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A geometric analysis of the screens used for testing convex optical surfaces is presented. Some properties of the transformation between the
image plane and the screen plane, such as symmetry and magnification, are presented for the case when the reflecting surface is a sphere.
Due to the intrinsic variations in the magnification, the geometric relationship between the image and the object shows some unexpected
behavior. Two cases are analyzed in detail: i) a set of concentric circles centered on the origin of coordinates of the image plane with a set of
radial straight lines; and ii) a square grid and a square array of circles of the same size.
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Se presenta un análisis geoḿetrico de las pantallas utilizadas para probar superficiesópticas convexas. Para el caso en el que la superficie
reflectora es una esfera, se hace una revisión de algunas propiedades de la transformación entre el plano de la imagen y el plano de la pantalla,
tales como la simetrı́a y la amplificacíon. Debido a la variación intŕınseca de la amplificación, la relacíon geoḿetrica entre la imagen y el
objeto muestra caracterı́sticas inesperadas. Se analizan dos casos en detalle: i) un conjunto de cı́rculos conćentricos centrados en el origen de
coordenadas del plano de la imagen con un conjunto de lı́neas radiales; y ii) una malla cuadrada y un arreglo cuadrado de cı́rculos del mismo
tamãno.

Descriptores: Pantallas nulas; superficiesópticas convexas; pruebasópticas.

PACS: 42.15.-i; 42.30.-d; 42.62.Eh; 42.87.-d

1. Introduction

The testing of optical surfaces using null screens is based on
the analysis of the image of a cylindrical screen with a set of
curves drawn on it in such a way that its image, which is pro-
duced by reflection on the test surface, yields a pattern previ-
ously determined [1]. The screen, made of a sheet of paper
which hereafter will be called the “plane screen” or simply
the “screen”, is rolled up to make a cylindrical screen. The
test surface is placed inside the cylinder and is illuminated
from outside by white light; the light rays transmitted to the
inside of the cylinder are reflected on the test surface, col-
lected by a lens, passed through a pinhole, and the image is
captured with a CCD camera (Fig. 1). The CCD sensor is in
the image plane.

A qualitative test of the optical surface consists of check-
ing that the image of the cylindrical screen, defined previ-
ously, is the same as the design image. Usually, the image
of the cylindrical screen is chosen to be a simple geomet-
ric array such as a perfect square grid, concentric circles or
straight lines, in order to detect easily, with the naked eye,
any departure from the prescribed geometry. For simplicity,
through out this paper the cylindrical screen will be called the
“cylinder” or “ screen” and the image screen the “image”.

To test quantitatively the optical surface, it is necessary
to associate a point of the image with its corresponding point

in the cylinder to obtain the normal vector to the test sur-
face at each point of incidence. After a numerical integration
method, the sagitta of the test surface is obtained. Then, it
is possible to compare the sagittas of an ideal surface with
those of the test surface [2]. A problem in calculating the
normal vectors to the test surface is that on the image there
are no single, isolated points; instead, there are finite sized
spots. Thus, the geometric centroids of the spots are usually
assigned as the points on the image to obtain the sagittas.

FIGURE 1. Optical setup for testing convex surfaces with the null
screen.
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The goal of this paper, for a better understanding of the
relationship between the image and the screen is to show,
particular characteristics of some types of curves on the im-
age and their corresponding curves on the screen for the case
when the surface is a sphere. In addition, it will be shown
that the positions of geometric elements of the curves on the
image do not always correspond to the same geometric posi-
tions on the screen. The results obtained here can be easily
extended to any other convex and conic optical surfaces.

In Sec. 2, the transformation function that relates the co-
ordinates of the points on the image to the coordinates of the
points on the cylinder, as well as other useful definitions are
presented. Some simple arrays of curves on the image as a
square grid and a square array of circles of the same size, is
presented in Sec. 3; in this section, it is also shown, through
a particular example, that it is possible to obtain the screen
of any picture on the image. In Sec. 4, the magnification of
the image, defined as the size ratio of a segment on the im-
age to the corresponding one on the screen, is analyzed. The
conservation of symmetry of the transformation function is
analyzed in Sec. 5. Finally, in Sec. 6, comments and conclu-
sions are presented.

2. Transformation from the image to the
screen

In order to introduce the transformation between the points
on the image and the points on the cylinder, it is important
to see how the image is produced. From the bundle of rays
scattered from a pointP3 (see Fig. 1) on the cylinder, only
one ray strikes the optical surface (pointP2); it is reflected
and then passes through the pinholeP . Finally, this ray im-
pinges on the CCD to form the image (P1) of the pointP3.
As this happens for every point on the cylinder, an image of
the cylinder is formed at the CCD.

For each point on the image, the positions of the corre-
sponding points on the cylinder are obtained with the reverse
ray calculation method proposed in Ref. 1,i.e. opposite to
the actual ray propagation direction. Unless otherwise stated,
this will be the ray direction analyzed throughout this paper.
In Ref. 1, the transformation is developed for any conical op-
tical surface; in the present paper, only the spherical case will
be considered.

Due to the symmetry of revolution of the problem, Fig.
1, it is better to use cylindrical coordinates to describe the
curves on the cylinder and on the image. So, in reference
to Fig. 1, P1 = (ρ, φ,−a − b), P2 = (ξ, φ + π, z2) and
P3 = (R,φ + π, z3).

The transformation is given by the following equations:

ξ =
a(b + r)− (a2r2 − ρ2b(b + 2r))1/2

a2 + ρ2
ρ (1)

z2 =
ξ

ρ
a− b. (2)

and

z3 =
Ua− V ρ

Uρ + V a
(ξ −R) + z2; (3)

where

U = ξ2 −W 2, V = 2ξW and W = z2 − r. (4)

In the last equations,R andr are the radii of the cylinder
and spherical surface, respectively.

The relationship between the cartesian coordi-
nates (X, Y ) on the screen and the cylindrical coordinates
(R, φ, z3) on the cylinder is given by:

X = Rφ (5)

and

Y = z3 (ρ) . (6)

To design real screens, it is important to know the trans-
formation range. So, for the angular coordinate, it is clear
from Eq. (5) thatX is a linear function ofφ and is defined
for all values ofφ. Even thoughX andφ are defined for all
values, they can be considered to be restricted by

0 ≤ φ ≤ 2π (7)

and

0 ≤ X ≤ 2πR. (8)

For the radial coordinate, in order to have only real num-
bers of the coordinateY , ρ must satisfy

ρ ≤ ar

[b (b + 2r)]1/2
. (9)

From Eqs. (1) and (2) it can be seen that, ifρ tends to
zero, thenξ andz2 tend to zero, and from Eqs. (3) and (6)
it is obtained thatz3 → −∞. Thus, asρ tends to zero, the
length of the screen tends to be very large. The points with
very smallρ correspond to the images of the points near the
reflecting surface vertex. The limitρ = 0 corresponds to the
image of the reflecting surface vertex (see Fig. 1) so, in or-
der to see the image of the sphere vertex, the screen must be
indefinitely long. Since it is not possible to construct such a
screen, the origin of the image coordinate system is always
absent from the image, andρ > 0.

In order to have some insight into the behavior of the ra-
dial coordinate of the transformation, Eq. (6) is plotted in
Fig. 2 for a particular case. It can be seen that for small
values ofρ, Y grows very fast; asρ > 0.5 approximately, it
begins to grow slower. For values ofρ such thatY is near
zero, the transformation is almost linear. For larger values of
ρ, Y starts to grow faster.
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FIGURE 2. Plot of the transformation from the image to the plane
screen.

FIGURE 3. (a) Square grid on the image. (b).Trapezoidson the
screen.

3. Some simple patterns on the image

In order to use the null screen method to test optical surfaces,
it is best to observe images formed by very simple patterns
in such a way that it is easy to detect any difference between
the images formed by the real surface and those that were de-
signed. So, in the following sections, two simple patterns on
the image are presented.

3.1. Square grid

In order to test qualitatively an optical surface, one of the
most useful and simple patterns for the image is a square grid
(see Ref. 1). This pattern (Fig. 3a) is obtained on the image
when the plane screen is designed with a set of curves that
appear as shown in Fig. 3b. Since the objects on Fig. 3b are
like trapezoids with curved sides, they will be called simply
trapezoids.

The square grid on the image is formed with vertical and
horizontal lines with equations

x = nl and y = ml, (10)

respectively, wheren, m = 0,±1,±2, . . . ,±N , Nl = d/ 2; d
is the length side of the smallest side of the CCD (for more
details see Ref. 1).

The points on the image that satisfy both Eqs. (10) at the
same time are the crossing points between the horizontal and
vertical lines. On the plane screen, it is not enough to plot
only the corresponding crossing points, it is better to find the
position of several points; between the crossing points. Ten
equally-spaced points are adequate. Along the horizontal di-
rection, the coordinates of the ten equally-spaced points be-
tween the crossing points (xn, ym) and (xn+1, ym) are

xnj
= nl +

jl

10
and ym = ml, (11)

wherem=0, ±1,. . . ,±N, n=0, ±1,. . . ,±N−1 and for each
value ofn, j=0,. . . ,10.

For the vertical direction, the coordinates of the ten points
between the crossing points (xn, ym) and (xn, ym+1) are

ymk
= ml +

kl

10
and xn = nl (12)

wheren=0, ±1,. . . ,±N , m=0, ±1,. . . ,±N−1 and for each
value ofm,k=0,. . . ,10.

In order to plot the plane screen, Eqs. (5) and (6) are ap-
plied to the polar coordinates of the points given by Eqs. (11)
and (12),i.e. they are applied to:

φ=tan−1

(
m

n+j/10

)
ρ=

[(
n+

j

10

)2

+m2

]1/2

l, (13)

and

φ=tan−1

(
m+k/10

n

)
ρ=

[
n2+

(
m+

k

10

)2
]1/2

l (14)

In Fig. 3b, the calculated points are joined with straight lines.
For a better understanding of the geometry of the image

and its screen in Fig. 3, some points on the image are indi-
cated with capital letters and their corresponding points on
the screen with the same prime capital letter. The points on
the plane screen will be denoted by primed capital letters, and
the corresponding points on the image will be written without
primes.

It can be seen that the points on the image with the largest
value ofρ, i.e. the square grid vertex (pointsA, C, E andG)
are transformed into the points on the screen with the largest
Y values. The points on the image with the smallest values
of ρ (pointsI, J , K andL) correspond to the points on the
screen with the smallest values ofY . It is interesting to note
that the straight lines defined by the pairs of pointsIH, JB, KD
andLF are the only ones that are transformed on the screen
into straight lines; any other straight line on the image is seen
on the screen as a curve. This result is due to the fact that, in
the image, these are radial lines.

In addition, on the same image, Fig. 3a, three squares are
marked with dark lines and their vertices are numbered in a
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FIGURE 4. On the image, the line density is constant. (b) On the
screen, at the top, the curve density is greater than at the bottom.

FIGURE 5. (a) Array of circles of the same size on the image. (b)
Screen with curves likedrops.

clockwise direction. On the screen, Fig. 3b, their correspond-
ing trapezoidsare also marked with dark lines and the ver-
tices are numbered to maintain the correspondence between
the vertices on the image and those on the screen. It is inter-
esting to note that:

i) while the numbers of the vertices of the squares grow
in the clockwise direction, on the vertexes of thetrape-
zoids, they grow in the counter clockwise direction;

ii) in each square, the upper right vertex has been identi-
fied with the smallest number of the four vertices. Nev-
ertheless, on thetrapezoidsthe relative position of the
vertex marked with the smallest number is not the same
with respect to the other three vertexes. For instance,
for one square on the image (Fig. 3a), vertex 4 is at
the upper left corner and on its correspondingtrape-
zoidon the screen (Fig. 3b), it is placed at the bottom.
For other squares, the result is different.

The form and size of atrapezoidon the screen depend on
the position of its corresponding square on the image. Look-
ing carefully at Fig. 3b, it can be seen that thetrapezoids

marked with dark lines show the three kinds oftrapezoidson
the screen. Thetrapezoidwith vertices 5’, 6’, 7’ and 8’ is the
only one showing symmetry; it is symmetric with respect to
a vertical line. Thetrapezoidwith vertices 9’, 10’, 11’ and
12’ has one straight side and that one defined by the vertices
1’, 2’, 3’ and 4’ has its four sides curved and does not present
any symmetry. Any othertrapezoidon the screen is like one
of these three but with a smaller dimensions, or perhaps re-
flected 180◦ with respect to a vertical line.

From Fig. 3b it can be seen that thetrapezoidarea de-
pends mainly on the vertical position: those farthest from
the X-axis have the largest area, and this decreases as they
are nearer to theX axis. This fact means that, while on the
image the distribution of the lines forming the squares is uni-
form over the area of the screen, on the plane screen, Fig. 3b,
at the top, the curve density is greater than at the bottom. In
Fig. 4, this effect is more clearly shown: in (a) a square grid
with constant density of lines is plotted and its plane screen,
which shows a clear variation of the curves density in the
vertical direction, is plotted in (b). On the plane screen, the
dependence on the vertical direction of the line density is a
consequence of the transformation dependence on the radial
coordinates [Eq. (6)].

3.2. Square array of circles on the image

The accuracy of the testing of a surface depends on the accu-
racy of the evaluation of the coordinates of the centroids, as
discussed in Ref. 2. Many authors [5-8] have proposed differ-
ent methods and techniques in order to increase the accuracy
of the centroid estimation; all of them use statistical analysis
on the evaluation of the centroid. Therfore, it is important to
use bright spots instead of single points on the image.

The interest in analyzing an array of circles on the image
comes from the idea of having images with a simple spot ge-
ometry in order to easily find the centroid of each spot. As
is known, in this case the positions of the centroids coincide
with the centers of the circles provided that they are evenly
illuminated. In Ref. 3, it was proposed that the bright spots
should become circles. The objects on the screen that pro-
duce circles on the image have oval-like forms (see Refs. 3
and 4), that will be calleddrops, because of the asymmetry
that will be shown later.

A squared array of equal circles on the image is proposed,
so the centers of the circles are set on a square grid and the
circles radii are equal. Then, each circle is defined by the
equation

(x− x0)
2 + (y − y0)

2 = r2, (15)

wherex0, y0 = 0,±d, ±2d, . . . ,±Nd, Nr = d/ 2 andr is the
radius of the circles.

To obtain the curves on the plane screen, the transforma-
tion (Eqs. (5) and (6)) is applied to the polar coordinates of
the points given by Eq. (15).

Each circle in Fig. 5a was formed with 72 points joined
with straight lines, with one point every 5◦. In this case,
the parameters indicated in Fig. 1 wereR =15.85 mm,
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a = 20.77 mm andb =64 mm, the test surface radius
r =11.125 mm; the lens focal distance of the camera used
to take the photo shown in Fig. 5a wasf = 16 mm and the
width of the CCD square grid,d =4.4 mm. The parameters
a andb (Fig. 1) were chosen so that the diameter of the test
surface fit the area of the CCD (for details see Ref. 1).

In order to observe circles of the same size on the CCD,
the sizes and shapes of thedropsmust be different, depend-
ing on their position on the screen. The bottom end of each
dropon the most negative side of theY -axis (such asdropA
in Fig. 5b) is narrower than its top end, whiledropsnear the
X-axis are more symmetric, more like ellipses. This is be-
cause the radial magnification is nearly constant around the
X-axis, while far from there the magnification varies, as will
be shown later.

The images of thedropsare seen on the CCD plane as
circles inscribed in an imaginary region defined by the points
a, b, c andd, as is indicated by dotted lines in Fig. 6a. Each
drop on the plane screen is inscribed in an imaginary rectan-
gle with verticesa′, b′, c′ andd′, as shown in Fig. 6b. It is
not difficult to find that, in general, the centers of the circles
on the image are not transformed into the middle point of the

longitudinal axis of thedrops. In Fig. 6a,C is the center of
the circle andM ′, the longitudinal axis middle point of the
drop in Fig. 6b, is not its corresponding point. It is worth

FIGURE 6. (a) Some points of interest on the image are marked.
(b) The corresponding points on the screen are marked.

FIGURE 7. (a). Image of the “Puma” of the Universidad Nacional Autónoma de Mexico; (b). Screen which produces the “Puma” when it is
reflected on a sphere with 11.125 mm of radius of curvature (a steel ball 7/8-in diameter is adequated). Dimensions in mm.

Rev. Mex. F́ıs. 53 (5) (2007) 421–430
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noting that the only point inside the circle (on the image) that
can geometrically be easily related to its corresponding point
on thedrop (on the screen) is the pointG in Fig. 6a. This
point results from intersecting the circleΩ passing through
pointse andf (where the radial lines are tangent to the cir-
cle) and the radial line passing throughC and joining the
pointsh andi. The arc of the circleΩ is transformed, on the
plane screen, into the horizontal line passing through points
e′ andf ′ (the points where the vertical lines are tangent to
thedrop), while the radial line is transformed into the vertical
line passing throughh′ andi′. The point G’ is the intersection
point between these two lines. About the positions of points
C andM (on the image) and their corresponding points on
the screenC ′ andM ′, along the azimuthal direction, it can
be said that they are on the same vertical line as the point G’.
Along the radial direction, the answer is not so direct and will
be discussed in Sec. 4.

3.3. Any picture on the image

In previous sections, images with very simple patterns such
as lines, squares and circles were shown. However, it is pos-
sible to develop screens in order to observe any picture on
the image. As an example, in this section, a stylized Puma
in Fig. 7a and its screen in Fig. 7b are shown. The Puma is
one of the emblems of the Universidad Nacional Autónoma
de México.

Using a computer program, the coordinates of the pixel
vertices and the coordinates of five points between two con-
secutive vertices were calculated. Note that Fig. 7a is an
array of squares. The transformation is applied to the coor-
dinates of each vertex and to the additional five points be-
tween them, in order to obtain their corresponding points on
the screen. Then they are joined with straight lines to ob-
tain the screen shown in Fig. 7b. It is important to keep the
real scale while plotting a screen. To develop the screen in
Fig. 7b, the optical parameters used werer = 11.125 mm,
R= 13 mm,a = 30 mm andb = 86 mm.

Although the image presented in this section is black and
white, it is possible to obtain screens in order to see color
images. To do this, the color assigned to each pixel of the
picture must be assigned to the correspondingtrapezoidarea
obtained after applying the transformation.

Figure 7b can easily be used for observing the Puma im-
age. Figure 7b should be copied to form a cylinder. Also, the
discontinuous line in the figure should be aligned with the
Y -axis. A steel sphere 7/8-in diameter should be introduced
into the cylinder. Special care must be taken in order to en-
sure that the top of the sphere (vertex, see Fig. 1) is level with
theX-axis in the figure; while looking inside the cylinder, it
may be necessary to come closer or to move further away
from the steel ball in order to bring the image into focus It
is recommended that the screen be printed on paper which is
not completely opaque.

4. Magnification of the image

The magnification of an imageM can be defined, as in parax-
ial optics, as the quotient of an image segmentAB divided by
its corresponding object segmentA′B

′
on the plane screen:

M =
AB

A′B
′ . (16)

It is clear that the magnification will depend on the orien-
tation of the chosen segments. Since Eqs. (5) and (6) define
the transformation in parametric form, where the parameters
areρ andφ, it is possible to define two basic magnifications:
a radial magnificationMρ, which relates vertical segments on
the screen∆Y with radial segments∆ρ in the image, and an
azimuthal magnificationMφ that relates horizontal segments
∆X on the screen with arc segmentsρ∆φ in the images (see
Fig. 10).

4.1. Radial magnification

The radial magnificationMρ is given by

Mρ =
∆ρ

∆Y
. (17)

To obtain this, the inverse of Eq. (3) must be known. This
is not easy to obtain analytically, so the radial magnification
is calculated through the derivative ofY with respect toρ,
and then taking their multiplicative inverse. Using Eqs. (1)
to (6), the following expression is obtained:

dY

dρ
=

[
adU

dρ −
(
ρdV

dρ + V
)]

(Uρ + V a)− (Ua− V ρ)
[
ρdU

dρ + U + adV
dρ

]

(Uρ + V a)2
(ξ −R) +

Ua− V ρ

Uρ + V a

dξ

dρ
+

dz2

dρ
, (18)

where

dV

dρ
= 2

(
ξ
dz2

dρ
+ W

dξ

dρ

)
, (19)

dz2

dρ
=

a

ρ2

(
ρ
dξ

dρ
− ξ

)
, (20)

and

dξ

dρ
=

ρb
(
a2+ρ2

)
(b+2r)

(a2r2−ρ2b (b+2r))1/2
+

ξ

ρ

(
1− 2ρ2

a2+ρ2

)
. (21)

The radial magnification is plotted in Fig. 8, for the case
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of R = 13 mm,r = 11.125 mm,a = 30 mm andb = 86.05 mm.
It can be seen that it grows smoothly for values ofρ less than
2.6 and reaches its maximum at a value ofρ close to 2.6. For
larger values ofρ, the radial magnification rapidly decreases.

4.2. Azimuthal magnification

The azimuthal magnificationMφ, is defined as

Mφ =
ρ∆φ

∆X
. (22)

Substituting Eq. (5) in Eq. (22), the azimuthal magnifi-
cation can be expressed in a very simple form:

Mφ =
ρ

R
; (23)

i.e. along a circle of radiusρ on the image, the azimuthal
magnification is constant, because it does not depend on the
azimuthal angleφ. For Y = const, the azimuthal magnifica-
tion is constant too becauseY is directly related toρ through
Eq. (3).Mφ changes linearly withρ, as is shown in Fig. 9.

It is quite interesting to note that the azimuthal magnifi-
cation is a linear function ofρ, while the radial magnification
depends implicitly onρ.

Going back to the point of knowing the relative position
in radial (on the image) and vertical (on the screen) direc-
tions between the pointsC, M andG in Fig. 6, it has been
found that this depends on whetherρC (point C radial coor-
dinate) is greater than, equal to or less thanρmax(the value of
ρ where the radial magnification reaches its maximum value
(see Fig. 8). There are three possible cases to be analyzed.

In order to analyze these cases, consider the following
definitions. On the image, letr = ρi- ρC=ρC- ρh be the cir-
cle radius; on the screen,YH = YC′−Yh′ andYI = Yi′−YC′

and the radial magnificationMH = r/YH andMI = r/YI .

FIGURE 8. Radial magnification.

FIGURE 9. Azimuthal magnification.

Case 1. It is assumed thatρh > ρmax.. In this case, the radial
magnification decreasing withρ. Sinceρh < ρC < ρi, then
MH > MI , so YH < YI . This means thatC ′ is nearerh′

thani′, i.e.C ′ is below the mid-point of thedropM ′.

Case 2. In this case, it is assumed thatρi < ρmax, so that
the circle in Fig. 6(a) is in the region where the radial mag-
nification is increasing withρ. Sinceρh < ρC < ρi, then
MH < MI , which impliesYH > YI . So, on the screen,C ′

is farther fromh′ than i′. This means thatC ′ is above the
mid-point of thedropM ′.

Case 3. In the case thatρC ≈ ρmax andr is small enough so
thatMH ≈ MI , C ′ coincides withM ′.

On the image, when the centroid coordinates of the circu-
lar spots are calculated, it must be remembered that, in gen-
eral, their values do not coincide with the geometric center
coordinates of thedrop.

5. Symmetry of the transformation

From Eqs. (1)-(3) it can be seen thatξ, z2 andz3 depend only
onρ; then, for a given value ofρ, z3 is constant. This means

FIGURE 10. (a) On the image, circumferences centered at the ori-
gin and straight lines with equationsφ = const are transformed, on
screen (b), into horizontal and vertical lines, respectively.
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FIGURE 11. (a) On the image, symmetric points with respect to
straight lines with equationsφ = const; on the screen (b), are sym-
metric with respect to the vertical lineX = Rφ.

that a circumference centered at the origin of the image that
is described byρ = const (Fig. 10a) is transformed into a cir-
cumference on the cylinder described byz3 = const. On the
plane screen, this is a horizontal line with equationY = const,
as is shown by the dark dashed line in Fig. 10b.

In addition, from Eq. (5) it can be seen that straight lines
on the CCD with equationsφ = const are transformed on the
cylinder and on the plane screen into vertical lines. In Fig. 10,
one of this type of line is indicated with a continuous dark
line.

Now, two points symmetrically located with respect to
a straight line passing through the origin of coordinates at
the image is transformed into a similar symmetric object
on the plane screen. In order to show this, pointsAandB
of the image are shown in Fig. 11a. They have coordi-
nates (ρA, φA) and (ρB , φB) respectively, and are symmet-
rically located with respect to the straight lineφ = φ0; i.e.
φA = φ0 − α, φB = φ0 + α andρA = ρB . After apply-
ing the transformation, their corresponding pointsA′ andB′

on the screen (Fig. 11b) have, coordinatesA′ (XA′ , YA′)
andB′ (XB′ , YB′) respectively, in rectangular coordinates.
They satisfy the following relationships:XA′ = R(φ0 − α),
XB′ = R(φ0 + α), YA′ = YB′ , sinceY depends only on
ρ, and the straight lineφ = φ0 is transformed into the verti-
cal straight line X = Rφ0. ThenA′ andB′ are symmetrically
located with respect to the vertical straight line X = Rφ0.

When the object and its image are symmetric, it is said
that the symmetry is conserved. So, the last paragraph means
that the transformation defined by Eqs. (5) and (6) maintains
the symmetry with respect to straight lines on the image with
equationsφ = const. This fact is better illustrated in Fig. 12.

Examples of symmetric curves with respect to a straight
line passing through the origin of coordinates are shown in
Figs.12a and b. The first is a set of four squares where each
one is symmetric with respect to a straight line of the form
φ = const The second image is a pair of words “yes” symmet-
rically located in reference to a straight line passing through
the origin of coordinates. The curves in Figs. 12c and d are
their respective objects on the screen. As can be seen, in both
cases the curves on the plane screen are symmetrical with
respect to vertical straight lines. In each figure, the axes of
symmetry, on the screen and on the image, are indicated with
dotted lines.

As an example of where symmetry is lost, the same
Fig. 12b is slightly displaced along they-axis to obtain
Fig. 13a. Even though the words “yes” on the image are sym-
metrically located with respect to a straight line, the curves
on the screen in Fig. 13b not are symmetrical. This is be-
cause the axis of symmetry on the image is not of the form
φ = const. In this case, it is said that the symmetry was lost.
It is worth recognizing here that the loss of symmetry is not
merely a scale change; it is not possible to resize one of the
“yes” objects in Fig. 13b and to flip it horizontally to bring it
in coincidence with the other “yes” object.

FIGURE 12. (a) and (b). Symmetrical images with respect to straight lines of the formφ = const. (c) and (d). On the screen, after applying
the transformation symmetrical curves are obtained.
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FIGURE 13. (a) The axis of symmetry on the image is not of the
form φ = const. (b). The curves on the screen are not symmetrical.

The conservation of symmetry with respect to straight
lines on the image with equationφ = const is not only
valid [1] for spherical surfaces as reflecting optics, but it is
true also for any surface of revolution centered on theZ-axis.

6. Conclusions

In this paper, a detailed analysis of the geometric aspects of
the transformation from the image plane to the screen plane
in null screen tests has been performed.

The main results of this analysis are:

1. For similar geometrical figures on the image, the cor-
responding objects on the screen can have remark-
ably different shapes. This is because the radial and
azimuthal magnifications are very different. The az-
imuthal magnification is a linear function ofρ, while
the mathematical expression for the radial magnifica-
tion is a more complicated function which implicitly
depends onρ.

2. For a perfect circle on the image, its corresponding ob-
ject on the screen has the following properties. The
relative position between the pointC ′ (the object point
associated with the centerC of the circle on the im-
age) and the pointM ′ (the geometric center of the
correspondingdrop shape on the screen) is in differ-
ent positions depending on the position of thedrop in
the vertical direction. The relative position depends on
whether the circle is in the region where the radial mag-
nification is increasing or decreasing. In the first case,
considering the vertical direction, the point C’ is below
the pointM ′, while in the second case, the pointC ′ is
above M’.

3. It was noticed that, on the image, curves symmetric
with respect to straight lines with equationsφ = const,
on the plane screen, are obtained from objects which
are symmetric with respect to straight lines with equa-
tionsX = const.

4. Looking at the pairs image-screen shown in this paper,
it can be seen that, if the image has a uniform line den-
sity, on the screen the line density varies. This fact has
an implication for the way a screen must be illuminated
in order to obtain a uniformly illuminated image.

All these results are important facts that must be consid-
ered during the design of null screens for optical testing. In-
deed, some of them have been used in several other papers,
such as [9-11]. In particular, in Ref. 3, it is shown that
in order to properly test optical surfaces with a null screen,
the particular characteristic of the transformation described
in point 3 must be taken into account to evaluate the centroids
of the circular spot images.
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