INVESTIGACION REVISTA MEXICANA DE FiSICA 53 (6) 436-440 DICIEMBRE 2007

On recovering the parametric model of the Chua system via a gradient algorithm
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The Chua circuit parameter estimation problem is addressed in this paper. This circuit is algebraically observable and identifiable with respect
to its two measurable voltages. This fact allows us to straightforwardly propose two linear estimators for recovering the unknown parameters,
where the estimator gains are continuously adjusted by means of a gradient algorithm, until the estimated parameters converge to the actua
values. The convergence of this method is demonstrated by using the Lyapunov method.
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En este trabajo se trata el problema de estitmade los paametros del circuito de Chua. Este circuito es algebraicamente observable e
identificable con respecto a sus dos voltajes disponibles. Este hecho nos permite proponer directamente dos estimadores lineales para |
recuperadn de los paametros desconocidos, donde las ganancias de los estimadores son ajustadas continuamente mediante un algoritmo de
gradiente, hasta que los pametros estimados convergen con los valores reales. La convergencia déteske @ demostrada empleando

el método de Lyapunov.

Descriptores: Circuito de Chua; caos; reconstruciy observadores; enfoque de Lyapunov.
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1. Introduction as inverse system design [9] and system identification [10].
The system inversion design consists in seeing the vector of

The reconstruction of a chaotic system from one or moréiNknown parameters as an external input and the available
measurable variables has attracted the attention of many rg€asurable signal as the output of the system. Then, the ob-
searchers, because these kinds of systems have an enormifgive is to find an asymptotic inverse of this mapping. In
potential for applications. For example, they can be used iddition, the problem can be solved by means of standard
communication engineering to encode and decode informddentification methods, mainly supported by the traditional
tion [1, 2]. Roughly speaking, the reconstruction promemleast square methods and gradient algorithms (for a detailed
consists in recovering the underlying variables and the untreatment of these topics see [2, 3, 11-13]).

known parameters from a partial knowledge of a chaotic sys- In this work, we recover the unknown set of parameters of
tem that we desire to reconstruct [3]. That is, we want tothe Chua systenqS) using the adaptative control approach
extract some physical parameters and to estimate some noand assuming that the voltages of the capacitors are available.
available states from the available system outputs. In genfo do so, we show that the system is algebraically observ-
eral, there are two ways of identifying and reconstructing aable and identifiable with respect to the well chosen outputs.
chaotic system. The first one relies on the embedding apAfterwards, the selected parameter estimation method is car-
proach and the second one is based on control theory. Théed out by proposing two linear estimators, where their gains
embedding approach, supported by Taken’s theorem [4], akre adjusted according to a gradient algorithm [10, 14]. It is
lows us to estimate the attractor characteristics of a chaotiworth mentioning that this problem has been solved by other
system by unfolding its time series into a higher dimensionahuthors. In [15], the authors present an estimation strategy
phase space, which facilitates the reconstruction of the abased on the embedding approach using time delayed out-
tractor [4—7]. Topologically, the embedding problem con-puts. They firstly have to build a map and, secondly, the pa-
sists in finding a one-to-one map between points of both theameters are obtained by computing the inverse of the pro-
original system and the attractor in the reconstructed phaggosed map, which is nearly singular. A similar work with
space. Then, embedding consists in finding the optimal magsimilar tools was presented in [16]. In that work, the authors
ping which, when applied to the observed time series, willexperimentally compute some of the unknown parameters by
map it to a higher dimensional space, revealing informatiormonitoring two variables of th€S. In [17], the authors solve
about the original attractor (see Pragadl [6—8]). The sec- the problem by using the traditional least squares method, as-
ond approach exploits some control theoretical ideas, sucbuming that all the states of tl@S are available. In [18],
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a non-asymptotic linear estimator is presented based on the R
construction of a parameter-linear system. To justify it, the VvV \AA
authors had to assume that {8 displays a chaotic behav- + - + +
ior in order to apply the PoincasBendixon theorem. Our 3
identification strategy has the advantage of being very easys ——
to implement numerically. We do not need to find the inverse ™~
maps, nor do we need to compute the inverse of a matrix
(thus avoiding dealing with numerical singularities), as must — + = -
be done when using the works mentioned above.

= G e Diode

. . . . ) . FIGURE 1. The Chua System.
This paper is organized as follows. Section 2 briefly in-

troduces some algebraic properties thatGlSsatisfied. Sec-
tion 3 is devoted to establishing the framework of the pro- iy =B (-1 + 32— f(21)),
posed identification schema, which is based on a gradient al-
gorithm. In the same section, we show how the robustness of
the estimates with respect to zero-mean high frequency mea- T3 = —YTa,
surements of noisy outputs was enhanced usirig\atiant-

Tg = T1 — Ty + T3, (3

with

filter. Finally, the conclusions are given in Sec. 4.
f@) =az+b(jz+ 1] -]z —1]), 4)
where
2 J— =
2. The Chua system g _CR g o TRl
Cy L 2

The Chua system, shown in Fig. 1, consists of three energy- T = &’ To :”g, I3 = @
store elements (an inductor and two capacitors), a linear re- By By, By
sistor and a single nonlinear resistor, called Chua’s diode. A ®)

simplified nonlinear model of this system, which can be de+or the fixed values of parameters in a neighborhood of
rived from Kirchoff’s laws (see [8] and [19] for details), is v = 27, 3 = 15.6, a = —5/7, b = —3/14, we know that the

given by: CS has the so-called double scroll chaotic attractors.
Remark 1: Note that in other versions of tH@S a resistor is
dv, 1 added in the inductance, by adding to the right hand side of
T E(”@ = Vet) = Hvey), the third equation of (1) the voltage absorbed by the resistor
dv,, 1 —Ryir,, whereRy is the resistant of the inductance element
C d; = R(vq — Ve2) + i1, (1)  ofthe circuit. For simplicity, we assumed thag = 0.
i Comment 1. The CS is considered to be the standard
L@ = —v,,, paradigm of chaos and has been studied and applied by many
dt ’ researchers as a challenging benchmark to test advanced

identification methods. On the other hand, B8 has the
advantage of being one of the easiest chaotic systems to im-
plement.

whereR is a linear resistance,., andwv,, are the voltages
across capacitor€; and Cy, respectively,; is the current
through the inductor, and ¢(v,.,) is the current through
the non-linear resistor as a function of the voltage across ca-

pacitorCy. This non-linear function is described by an odd-3-  Problem statement
symmetric piecewise-linear function made of three straight-.l_he main aim of this paper is to recover the set of unknown

line segments and which has the following explicit represen'parametersﬁ, +. a andb, under the assumption that the two

tation: variablesz (t) and z,(t)are available for allt > 0. That is,
the two voltages of the circuit are monitored continuously
o(z) = — (mlquq Algebraic propertigs of the CSConsider a smqoth nonlin-
ear system, described by a state vector {z,;}!=" € R"

and by the vector outpuy = {y;}{=™ € R™, of the form,
Mo —m _
+ T (v + Byl = vy — B,,|>>, 2) x=f(x.p), y=h(x) (6)

whereh(-) is a smooth vector andp” € R! is a constant
parameter vector, with < n. We say that vector stateis

wheremy, ™ andB,, are three fixed constants of the diode. : - .
: ) i . ) algebraically observable if it can be uniquely expressed as
The three equations in (1) can be rewritten in the dimen- ) ) @
7 p 3

sionless form (see [20]), as: x=s(y,..y
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for some smooth functian Moreover, if the vector of param- 4.1. Parameter estimations

etersp satisfies the following linealr relation ) ) o
Based on the two differential parametrization of the outputs

s1(y, - y™) = sa(y,...y"™)p, (8)  (see (12 and (11)), we propose the following estimators

wheres; () ands,(+) are respectively v 1 andn x n smooth 5 — AT()a
. 201/ € . : et v =A(¥)a,
matrices, therp is said to be algebraically linearly identifi- ) (14)
able with respect to the outpyrt(see [21] for details). Yo = VY2 — Y2 + Y1,
Evidently, system (3) is algebraically observable with re- R R ) )
spectto the outputs = =1 andy» = z, since all the system Whereq andy are the estimates efand-, respectively, and

variables can be rewritten as these are computed continuously according to
1=y, T2=Y, T3=ft+y2—y. (9 A= —Fnhe
: . : . dt ™k, + AT(Y)A(Y)
Besides, from the first equation of (3), we easily Have ) (15)
d . by Y262
=A@ (10) iyt
where

e ande, being the measurable errors given by

T
a' =[] -B1+a) B Bb], . o~ . o~
., (12) er =91 - A Fa=A"(Y)(a-d) =A"(¥)a;
NI =[wm v T—wl=|pn+1]]. b= (1A= 7 (16)
€Co = —_ = —_ = .
In similarly form, the third equation of (3), leads to GRS

Herek,,, k,,, k4, andkg, are strictly positive gains. Now, to

o=~ — VY2 + 1. (12) " show that the previous estimators converge to zero, we pro-
From the two differential relations given in (11) and (12), Pose the following candidate Lyapunov function:
we claim that the nonlinear system (3) is linearly identifiable s 1o, 1,
with respect to the outputs andys. V(a,y) = 4 Atz (7)

Differentiating the proposed” now with respect to time

4. Model parameter estimation along the trajectories of (15), this yields

We establish the framework for recovering the unknown pa- A er Fyaes
rameters of th€S. Firstly, we analyze the hypothetical case V(q.7) = —kj, E AT HAG) R, + 2 (18)
where the signalg,, ¢» andij; are available and noise free. ! YAy ay T Y2

sumptions: to show that
Al The set of parametexkg and -y belongs in some neigh- . —kp, €2 kp, €2
borhood, in such a way that all the statesG$remain V(a,7) = —— = - (19)
Y by, +AT@AE) by, + 43

oscillating around the origin, for alt > 0.

A2 The states);, i» andij, are available or can be esti- As V is semi-definite negative we guarantee thaand e,
mated with great accuracy. are bounded. Now, to show that ande; converge to zero,

) . ) as long ag — oo, we apply Barbalat’s Lemnia Integrating
Remark 1: Evidently signalg, g.andj, must be estimated, poth sides of (19) we obtain

to a high degree of accuracy. To compute these deriva-

tives, we use the spline interpolant method proposed in [13]. Fy /est 4 l%g/est

This method consists in approximating a window of data (set ! 2

of recorded data) by means of an interpolating polynomial, t L o2 L o2 (20)
where the coefficients of the desired polynomial are computed < / ( Ap} — AV 2 P22 5) < V(0),
according to the least square method. For instance, using a o ka, + AT F)ARY) dz T Y3

window of data sef{y:, y+—r, yt—2- }, Wherer is the sam- wherek, andk, are defined as
pling time, it is easy to show that the first and second time

derivative ofy can be estimated by oy = kpjz _ _ ’
= 0.5ys—27 — 2ys—7 + 1.5.%’ Fa, + 012?%(/\ g(s)A(s)) 1)
) , T+ (13) . S
= Yt—2r T?Qthr yt. kq, + o@?%(ty%(s)
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Notice thatk; andk, are well defined because statgs ~ ~° = N
andy, are bounded. Therefore, ande; belong toL, space. 3 16.4 T
Now, from Eq. (19) we conclude thgtandv are bounded. s 16.2
Thus, from the Barbalat Lemma it follows thatandes con- P . r;-’
verge to zero as long, as— co. We should recall that ag "“%% %= A i
is almost always different to zero, then cleaflgonvergeto ~ **° ] 168 r"f A
zero. Following similar arguments it is possible to show that - A ——| 15.50.‘@»: —|

However, we cannot guarantee tlipconverges to zero. FIGURE 2. Estimates for parameteys andgs.
If we want to guarantee it, we need to impose a persistency.,, -
of excitation condition on signalg andy.. And we did not
do so because it is beyond the scope of this work.

To finish this section we establish the following proposi-
tion:

N

26.5

26

e
as5b e ~ 255

Proposition 1: Consider the CS, given in (3), under assump- ™ . ] N
tions A1 and A2. Then, the two proposed estimators (14) 633———— #L/ g_
assure that 4070 20Seconds 40 50 60 *°0 10 20 Seconds 40 50 60
ld—q|] <e and thm F(t) =~ (22) FIGURE 3. Estimates for parametegs and~.
—00

for the entire set of strictly positive constarits,, k,,, k4,

and k4,, wheree is a very small positive estimation constant 6. Conclusions

(it depends on how persistent the available signals di).

Note: for a profound treatment on the topics of Persistency ofVe have proposed an estimation scheme for revealing the pa-

Excitation and Barbalat's Lemma, we recommend books [12]ameters of the&CS on the basis of our knowledge of vari-
and [14]. ablesz; andx,, which are the available voltages of the Chua
circuit. The fact that the original system is algebraically ob-
servable and identifiable with respect to the defined outputs
allows us to obtain two differential parameterizations of the
outputs. Based on these parameterizations, two linear para-

To test the performance of the proposed method a digital sim-

ulation was carried out. In this simulation the step size inte MEiC estimators can be introduced to recover the desired

gration and the sampling time were chosen equd).661 pa_rameters, where the gains_of the esFimators are continually
and 0.005, respectively. The initial conditions were fixed":ld]usn?d by means of a gradlgnt al.gorlthm. The convergence
asziy = —0.9,790 = —0.15, x50 = 147, G1o = —A, analysis of the proposed !dent!f|cat|9n method is tested by the
G0(0) = —4,33 — —2 andF — 257, Finally, the de- Lyapunov method in coryuncp_on wlth the Barbalat Lemma.
sign gains of the two estimators were given by The perf_ormance (_)f the_ldentlflcatlon process has been illus-

trated with numerical simulations, where the unknown pa-
kp, =10; kg, =1; kp, =2.5; kg, =0.5. (23) rameters were obtained with very low error.

5. Numerical Simulations

Figures 2 and 3 show comparison between the estimated and

the actual values of the parameters. From these simulationdcknowledgments

it is concluded that the proposed method reconstructs all the
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the ones used in the previous simulation. Recall that from This research was supported under research grants
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x Corresponding author, e-mail: caguilar@cic.ipn.mx. limit ast — oo, and ifdf /dt — 0 ast — oo. A consequence
) B ., of this Lemma is that iff € L2 anddf/dt is bounded then
1 Herey:[ylayQayhyQ}- fHOast*)OOl

i Lemma (Barbalat): If the differential functiofi(t) has a finite  4i¢ The symbok:, denotes:(0).
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