformed, on
FIGURE 8. Radial magnification. screen (b), into horizontal and vertical lines, respectively.

Rev. Mex. 5. 53 (5) (2007) 421-430



428 L. CARMONA-PAREDES AND R. DAZ-URIBE

Yi B v X=R¢ on the screen (Fig. 11b) have, coordinatEés(X ./, Ya')
. - and B’ (Xp/, Yp') respectively, in rectangular coordinates.
' X They satisfy the following relationshipst 4+ = R(¢o — a),

Xp = R(¢o + a), Yar = Yp, sinceY depends only on
p, and the straight lin@ = ¢, is transformed into the verti-
, cal straight line X = ipy. ThenA’ and B’ are symmetrically
A B' located with respect to the vertical straight line X R
| When the object and its image are symmetric, it is said
that the symmetry is conserved. So, the last paragraph means
Screen that the transformation defined by Egs. (5) and (6) maintains
the symmetry with respect to straight lines on the image with
equationsp = const This fact is better illustrated in Fig. 12.
Examples of symmetric curves with respect to a straight
line passing through the origin of coordinates are shown in
Figs.12a and b. The first is a set of four squares where each
one is symmetric with respect to a straight line of the form

that a circumference centered at the origin of the image tha = COnst The second image is a pair of words "yes” symmet-
is described by = const (Fig. 10a) is transformed into a cir- rically located in reference to a straight line passing through

cumference on the cylinder described hy= const. On the the_origin of _coord?nates. The curves in Figs. 12c and _d are
plane screen, this is a horizontal line with equafios const, their respective objects on the screen. As can be seen, in both

as is shown by the dark dashed line in Fig. 10b. cases the curves on the plane screen are symmetrical with

In addition, from Eq. (5) it can be seen that straight lines'€SPect to vertical straight lines. In gach figurg, the axes pf
on the CCD with equations = const are transformed on the symmetry, on the screen and on the image, are indicated with
cylinder and on the plane screen into vertical lines. In Fig. 10d0tted lines.
one of this type of line is indicated with a continuous dark ~ As an example of where symmetry is lost, the same
line. Fig. 12b is slightly displaced along thgaxis to obtain

Now, two points symmetrically located with respect to Fig. 13a. Even though the words “yes” on the image are sym-
a straight line passing through the origin of coordinates afnetrically located with respect to a straight line, the curves
the image is transformed into a similar symmetric objecton the screen in Fig. 13b not are symmetrical. This is be-
on the plane screen. In order to show this, poined B cause the axis of symmetry on the image is not of the form
of the image are shown in Fig. 1la. They have coordi« = const In this case, it is said that the symmetry was lost.
nates p4, $) and (g, ¢) respectively, and are symmet- It is worth recognizing here that the loss of symmetry is not
rically located with respect to the straight lige= ¢,; i.e. ~ Merely a scale change; it is not possible to resize one of the
ba = o — a,¢p = ¢o + aandps = pp. After apply-  ‘yes” objects in Fig. 13b and to flip it horizontally to bring it

(b)

FIGURE 11. (a) On the image, symmetric points with respect to
straight lines with equationsg = const on the screen (b), are sym-
metric with respect to the vertical lin€ = R¢.

ing the transformation, their corresponding poidtsand B’ in coincidence with the other “yes” object.
7 ) g . |
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FIGURE 12. (a) and (b). Symmetrical images with respect to straight lines of the forntonst. (c) and (d). On the screen, after applying
the transformation symmetrical curves are obtained.
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ent positions depending on the position of threp in

the vertical direction. The relative position depends on
whether the circle is in the region where the radial mag-
nification is increasing or decreasing. In the first case,
considering the vertical direction, the point C’ is below
the pointM’, while in the second case, the po(it is
above M.

i Image Y | Screen 2. For a perfect circle on the image, its corresponding ob-
X ject on the screen has the following properties. The
_ relative position between the poi@it (the object point
axis of associated with the centér of the circle on the im-
symmetry age) and the poinfi/’ (the geometric center of the
'/ correspondingdrop shape on the screen) is in differ-

3. It was noticed that, on the image, curves symmetric
with respect to straight lines with equatiofs: const
@) (b) on the plane_ screen, are obtaineq from objepts which
are symmetric with respect to straight lines with equa-
FIGURE 13. (a) The axis of symmetry on the image is not of the tions X = const
form ¢ = const. (b). The curves on the screen are not symmetrical.

4. Looking at the pairs image-screen shown in this paper,
it can be seen that, if the image has a uniform line den-
sity, on the screen the line density varies. This fact has
an implication for the way a screen must be illuminated
in order to obtain a uniformly illuminated image.

The conservation of symmetry with respect to straight
lines on the image with equatiopn = const is not only
valid [1] for spherical surfaces as reflecting optics, but it is
true also for any surface of revolution centered onAhaxis.

All these results are important facts that must be consid-
ered during the design of null screens for optical testing. In-
deed, some of them have been used in several other papers

In this paper, a detailed analysis of the geometric aspects §uch as [9-11]. In particular, in Ref. 3, it is shown that

the transformation from the image plane to the screen plani order to properly test optical surfaces with a null screen,
in null screen tests has been performed. the particular characteristic of the transformation described

The main results of this analysis are: in point 3 must be taken into account to evaluate the centroids
of the circular spot images.

1. For similar geometrical figures on the image, the cor-
responding objects on the screen can have remarkacknowledgements
ably different shapes. This is because the radial and
azimuthal magnifications are very different. The az-The authors of this paper are indebted to Neil Bruce for his
imuthal magnification is a linear function @f while  help in revising the manuscript. This research was supported
the mathematical expression for the radial magnifica-by the Consejo Nacional de Ciencia y Tecnébo@CONA-
tion is a more complicated function which implicitly CyT), México, under Project No. U51114-F and by DGAPA-
depends op. project PAPIIT No. ES-114507.
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