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Quantum bouncer with quadratic dissipation
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The energy loss due to a quadratic velocity-dependent force on a quantum particle bouncing off a perfectly reflecting surface is obtained for
a full cycle of motion. We approach this problem by means of a new, effective, phenomenological Hamiltonian which corresponds to the
actual energy of the system and obtain the correction to the eigenvalues of the energy in first-order quantum perturbation theory for the case
of weak dissipation.

Keywords: Quantum bouncer; dissipative systems; canonical quantization.

La pérdida de energı́a debido a una fuerza proporcional al cuadrado de la velocidad se obtiene para el movimiento de una partı́cula en el
campo gravitacional uniforme. Se propone un nuevo Hamiltoniano efectivo para obtener las correciones a los eigenvalores, utilizando la
teoŕıa de perturbaciones para el caso de disipación d́ebil.

Descriptores:Rebotador cúantico; sistemas disipativos; cuantización cańonica.
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1. Introduction

Recently there has been a lot of attention paid to the ex-
perimental production of gravitationally bound quantum sys-
tems [1, 2]. Quantum states in the Earth’s gravitational field
have been observed with ultra-cold neutrons falling under
gravity [3]. The toy model known as thequantum bouncer,
which describes a quantum particle bouncing in a linear grav-
itational field, has been used to compare the theoretical cal-
culation with the experimental results. In all these exper-
iments,energy losses due to different processes have been
found [4]. One way of simulating this energy loss is by
adding an additional external velocity-dependent force act-
ing on the conservative system and transforming it into a
non-conservative system. The resulting classical dissipa-
tive system thus contains this phenomenological velocity-
dependent force. The classical Hamiltonian is used as a basis
for the so-called canonical quantization by obtaining the cor-
responding Hamiltonian operator. For dissipative systems,
i.e. systems where mechanical energy is lost due to fric-
tional forces, difficulties arise in defining a Hamiltonian func-
tion [5–7]. Although formal Lagrangian functions yielding
the correct equations of motion can always be given for one-
dimensional, non-conservative systems, one can not always
find the corresponding Hamiltonian; and even if the corre-
sponding Hamiltonian exists, we find problems in its physical
interpretation. This becomes even more obvious when these
Hamiltonians are quantized in the usual canonical way [8].

In this article we propose a new effective phenomelogical
Hamiltonian for the motion of a particle in a uniform gravita-
tional field and under a frictional force which is proportional
to the square of the velocity. This new Hamiltonian permits
a physical interpretation in terms of the energy of the system.
Using this Hamiltonian, we obtain the energy loss for a full

cycle of motion for the quantum bouncer with quadratic dis-
sipation by means of canonical quantization and perturbation
theory.

2. Model Hamiltonian

Suppose we drop a particle of massm from a distanced
above the surface of the Earth, and we consider that during
its motion there is a frictional force which is proportional to
the square of the particle’s velocity. The equation of motion
which describes the dynamics of the particle is given by

m
dv

dt
= −mg − γv|v| =

{ −mg − γv2 if v > 0
−mg + γv2 if v < 0,

(1)

whereγ > 0 is the dissipation parameter. One can verify that
the Hamiltonian for Eq. (1) is given by

H↓ =
p2

2m
e2γx/m − m2g

2γ
[e−2γx/m − 1], (2)

H↑ =
p2

2m
e−2γx/m +

m2g

2γ
[e2γx/m − 1], (3)

whereH↓ and H↑ represent the Hamiltonian for the case
whenv < 0 andv > 0, respectively. The canonical quantiza-
tion of H↓ andH↑ has been obtained and studied by several
authors [9–12], but a number of well-known difficulties arise
when one attempts to interpret the results using this type of
Hamiltonian in the quantum regime [13,14]. In particular we
see thatH↓ andH↑ can be obtained from each other by mak-
ing the substitutionγ → −γ; due to this symmetry, and for
the case of weak dissipation, the correction to the eigenvalues
for a full cycle cancels out for odd powers in the dissipation
parameter, and only even powers of the dissipation parameter
remain in using quantum perturbation theory.
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The main goal of this article is to find a new Hamiltonian
that describes Eq. (1) and to calculate the change in energy
for a full cycle for the case of weak dissipation using quan-
tum perturbation theory. To do so, we are going to use the fact
that the dynamics of Eq. (1) can be completely determined in
the classical sense and allows us to express the square of the
velocity in terms of the particle’s position

v2
↓(x) =

mg(1− e−2γ(d−x)/m)
γ

, (4)

v2
↑(x) =

mg(2e−2γx/m − e−2γ(d+x)/m − 1)
γ

, (5)

where we have taken into account thatv(d) = 0 and that,
the particle undergoes a perfectly elastic collision when it
bounces on the surface of the Earth. One can easily see that
when the dissipation parameter goes to zero,i.e. γ → 0, we
obtain the usual kinematic expressions for the square of the
velocity for a particle in a uniform gravitational field.

Plugging Eq. (4) and Eq. (5) into Eq. (1) we have

m
dv↑
dt

= −mg(2e−2γx/m − e−2γ(d+x)/m), (6)

m
dv↓
dt

= −mge−2γ(d−x)/m. (7)

In this way we can construct the Hamiltonian for Eq. (6) and
Eq. (7) in the usual way given by

H↓ =
p2

2m
+

m2g

2γ
e−2γd/m

(
e2γx/m − 1

)
, (8)

H↑ =
p2

2m
+

m2g

2γ

(
e−2γd/m − 2

)(
e−2γx/m − 1

)
, (9)

where we have taken into account that one must obtain the
usual Hamiltonian when the dissipation parameter goes to
zero.

Using Eq. (8) and Eq. (9), we can write an effective
Hamiltonian in the following form:

Heff =
H↑ +H↓

2
+

p

|p|
(H↑ −H↓

2

)
. (10)

3. Canonical Quantization

To see the effects of dissipation in the eigenvalues of the
quantum bouncer we are going to consider the case when we
have weak dissipation such thatH↑ ≈ H↓; for this case we
can neglect the second term of Eq. (10) since it cancels dur-
ing a full cycle. Expanding Eq. (8) and Eq. (9) in a Taylor
series in the following way

H↓ =
p2

2m
+ A

(
x +

2γ

m
x2 + · · ·

)
, (11)

H↑ =
p2

2m
−B

(
−x +

2γ

m
x2 − · · ·

)
, (12)

whereA = mge−2γd/m andB = mg(2 − e−2γd/m), and
keeping only the first two terms,we end up with the follow-
ing effective Hamiltonian:

Heff =
p2

2m
+

(
A + B

2

)
x +

(
A−B

2

)(
2γx2

m

)
. (13)

Treating the last term in Eq. (13) as a perturbation we can es-
timate the correction to the energy due to dissipation by using
quantum perturbation theory where the unperturbed Hamilto-
nian is given by

Ĥ0 =
p̂2

2m
+ mgx̂. (14)

It is very well known that the normalized eigenfunctions for
Eq. (14) are given by Airy functions and its first derivative
evaluated at itsnth zero [15]:

ψ(0)
n (z) =

Ai(z − zn)
|Ai′(−zn)| , (15)

wherez = x/`g andzn = (E(0)
n /mg`g) are defined in terms

of thegravitational length̀ g = (~2/2m2g)1/3, respectively.
Using the above results, we can determine the correction to
the eigenvalues of the energy as

δE(1)
n = −2γg`2g(1− e−2γd/m)〈ψ(0)

n |z2|ψ(0)
n 〉, (16)

and using the fact that [15]

〈ψ(0)
n |z2|ψ(0)

n 〉 =
8
15

z2
n, (17)

we have the following approximate expression for the energy
levels of the quantum bouncer with quadratic dissipation

En = mg`gzn − 16
15

γg`2g(1− e−2γd/m)z2
n, (18)

whereδE
(1)
n < 0, as one would expect from the dissipation

in the system. In Fig. 1 we show the graph for the energy loss
for a neutron in a gravitational field. From the figure one can
see that Eq. (18) is only valid for the first quantum states.

FIGURE 1. The graph shows the energy loss of a neutron
in a gravitational field wherè g=5.57µm, m=1.674×10−27kg,
γ ∼ 10−23kg/m and d=3mm. Whenγ = 0 we have for
the two lowest quantum statesE(0)

n /mg = (13.7, 24.0)µm and
zn = (2.34, 4.09), respectively.
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4. Conclusions

We have shown that for the particle in a uniform gravitational
field and with a dissipative force proportional tov2 we can
construct an effective Hamiltonian which corresponds to the

energy of the system. We found that it is possible to obtain
the energy loss during a full cycle of motion for the quan-
tum bouncer with quadratic dissipation by means of canoni-
cal quantization and quantum perturbation theory.
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