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Hard-colloidal particles in contact with fluctuating membranes
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aInstituto de F́ısica, Universidad de Guanajuato, Loma del Bosque 103,

Col. Lomas del Campestre, 37150 León, Guanajuato, Mexico.
bDepartment of Mathematics and Physics, University of Freiburg, D-79104, Freiburg, Germany.

Recibido el 9 de agosto de 2007; aceptado el 11 de septiembre de 2007

A model to study the structural and thermodynamic properties of hard-colloidal particles in contact with fluctuating membranes by means
of Monte Carlo simulation is proposed. To test the accuracy of our model, we compare the density profile of a system composed of
non-interacting point-like particles with the analytical expression derived by Bickelet al. [Phys. Rev. E70 (2004) 051404]. This model is
applicable to colloids with finite size and it can easily be extended to binary systems or systems with long-range (Coulomb-like) interactions.
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Se propone un modelo que utiliza simulación de Monte Carlo para estudiar las propiedades estructurales y termodinámicas de esferas duras
coloidales en contacto con membranas fluctuantes. Para verificar la precisión de nuestro modelo, comparamos el perfil de densidad de un
sistema compuesto por partı́culas puntuales no interactuantes con la expresión anaĺıtica derivada por Bickelet al. [Phys. Rev. E70 (2004)
051404]. Este modelo es aplicable al caso de coloides con tamaño finito y puede ser fácilmente extendido a sistemas binarios o sistemas con
interacciones de largo alcance (tipo Coulomb).

Descriptores: Coloides; membranas; simulación de Monte Carlo.
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1. Introduction

Biological membranes are made of three major components:
lipids, proteins and sugars. All membranes have a com-
mon general structure: two-layered sheets of lipid molecules.
Proteins are embedded in them. The lipid and protein
molecules are held together mainly by non-covalent interac-
tions whereas sugars are attached by covalent bonds to some
of the lipid and protein molecules. They are found on one
side of the membrane only, for example, on the outer surface
of the plasma membrane [1]. There are three major types
of lipids found in biological membranes: phospholipids, gly-
colipids and cholesterol. They each play different roles in the
membrane (see for example, Ref. 2 and references therein).

Many biological processes are controlled by the inter-
actions of macromolecules with the cell membrane. Be-
sides highly specific interactions of a steric and chemical
nature, there are also entropic force fields which are om-
nipresent but whose actions depend only on geometrical fea-
tures. These entropy-driven forces are commonly known
as depletion forcesand can be exploited to organize self-
assembled structures [3,4].

A generic feature of membranes is, however, that they are
not flat. The variation of the local curvature leads to a new
quality of the depletion forces in that they are no longer di-
rected only normal to the surface, as in the case of flat wall
or a wall with a constant curvature, but there is also a lateral
component which promotes transport along the membrane.
So far there are no systematic theoretical studies available
which accurately predict this important curvature dependence
of the depletion forces. The theoretical description of this
phenomenon requires advanced techniques which must be

adapted to the study of depletion potentials close to arbitrar-
ily shaped substrates. Therefore, in this work we introduce
a model for studying hard-colloidal particles in contact with
fluctuating membranes by means of Monte Carlo computer
simulations. This model makes it possible to include both
the elastic properties of the membrane and the finite size of
the colloids; elements which are crucial to the development
of a more complete description of the depletion forces in a
membrane-colloid system. Also, our model has an excep-
tional advantage: it can easily be extended to binary systems
or systems with long-range (Coulomb-like) interactions.

After the present introduction, the next section is ded-
icated to a description of the membrane model, where the
Helfrich Hamiltonian is introduced [5]. In Sec. 3, we de-
scribe in detail how it is possible to transform the mathemat-
ical model in a discrete version which is useful in carrying
out a membrane-colloid simulation. In Sec. 4, we apply our
model to studying the density profile of point-like particles
close to the membrane. We also test our results with analyti-
cal calculations [6]. Finally, the paper ends with a section of
conclusions.

2. Membrane model

Clearly, biological membranes are very complex objects. To
understand certain aspects of the behavior of cell membranes,
it is advantageous to study simpler objects composed solely
of lipids. Two systems composed of a pure phospholipid bi-
layer are vesicles and planar bilayers. Vesicles are ”bags” up
to 100µm in diameter consisting of a phospholipid bilayer
that encloses a central aqueous compartment [7, 8]. They
are formed by mechanically dispersing phospholipids in wa-
ter. Planar bilayers are formed across a hole in a partition
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that separates two aqueous solutions [7, 8]. Below, we shall
confine ourselves to a discussion of the properties of mem-
branes composed of lipids and neglect the complexity arising
through enclosed proteins, the glygocalyx and the cytoskele-
ton present in cell membranes.

Lipid bilayers combine exceptional elastic properties
which would be difficult to obtain with technical materials.
The bending modulus is smaller than those of a 5 nm thick
shell made of polyethylene, by a factor of 1000, and the
shear modulus by a factor of 10,000, but the area compres-
sion modulus is almost as large as those of the polyethylene
shell, which makes the bilayer virtually incompressible [7].
The bending rigidity of lipid bilayers is between 5 and 100
kBT (kB is the Boltzmann constant andT the temperature)
at room temperature. Due to the low bending rigidity, mem-
branes undergo thermal shape fluctuations, which can be vi-
sualized by interference contrast microscopy [9].

Keeping in mind the properties mentioned above, Hel-
frich proposed a Hamiltonian which describes a fluctuating
membrane [5]. In this approximation, a membrane is seen as
a three-dimensional fluctuating surface,S. Monge parametri-
sation is commonly used to describe the membrane position
in terms of heighth(x, y) above the underlying reference
plane as a function of the orthonormal coordinatesx andy
(see Fig. 1).

There are two contributions to the energy of the mem-
brane: surface tension and curvature energy [10]. Therefore,
it is possible to express the total energy (or Hamiltonian) of
the system in the following form [6]

Hm(h) =
1
2

∫ [
κ

(∇2h
)2

+ γ (∇h)2 + µh2
]
dxdy, (1)

whereκ, γ andµ are the bending, surface tension and mem-
brane mass, respectively.

FIGURE 1. Sketch of the Monge parametrisation. Each point
of this three-dimensional surface is described by the coordinates
(x, y, h(x, y)).

The height-height correlation function is defined as

G (r− r′) = 〈h (r)h (r′)〉0 − 〈h (r)〉0 〈h (r′)〉0 (2)

=
∫

dq

(2π)2
eiq·r

κ̂q4 + γ̂q2 + µ̂
, (3)

whereκ̂ ≡ βκ, γ̂ ≡ βγ andµ̂ ≡ βµ, beingβ = (kBT )−1,
r = (x, y) is the transverse vector, and the thermal averages
〈· · · 〉0 are performed with the Helfrich Hamiltonian (1) in
the absence of particles. For a bilayer without surface ten-
sion(γ = 0), the integral over the Fourier modes leads to

G (r) = − 4
π

ξ2
⊥kei

(√
2

r
ξq

)
, (4)

where kei(x)=Im[K0(xeiπ/4)] is a Kelvin function [6].
We then define the mean roughness of the membrane
ξ⊥ = G (0)1/2=2−3/2 (κ̂µ̂)−1/4

, and the in-plane correlation
lengthξq = 21/2 (κ̂/µ̂)1/4 characterizing the exponential de-
cay ofG (r) at large distances

G (r) ∼ e−r/ξq , r À ξq. (5)

Figure 2a shows the behavior of the correlation lengths,ξ⊥
andξ‖, when the bendingκ changes keeping the value ofµ
constant. In the limiting case whereκ → 0 (where thermal
fluctuations easily modify the shape of the membrane), also
ξ‖ → 0, but if κ → ∞ (flat wall) thenξ‖ → ∞; andξ⊥ be-
haves inversely at both limits. Figure 2b shows the variation
in both correlation lengths for a constantκ by changing the
membrane mass. The behavior is very similar in both cor-
relations,i.e. they decay in an exponential-like fashion and
both go to zero whenµ → ∞. On the other hand,ξ⊥ andξ‖
make it possible to scale all the observable quantities.

3. Simulation of the membrane-colloid system

3.1. Lattice model

A membrane is discretized as a two-dimensionalNL × NL

square lattice with lattice constanta (see Fig. 3). A given
number of latticesNL defines the lateral length of the mem-
brane,L = aNL, and the projected area of the membrane is
A = a2N2

L. All lengths in the system could be scaled with
the lattice constant. Surface is given by means of the position
vectorS = S(r , h(r )), where (r ∈ A) is the vector on thexy-
plane andh is the field in thez-direction. In our simulations,
theh-field represents the thermal fluctuations. From the sim-
ulation point of view, it is only a random number ranging
within the interval [−hmax/2,+hmax/2], wherehmax is a
parameter which is controlled according to the ratio between
the accepted and total Monte Carlo steps of the membrane.
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FIGURE 2. a) Correlation length as a function of the rigidity of
the membraneκ for a given value ofµ. b) Correlation length as a
function of the mass of the membraneµ, for a given value ofκ.

FIGURE 3. Simulation model. a) Top view and b) side view of
the discrete representation of the membrane. Surface is given by
the position vectorS (x, y, h (x, y)), where the height of the lattice
siteij is given by the fieldhij .

We summarize here the main steps for simulating the
membrane:

1. The membrane starts in an initial configuration, and
there are two choices:

(a) Every membrane site is set ashij = 0 (flat wall).

(b) A random configuration, where all sites of the
membrane are set in a random position.

2. The energy of the initial configuration,Ei, is calcu-
lated with the Helfrich Hamiltonian (1).

3. Every membrane site is moved a distance
hij = hmax(rand() − 0.5), where rand() is a random
number defined in the interval [0, 1].

4. The energy of the new configuration,En, is calculated
again through Eq. (1).

5. The Metropolis criterion [11] is applied to decide if the
new configuration is accepted or rejected.

6. Update all quantities.

7. Return to step number three.

Before calculating statistical averages, it is necessary to
guarantee that the system has reached thermal equilibrium.
To reach thermal equilibrium, one can verify the energy of
the system. If the energy fluctuations around the mean en-
ergy value,Ē, are much smaller than̄E, then the system is in
thermal equilibrium.

The energy must be calculated using the Helfrich Hamil-
tonian; the discrete gradient and Laplacian operators are
given by [12]:

∇2hij (x, y) = hi+1j + hi−1j + hij+1 + hij−1 − 4hij ,

[∇hij (x, y)]2 = (hi+1j − hij)
2 + (hij+1 − hij)

2
. (6)

The approximation of these discrete operators depends on the
size of the lattice constanta. A good approximation is to have
a high number of lattices, but requiere more CPU time.

The quantityhmax corresponds to the maximum Monte
Carlo step. For an efficient sampling, it is essential thathmax

be neither too large (most of the suggested configurations will
be rejected) nor too small (almost all of the suggested config-
urations are accepted). A convenient measure for efficiency
is the acceptance ratio defined by

ar ≡ number accepted steps
number total steps

. (7)

A good choice forar is in the range0.3 < ar < 0.5 [11]. A
snapshot of a fluctuating membrane (in the absence of parti-
cles) can be visualized in Fig. 4.
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FIGURE 4. Snapshot of a fluctuating membrane.

FIGURE 5. Snapshot of the membrane-colloid system.

3.2. Simulating colloidal particles in contact with a fluc-
tuating membrane

Now, we shall describe the simulation details for the parti-
cles which interact with the membrane (see Fig. 5). A col-
loidal particle is represented by a sphere of diameterσ, and
its position is given by the coordinates(x, y, z). We place the
membrane inside a harmonic potential located atz = 0. The
N colloids are then randomly distributed between the mem-
brane and a flat wall located atz = d, whered is chosen such
that the direct membrane-wall interaction can be neglected,
i.e. d À ξ⊥. Similar to the membrane, colloidal particles
are moved to a new configuration by means of random dis-
placements,xi = xi + xmax(rand() − 0.5), wherexmax is
the maximum step size of the colloids which is updated af-
ter every certain number of Monte Carlo steps. If two par-
ticles overlap (rij < σ, whererij is the distance between
two cores) or if one of the spheres penetrates the membrane
(zij−σ/2 < hij , wherezij is thez-coordinate of the particle
located on thehij lattice), we reject the proposed configura-
tion. Subsequently, the energy of the new configuration is
calculated according to (1). The simulating algorithm can be
summarized as follows:

1. Locate a fluctuating membrane atz = 0.

2. Locate a hard-wall atz = d. The separation between
the fluctuating membrane and the second flat wall is

adjusted according to the desired density and the re-
quirementd À ξ⊥.

3. Place N colloidal particles randomly between the
membrane and the wall.

4. Move the membrane to a new configuration and deter-
mine if this configuration is accepted or rejected; if the
configuration is accepted, update the new coordinates
of the membrane sites.

5. Move the colloidal particles to a new configuration and
determinate if this configuration is accepted or is re-
jected; if it is accepted, update the new coordinates for
every particle.

6. Calculate the acceptance ratio of the membrane and the
colloids.

7. Updatehmax andxmax.

8. Calculate the observables.

9. Return to step 4.

The distance,r, between a colloid with diameterσ lo-
cated atR1 = (r1, z1) and a membrane site atR = (r, h (r))
is given by (see Fig. 6)

r =
√

(r− r1)
2 + (z1 − h (r))2 − σ

2
. (8)

FIGURE 6. Distancer between a colloid with diameterσ, located
atR1 = (r1, z1)n and a membrane site atR = (r, h). For point-
particles,r = z1 − h (r).

FIGURE 7. Squematic representation of the approximation used to
determine if a particle penetrates the membrane.
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FIGURE 8. Density profile, ρ∗(z)=ρ(z)/ρ∞, for
four different reduced densities, from right to left
ρ∞ξ3

⊥=0.01139, 0.01587, 0.02351 and 0.03803. Distances are
scaled withξ⊥, thenz∗ = z/ξ⊥. Symbols correspond to simula-
tion data and lines to Eq. (13). The perpendicular line atz∗ = 0 is
just a guide for the eye to illustrate the deviation of the profile with
increasing in the particle density.

FIGURE 9. Master curve. These are the same curves as in Fig. 8,
but now all curves have been plotted as functions ofz − z0.
Solid line is obtained from Eq. (13). The perpendicular line at
z∗− z∗0 = 0 is just a guide for the eye to illustrate the symmetry of
the master profile.

In order to save CPU time, the colloid close to the mem-
brane surface is approximated by a cube (see Fig. 7); the
actual minimal height difference depends on the distance be-
tween the centers of the colloids and the lattice site.

4. Density profile: comparison with the point-
like particle limit

We now considerN colloidal particles of diameterσ in con-
tact with the membrane. Their positions are characterized
by the vectors~ri, i = 1, . . . , N . They interact each other

through the hard-core potential described by the relation

βucc(r) =
{ ∞ r < σ

0 r ≥ σ,
(9)

where r denotes the relative distance between colloids,
r = |~ri − ~rj |. The colloid-membrane interaction is given
by

βucm(~ri) =
{

+∞ r < 0
0 r ≥ 0,

(10)

wherer is given by Eq. (8). Therefore, the Hamiltonian of
the system can be expressed as

H = Hm + Hcc + Hcm, (11)

whereHm is given by Eq. (1) andHcc and Hcm are the
colloid-colloid and colloid-membrane Hamiltonians, respec-
tively. Then, the partition function can be written as

Z =
1

λ3NN !

∫
d~r1 . . . d~rN

∫
Dhe−βHm(h)e

−β
N∑

i=1
ucm(~ri)

× e−β
∑N

j>i ucc(rij), (12)

whereλ, which results from the integration over the parti-
cle momenta, is the so-called thermal wavelength. The func-
tional integral extends over all configurations of the fieldh,
weighted with the Helfrich Hamiltonian (1). The positions of
the particles are restricted by the membrane.

In general, the analytical integration of the partition func-
tion is a hard task which has been simplified in a few cases.
In particular, for the case of a system composed of point-like
particles (σ = 0), the partition function (12) has been ana-
lytically calculated by Bickelet al. [6]. Therefore, once the
partition function is computed one is able to calculate any
physical observable.

Then, the density profile of point-like particles in front of
a fluctuating membrane reads as [6]

ρ(z) = ρ∞ × 1
2

[
1 + erf

(
z + z0√

2ξ⊥

)]
, (13)

where ρ∞ is the bulk density andz0 is the characteristic
lengthz0 = ρ∞µ̂−1. The physical meaning of this length can
be understood as follows. When in contact with the colloidal
suspension, the membrane experiences the osmotic pressure
of the particles and the membrane moves to a new equilib-
rium position given byz0. Therefore, Eq. (13) provides an
excellent benchmark to test our simulation model described
above.

Figure 8 shows the density profile,ρ (z) /ρ∞, for four re-
duced densities,ρ∗∞ ≡ ρ∞ξ3

⊥. Symbols correspond to the
simulation data and solid lines to the expression given by
Eq. (13). We can observe a perfect agreement between both
simulations and theory. From the curves, we appreciate that
the displacementz0 increases with the density according to
the relationz0 = ρ∞/µ̂. Therefore, it is possible to have a
master curve if all curves are plotted as function ofz − z0.
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Figure 9 shows the master curve obtained from our simu-
lation data and the corresponding analytical expression given
by Eq. (13). From this curve, we appreciate the fact that the
effect of the particles on the membrane is to modify the mean
surface location without changing the topology of the mem-
brane. On the other hand, up to here it is possible to compare
our simulations with analytical expressions, and the next step
is to consider particles with a finite size; in case it is not pos-
sible to analytically integrate the partition function, and so
our simulation method becomes a very powerful tool in fac-
ing this problem. Results in this direction will be published
elsewhere [13].

5. Conclusions

We have introduced a model to simulate a system composed
of hard-colloidal particles in contact with fluctuating mem-
branes. The latter are described by means of the Helfrich

Hamiltonian. We tested our model at the limit of point-like
particles where the analytical expression for the density pro-
file makes it possible to show the accurateness of our simula-
tion method. We found that our results are in perfect agree-
ment with this.

Finally, we would like to emphasize the fact that the
model described here can be used to study the effect of finite
size colloids on both the structural and thermodynamic prop-
erties of hard-colloidal particles close to fluctuating walls.
Also, such a model can easily be extended to binary sys-
tems in order to investigate the effect of thermal fluctuations
on the wall-particle depletion potentials, or to systems with
long-range (Coulomb-like) interactions.

Acknowledgments

This work was supported by PROMEP and CONACyT (grant
46373/A-1 and scholarship 206738).

1. B.S. Brown.Biological Membranes. Notes for Advanced Biol-
ogy. University of Manchester, Oxford Road, Manchester M13
9PT, U.K.

2. B. Albertset al., Molecular Biology of the Cell(Garland Pub-
lishing, Inc. New York and London, 1994).

3. A.D. Dinsmore, A.G. Yodh, and D.J. Pine,Nature (London)
383(1996) 239.
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