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In this article, the exact-special solutions of the nonlinear dispersion Drinfel'd-Sokolov (stiafithy 7)) system are analyzed. We use the

ansatz approach and the He’s variational principle for the mentioned equation. The general formulae for the compactons, solitary patterns,
solitons and periodic solutions are acquired. These types of solutions are useful and attractive for clarifying some types of nonlinear physical
phenomena. These two methods will be used to carry out the integration.
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1. Introduction We firstly apply the ansatz method [16-20] to obtain the
) o . ) exact special solutions to the(m, n) system. Then, we use

Nonlinear partial differential equations (NPDE) have beenhe He's variational approach [21] to obtain unknown travel-

analyzed by different type of mathematical approach, amonghg wave solution to the subsidiaries of them, n) system.

tering method, the Hirota method, the Backlund transforyhose exist in the literature.

mation, the tanh method, the sine-cosine method, the exp-
function method, the variational iteration method, the ho-
mogenous balance method and among others [1-41].
In this article, theD (m, n) system [1] are considered: ~ 2- Ansatz method

up + (") =0, We start by considering the solution of the equation
v+ a(v")ppe + bugv + cuv, = 0. Q) )
. d
Form = 2 andn = 1, the system (1) is called “The (clw) = ag — byw?, (4)
normal Drinfel'd-Sokolov system” o
ug + (V?), =0, whereag # 0 andby, # 0 are constants. Wheb, > 0,
Vi 4 Qg + bty + cuvy — 0, @ Eq. (4) admits two solutions as:
wherea, b, ¢ are unchanged. The system (2) is considered B ay . . —
as an example of a system of nonlinear equations possessing wy =+ bo sin[v/bo(z + A},
Lax pairs of a special form [13]. Wang obtained its Hamil-
tonian, recursion, symplectric and cosymplectric operators Wy = =+ /%0 COS[\/%(Z + A)], (5)
and roots of its symmetries and scaling symmetry of the sys- bo

tem (2) [14]. . : .
Forn = 1 the system (1) changes to “The generalizedWhereA is an arbitrary unchanged. # < 0, recognizing

solutions of the form as:
Ut —+ (Vm)z = 0,

Vi + QUppy + by + cuv, = 0. 3) wy) = £ /% sinh[v/bo(z + A)],
0
Wazwaz obtained some exact traveling wave solutions of
the D(m, n) system with compact and noncompact structures we = +i % cosh[v/bo(z + A)], i*=—-1. (6)

by applying the tanh method and the sine-cosine method [15]. 0
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Secondly, we make a consideration of the solutions of thend

equation of the form 1¢ o m
_— _ 2 ; _ "
o\ ? 2 2 u(x,t)—/\ { S0k (x—=At)*+cs(x )\t)+04} +ec1, (17)
<dz> = w{eo + dow’) (D \wherecs ande, are arbitrary constants.

Case 2 If we takem = n — 1 andc = \/¢; in Eq. (14), the
wherec, # 0 anddy # 0 are constants. iy < 0, EqQ. (7)  following traveling wave solutions are obtained
confesses two solutions

Wy = mre e
ws = %, /;—0 sec[v/—co(2)],  ak?A(m+ 1) ak2
0
coA(m + 1)
Q, t = _—
==, /b—s csc[v/—co(2)]. (8) v(z,1) { bm + ¢
If ¢o > 0in Eq. (7), then the equation offers two solutions of bm +c
the form + ¢35 sin k‘ m(ﬁv — )\t)
—+ /2 sech[v/—co(z 1 b w
V do 1)/ bmte
+ ¢ cos (k YR (x — At) (18)
h[v/—co 9
csc V—co(z 9) and
2.1. Nonlinear DispersionD(m,n) System 1) eaA(m+1)
u(@,t) = A bm +c
We assume that the traveling wave solution has the form
u(zx,t) = u(§) with wave variabl€ = k(x— At), (k, A # 0). b+ c
. : ) g I v
Then, we get the following ordinary differential equation: + ¢5 sin k: 7@)\(771 ) (z —At)
—kx + k(™) =0, (10) m
/ 3 " / / 1 bm + ¢ PN
—kX 4 ak” (V)" + bku'v + cku’ = 0. (11) + ¢ cos k m(:c ~ %) ta

We get (19)

1 wherecs andcg arbitrary constants. In view of (18) and (19),
u= " e, (12)  we clearly see that these solutions exist provided that

(bm + ¢)/(aA(m + 1)) > 0.
by (11), where, is arbitrary constant. Substituting (12) into

(11) we obtain (o.1) = { coX(m + 1)
Tl bmte
— N Fak? (™)™ +b (%V’"ilul) v
bm+c
1 T (e
+c (Aum + C1> v =0. (13) - crsinh (k: a)\(m +1) (@ At))
By integrating Eq. (13), we get + e cosh bm + ¢ (D) " (20)
b+ ¢ s k Cax(m+1)
(cc1 — Ny + ak*(v™) + ———— ™1 = (14)
)\(m + 1) and
wherec; is integration constant.
Case 1 Whenc = —bm = /¢y, the nonlinear ODE (14) (z,t) 1{ _eAm+l)
becomes A bm + ¢
ak?(v™)" —cy = 0. (15) bm + ¢ _
+c7sin k: A+ 1) (x — At)
Therefore, we get the rational solution of Eq. (15),
1 bm + ¢
S h —(x — 21
v(z,t) = {2222 (2 — M)? + es(x — At) + C4} ., (16) +cg cos (k T ax(m+ 1) (@ At)) } to (21)
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wherec; andcg arbitrary constants. In view of (20) and (21), Case 4.If m = n — 1, we know that Eq. (25) becomes
we clearly see that these solutions exist provided that

(bm + ¢)/(aX(m + 1)) < 0. dw\®  (n—1)?
Case 3.c+bm # 0, cc; — A # 0 and specially:, = 0. d¢ ) T 4dak?n?

Let

dLn _. d2yn _ Zﬁ (22) ~ [271(661 B )‘) _ 2(b(n; i) + C) w2 , (28)
dé TTdeR o n+1 n
Substituting (22) into (14) leads to the following equationwheren #1anda, k,n,\ # 0.
12 n_sdy 2 _ —2n(cey — A) If we takeanA(c + bn — b) > 0, then we acquire from
a ) = n+ 1 Egs. (5) and (28)
2n(bm + ¢) 2
— m. (23 2n* A\ — ccq) )
)\(m—|—1)(m+n—|—1)y (23) v(z,t) = {(nJrl)((bnlerc) sin®
Letting v = w?/™, we have L
2 2 2, n—1 [bn—b+c 4 n
V:wmidvzawm dw, (24) [2|kn| Nan €+ A) ;
which changes Eq. (23) to 2Mm2(\ — cer)
2 u(z,t) = ! sin?
dak’n? ( (n—m—1) dw) _ —2n(cc; — A) (n+1)(bn —b+c)
m? a ) a1 n—1 [n—b+c
[2 ; (A e (29)
2n(bm + c) 9 | kn | an

TAm+)mtnt1) (25)

If we taken = 2m + 1 in Eqg. (25), we get the algebraic
traveling wave solution of the form: { 2n2\(A — cey)

n+1)(bn—b+c)

and

COS2

1

u(€) = {;@4 _ B2 2B%C - B2CQ>} " (29)

n—1 b +c ot
and [2|kn| an €+ A) } ;
u€) =g (A B2 —2B%C — B*C*) 4 ¢, (27) 203 — cer)
— 2
where u(@,t) = (n +1)(bn —b+c) o8

—(ccr — A)m?

A =
and 2| kn|V Aan
B m?2(bm + c)
2ak?A(m + 1)(3m +2)(2m + 1) Theorem 1 The D(m,n) system has solutions in Eq. (28)
| described as follows:
1. WhenanA(c + bn — b) > 0,
2n2\(\ — ccp) o m—=1 [on—b+c e
A <z
Y= {(n+1)(bn—n+c)cos 2| kn | Aan (€+4) V(@) 13, (31)
0, Otherwise
is a solitary wave solution with compact support.
2. WhenanA(c+ bn —b) > 0,
2n2A(\ — ccp) o | n—=1 Jon—b+c n
A <| Vb <
V= {(n+1)(bn—n—|—c) o8 2 kn| Aan (€+4) > 0SIVh(©) =, (32)
0, Otherwise
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is a compacton solution for Eqg. (1) and

Vb =

3. Equation (25) can be written as following
(&) ==y

m?2(bm + c) 5
— w’ b
dak?nA(m +1)(m+n+1)

n—1 [bm—b+c
2| kn | Aan

(33)
If n =1in Eq. (33) that yields as
dw\ o) mmPeer = N)
(cl£> = ){ 108

—m?2(bm + c)
2ak?N(m + 1)(m + 2) “’2}' (34)

+

Whena(ce; — M) <0,

v(@,t) = <_ ey —

l m ccp — A
>< [

2| k| a

2(bm + ¢)
A)(m+1)(m

2(bm + ¢)
A)(m 4+ 1)(m

csch?

+2)

©)

csch™2

u(@,t) =  A2(cey — +2)

ccy — A

[ﬂ”; —=(8)

+ c1, (35)

which is a singular soliton solution for the(m, n) equation

for
am [(cc; — A)
2k a

4. Whena(ce; — ) > 0andm < 0,

) 2(bm + ¢) soc?
v, ) = { Neer — N (m+ D)(m+2)

_1
} m
)

2(bm + ¢) 9
N(m+ 1)(m+2) ¢

m ccy — A
[2,“ —2(¢)

u(xz,t) = —

A2(cer —

Cle>\

x [2]{;' a ()

is a traveling wave solution for thB(m, n) equation for

+ c1, (36)

mm [(cc; — N)

<V .

Remark 1. If (bn—b—c)/(Aan) < 0, it follows
from (6) and (28) that

202X\ — cc1)

v(z,t) = { T Dn—b+0) sinh?

y n—1 _bn—b+c
2| nk| Aan

€+ 4)

1
}nl
)

+ C1, (37)

2n2(\ — ceq)

sinh?
(n+1)(bn—-b+c¢)

u(z,t) = —

o n—1 _bn—b+c
2| nk | Aan

€+ A4)

and
2n2 A\ — ccy) cosh?
(n+1(n—->b+c)
n—1 b +c m
[2|nk| an A } ’
u(z,t) = (A = cer) cosh?

(n+1 (bn—b+c¢)

n—1 —b+ec
[2|nk’|\/ E+4)

+ C1, (38)

Theorem 2 The D(m,n) equation with whemn = n equa-
tion has the following solutions:

1. When(c+bn—b) < 0,anA > 0, (A—ccy)(n+1) <0

andn # 1

202X\ — ccy)

v(z,t) = { T )n—b+0) sinh?

o n—1 _bn—b+c
2| nk | Aan

€+ 4)

}n—l
)

+ C1, (39)

2n2(\ — ceq)

. h2
mtrDbn—bte

u(xz,t) = —

o n—1 7bn7b+c
2| nk | Aan

€+ 4)

is a solitary solution of Eq. (1).

2. When(c+bn—>) < 0,anA <0, (A—ce1)(n+1) >0
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andn # 1 Eq. (1) are obtained as:
1 2 —
v(o,t) = { _ Am 4 Dm +2)(eer =4 o0
2n2A(\ — ccy) L2 bm +c
(n+1) bn—b+)COS 1
m ccp — A "
- gV @] ¢
l n—1 b + c(5 +A) } | & | a
2 | nk| )\an ’ 1 9 _
u(z,t) = — (m £ 1)(m + 2){ees = A) csc?
n2(\ —ccy) L2 bm +c
u(z,t) = (n oY ——y cosh 5
_ m cc1 —
x lm 1@ O] +a (43)
n—1 | b +c
l2|nk| f"‘A +Cl, (40) an
o) _{ A(m + 1)( m—|—2)(ccl—)\)seC2
is a solitary solution of Eq. (1). If we take < 1, then bm +c
Eq. (40) is a bounded solution. a1
_ _ m  [eep — A "
3. m = n < 1 solutions (39) and (40) turns to solitary |27 . (©) :
wave solutions
ulw,p) = - OEDOEC D) o
m C
(n+Dn—-b+c) o
v(z,t) = csc DY
{ 2n2A(\ = car) lQ STV e @] +e (44)
n—1 b"_bJFC(g) - Case 6.a(cc; — \) < 0 andm > 0
2| nk | Aan ’ Therefore, by considering (9) and (34), solitary pattern
sot) = (n+1)(bn— b+ ¢) e Zg:d bell-shaped solitary wave solutions of (1) are obtained
T 2m2(N —cop)
A(m 4+ 1D(m+2)(cey — A
y n—1 _bn—b—i—c(g) n 1) y(x,t):{— ( )(berc)( ! )cosh2
2| nk | Aan b
m ccy — A m
X | o () } :
2|k
and 121k a ]
u(z,t) = — (m + 1)(m + 2)(cr =) cosh?
( e bt o) bm + ¢
n—+ n — c r 7
v(z,t) = { 2 sec? m ccy — A
n2\(\ — cc e L 45
( 1) X 2k a @ +a (45)
n—1 n—b+c r
- (5) 3 and
2| nk | Aan \ ) 5 \
v(z,t) =19 — (m + 1)(om £ 2){ecr - )sech2
u(z,t) = (ntHbn—b+c) sec? bm +c
’ 2n2(\ — ceq) N
—\ m
n—1 bn—-b+c le “ (5)1} ;
X [2 | nk | - )\an (5) +Cl. (42) 2 | k | a
u(z,t) = — (m & 1)(m + 2)(cc1 = A) ch?
bm + ¢
Case 5. —A)>0andm >0 —
a(cey ) m " [2 mk cey /\(5) te (46)
Thus, by using (8) and (34), the periodic solutions of %] @
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Case 7.a(cc; — A) < 0,m < 0andm # 0.

Using the solutions of (43) and (44), gives the following

compacton solutions as:

bm +c )
v, ) = { S AmA+1)(m+2)(cer — A) cos”

9 [2”;' o A<5>] } ,

u(x,t) = b + ¢ cos 2
N2 (m A+ 1) (m A+ 2)(cer — N)

3=

ccy — A

[2”1,“ —=(8)

m,/@ﬁ—A)'J
2k a -2

andu = 0, otherwise.

+ c1, 47)

for

v(z,t

- { _MmtD(m+2(eer =)
bm+ ¢

m ccy — A B
X[2|k| a (5)]} )

u(z,t) = (m + 1)(7;1m++2)c(001 — sin 2

ccy — A

lemm ()

andu = 0, otherwise.
Case 8.a(ccy — A) > 0, m < 0andm # 1.

Using cosh(z) = cos(iz) andsinh(z) = — sin(iz) we
have the following solitary pattern solutions of Eq. (1):

+ C1, (48)

for

0<

bm +c
vt = { - AmA D (m+2)(cer — A

m ccp — A) ~w

bm+c
A2(m~+1)(m+2)(ccr — A)

cosh?

cosh™2

u(z,t) =

ccr — A

<=

+ C1, (49)

and

V(1) = { - Amrn s Blees 22 g

X[m G (50)

2 k| a

Remark 2. Whenm = n < 1, the obtained solution (42)
agrees with the outcomes (2.13a), (2.13b) in [36] and (25) in
[37]. The solution (42) changes to the compacton solution
(2.12a) and the periodic solution (2.12b) in [36,37].

If m > 0, the obtained solution (46) is consented with
the outcomes (3.18a) and (3.18b) described in [36] and (26)
in [37]. The solution (46) changes to the solitary pattern so-
lution (3.17a) and solitary wave solution (3.17b) in [36].

Remark 3. If a(cc; — A) < 0, the obtained solution (35)
agrees with the outcomes (3.9a) and (3.9b) in [36] and (32)
in [37]. The solution (35) changes to the singular solitary
wave solution.

Remark 4. If we take (¢ + bn — b) < 0, anA > 0,

(A —ce1)(n+ 1) < 0then the obtained solution (39) similar
to the solitary pattern solutions (3.7a) and (3.7b) in [36] and
(46) in [37].

3. Variational principle

In this Section, He’s variational principle will be applied to
the system (1). This technique was first proposed by He [21]
and it is popularly known as He's semi-inverse variational
principle. Some years back, it was applied mainly to ex-
tract soliton solutions of nonlinear PDEs and systems by
many authors [16-24]. Biswas and co-workers [17-20] ob-
tained optical solitons and soliton solutions with higher or-
der dispersion by applying the He’s variational principle. Xu
and Zhang's [25] used a variational principle to construct
catalytic reactions in short monoliths by He's semi-inverse
approach. He’s variational method was used to the effec-
tive nonlinear oscillators with high nonlinearity by Liu [26].
Zhenget al. [27] established a class of generalized varia-
tional principles for the initial-boundary value problem of mi-
cromorphic magneto electrodynamics by He's semi-inverse
technique. In order to seek traveling wave solutions of the
system (1). We consider

bm + c m—+1 _
A(m+1) B

(cer — Ny + ak*(v™)" + ca.  (B1)

Rev. Mex. Fis63(2017) 378-385
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Letv" =V
[ [nees =) K
n{ccy — ntl a N2
J=[| | ——Z2v5 - —(v
/ n+1 2( )
n(bm + C) m+n+1

_|_

NmaDmensn’ % (52)

the 1-soliton solution ansatz, given by

V(€) = {psech?(¢€)}~, (53)

is substituted into (51). Here, in (53), the parameteed
q represent the amplitude and inverse width of the soliton,

respectively.

J = / {m (psechz[qf] + 2popg®(—2 + cosh[24€))

x sech®[g¢] + pa(psech®(gg]) ™ }de, (54)

wherep; = cc; — \, po = ak? and

_ bm + ¢

Ps = A(m +1)°
From the above equation it is obtained as
15417 (¢ + bm)pltm
(IT+m)(24+m)2\

x F[24m,2(24+m),3 +m,—1]

8
J = 1;}{2pq2(—ccl +A)—

154" ak?p"
(14 n)?

whereF' is Gauss’ hypergeometric function defined as
I'(v) i [(a+n)I'(B+n) 2"
F@rB) &=  Th+n) nl
and R¢(2 + m)q] > 0, Re(1 + n)q] > 0, Req] > 0.
Making J stationary with respect tpandq results in

dJ 8

= 154(l+m)
dp 15gA (1 +m)(2 + m)(1 + n)

x (¢4 bm)(1 + n)pttm™

F[1+n,2(1+n),2+n, 1]}, (55)

Fla,B,7,2] = (56)

x F[24+m,2(2+m),3 +m,—1]
+ A2+ 3m +m?)(4(1 + n)pg?(ce; — N)
—154"ak*p" F[14n,2(14n),2+n, —1]) =0, (57)

dJ 8 1544™ (¢ 4 bm)plt™
2 op(—cer + 2
dp 15p{ pi=ce+ N+ G E Tz
X F[24+m,2(2+m),3+m,—1]
154" ak?p™
———F|1 2(1 2 —1]p,=0. (58

Solving Egs. (57) and (58) fan = n = 2 simultane-
ously, we get
35ak? )\ k ap

p:9(2b+c)’ 1= 3\ N —cer” (59)

Therefore, by substituting and ¢ in (52) we have the
following a new solitary wave solution for the system (1) as:

2
v(z,t) = {35&1“\ sech?

92b+ o)
x (’; k(e - W> }
w(a t) = m sech™?
< <’§ ke - At)]) fe. (60)

So, the solitary wave solution (60) will exist for
ap(A — ccp) > 0.

4. Results and Discussions

In this article, we investigated the nonlinear dispersion
D(m,n) system and obtained some traveling wave solutions
by applying the ansatz technique and the He’s variational
principle. Several forms of solutions including topological,
non-topological, compacton, solitary pattern, singular soli-
ton, algebraic and periodic wave solutions were acquired.
The approaches can be used to a lot of other nonlinear dif-
ferential equations and coupled systems. Some new obtained
exact solutions were previously unknown by other methods.
We proved the existence of these solutions for a generalized
form of the D(m,n) system under specific conditions. In
general, the outcome expose that the ansatz approach and the
He’s variational principle are important mathematical tech-
niques for solving nonlinear partial differential equations in
terms of correctness and ability to avoid errors.
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