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Deviations from the universality of slepton masses in the MSSM
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In this paper we propose an ansatz that applies to the slepton mass matrices. In our approach, these matrices contain a dominant sector that
can be diagonalized exactly. We study the numerical results for the slepton mass eigenstates, looking for deviations from universality, which
is usually assumed when one evaluates the production of sleptons at future colliders.
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En este articulo proponemos un ansatz para la matriz de masa de fermiones-s aplicándolo a los leptones-s. Dentro de esta aproximación
las matrices contienen un sector dominante, el cual es diagonalizable exactamente. Se hace un análisis nuḿerico de los resultados para los
eigenestados de masa de los leptones-s, buscando las desviaciones de la universalidad de las masas, dicha consideración sobre las masas es
utilizada generalmente al evaluar la producción de leptones-s en los futuros colisionadores.
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1. Introduction

Although the MSSM is the leading candidate for new physics
beyond the Standard Model, and sensibly explains elec-
troweak symmetry breaking by stabilizing the energy scale,
it still leaves unanswered the open problems of the SM,
among them the flavor problem [1]. Furthermore, SUSY
brings a new flavor problem which is closely related to the
mass generation mechanism of the superpartners, namely,
that a generic sfermion mass could lead to unacceptably large
FCNC, which would exclude the model [2,3]. Several condi-
tions or scenarios have been proposed to solve this problem
which reduce the number of free parameters and safely fit the
experimental restrictions. The solutions handle in the litera-
ture include [4]:

i) degeneration, where different sfermion families have
the same mass;

ii) proportionality, where the trilinear A-terms are propor-
tional to the Yukawa couplings (SUGRA) [5];

iii) decoupling, where the superpartners are too heavy to
affect the low energy physics (Split SUSY, focus point
SUSY, inverted hierarchy) [6];

iv) alignment, in which the same physics that explains the
fermion mass spectra and mixing angles would also ex-
plain the pattern of sfermion mass spectra [7].

In the MSSM, the particle mass spectra depend on the
SUSY breaking mechanism. The parametrization of SUSY
breaking for MSSM is calledSoft SUSY Breaking, SSB. The
scalar fields are grouped in a supermultiplet together with the
fermion fields in such a way that the scalar masses are linked
to the SSB energy scalei and the mass degeneracy could be
broken by the SSB mechanism.

In this paper we are going to study the slepton mass ma-
trices. Our goal is to determine the slepton mass eigenvalues,
which are the ones that hopefully will be measured at coming
(LHC) and future colliders (ILC). For this, we shall propose
a hierarchy within the mass matrices which will include a
sector that will have the property of being exactly diagonal-
izable. This sector will mostly determine the slepton masses.
We also include a sector with small off-diagonal entries that
will lead to lepton flavor violation (LFV), but we leave this
last analysis for future work.

The organization of this paper is as follows. In the next
section we present the terms that contribute to the slepton
mass matrix in the MSSM. Section 3 explicitly shows the
ansatz proposed for the trilinear terms that contribute to this
mass matrix as two contribution orders mentioned above, ob-
taining the expressions for the slepton masses. We present
the numerical results for the parameter space in Sec. 4. And
finally, in Sec. 5, we summarize our conclusions.

2. S-lepton Mass Matrix

The SUSY invariant terms, which contribute to the diago-
nal elements of the mass matrix, come from the auxiliary
fields, namely theF - and D-terms. However, the mass ma-
trix also includes terms that come from the Soft SUSY La-
grangian [9, 10]. Within the MSSM, this soft Lagrangian in-
cludes the following terms:

Lsoft = Lmass
sfermion + Lmass

bino + Lmass
gaugino + Lmass

gluino

+Lmass
Higgsino + LHf̃if̃j

(1)

In order to establish the free parameters of the model
coming from this Lagrangian, we write down the form of the
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slepton masses and the Higgs-slepton-slepton couplings, the
first and last term of Eq. (1), which are given as

Ll̃
soft =−m2

Ẽ,ij
˜̄Ei ˜̄Ej† −m2

L̃,ij
L̃i†L̃j

− (Ae,ij
˜̄EiL̃jH1 + h.c), (2)

where thetrilinear terms, or A-terms, are the coefficient of
the scalar Higgs-sfermions couplings.

In principle, any scalar with the same quantum numbers
could mix through the soft SUSY parameters [11]. This gen-
eral mixing includes the parity superpartners fermionic la-
bels, and leads us to a sfermion mass matrix given as a square
6× 6 matrix, which can be written as a block matrix as

M̃2
f̃

=
(

M2
LL M2

LR

M2†
LR M2

RR

)
(3)

where

M2
LL = m2

L̃
+ M

(0)2
l +

1
2

cos 2β(2m2
W −m2

Z)I3×3, (4)

M2
RR = M2

Ẽ
+ M

(0)2
l − cos 2β sin2 θW m2

Z I3×3, (5)

M2
LR =

Alv cos β√
2

−M
(0)
l µ tanβ, (6)

whereM
(0)
l is the lepton mass matrix.

The lepton-flavor conservation is violated by the non-
vanishing off-diagonal elements of each matrix, and the size
of such elements is strongly constrained from experiments.
In the SUSY Standard Model based on supergravity, it is as-
sumed that the mass matricesm2

Ẽ
andm2

L̃
are proportional

to the unit matrix, whileAe,ij is proportional to the Yukawa
matrix ye,ij . With these soft terms, the lepton-flavor num-
ber is conserved exactly [12]. However, in general soft-
breaking schemes, we expect that some degree of flavor vi-
olation would be generated. A particular proposal for this
pattern is presented next.

3. An ansatz for the mass matrix

The trilinear terms come directly from the Soft SUSY break-
ing terms, and contribute toward increasing the superparticle
masses. We analyze the consequences for sfermion masses
by assuming that such terms would acquire a specific flavor
structure, which is represented by sometextures. Textures
represent ana priori assumption [13,14], in this case, for the
mixtures between sfermion families. Such a structure implies
that we can classify the matrix elements into three groups,
those that contribute at leading order, those that could gener-
ate appreciable corrections and those that could be discarded,
obtaining a hierarchal texture form.

We propose an ansatz for the trilinear A-terms in the fla-
vor basis, and study its effects on the physical states. We
work on a scheme that performs exact diagonalization. First,
we parameterize off-diagonal terms, assuming a flavor asym-
metry inherited from the fermionic SM sector. In general,

there is no reason to expect that the sfermion mass states
are exactly degenerate, and there is no solid theoretical basis
to consider such patterns, although they are phenomenologi-
cally viable [8,15].

We assume, as in supergravity models, the condition of
degeneracy on pure Left and pure Right contributions:

M2
LL ' M2

RR ' m̃2
0I3×3, (7)

Our ansatz for the A-terms is built up using texture forms
and hierarchal structure. The parametrization is obtained by
assuming that the mixing between third and second families
is greater than the mixing with the first family. Furthermore,
it has been observed that current data mainly suppress the
FCNCs associated with the first two slepton families, but al-
low considerable mixing between the second and third slep-
ton families [1].

Thus, our proposal includes dominant terms that mix the
second and third families, as follows:

ALO = A′l =




0 0 0
0 w z
0 y 1


 A0, (8)

so that mixtures with the first family are treated as correc-
tions, and are given as:

δAl =




e s r
s 0 0
r 0 0


 A0 =




δAe δAs δAr

δAs 0 0
δAr 0 0


 (9)

In the case ofw = 0, we reproduce the ansatz given in
Ref. 1. The dominant terms give a4 × 4 decoupled block
mass matrix, with respect to the basisẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R,
as

M̃2
l̃

=




a 0 0 0 0 0
0 a 0 0 0 0
0 0 a X2 0 Az

0 0 X2 a Ay 0
0 0 0 Ay a X3

0 0 Az 0 X3 a




, (10)

with

X3 = (1/
√

2)A0v cos β − µmτ tan β

and

X2 = Aw − µmµ tan β.

Where µ is the SU(2)-invariant coupling of two different
Higgs superfield doublets,A0 is the trilinear coupling scale
andtanβ = v2/v1 is the ratio of the two vacuum expectation
values coming from the two neutral Higgs fields; these three
are MSSM parameters [11,16].

The correction takes the form:

δM̃2
l̃

=




0 δAe 0 δAs 0 δAr

δAe 0 δAs 0 δAr 0
0 δAs 0 0 0 0

δAs 0 0 0 0 0
0 δAr 0 0 0 0

δAr 0 0 0 0 0




. (11)

The explicit forms ofAz,y,w andδA are given in Table I.
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TABLE I. Explicit terms of the sfermion mass matrix ansatz, as-
sumingδAe as a third order element.

dominant correction

Az = 1√
2
zA0v cos β δAs = 1√

2
sA0v cos β

Ay = 1√
2
yA0v cos β δAr = 1√

2
rA0v cos β

Aw = 1√
2
wA0v cos β δAe = 0

FIGURE 1. Slepton mass dependency with respect to the parameter
ansatzw (up) andy (down) withm̃0 = A0 = µsusy = 500 GeV
andtan β = 15, consideringµsusy < 0 andµsusy > 0.

FIGURE 2. Slepton mass with respect totan β for µsusy < 0,
µsusy > 0 and withw=y=[0.02, 1], m̃0=A0=|µsusy|=500 GeV.

In order to obtain the physical slepton eigenstates, we di-
agonalize the4×4 mass sub-matrix given in (10). In order to
achieve an analytic diagonalization, we consider thatz = y.
The rotation will be performed on this part using a hermitian
matrixZl, such that

Z†l M2
l̃
Zl = M̃2

Diag, (12)

where

M2
l̃

=




m̃2
0 X2 0 Ay

X2 m̃2
0 Ay 0

0 Ay m̃2
0 X3

Ay 0 X3 m̃2
0


 . (13)

Then the rotation matrix is given by




ẽL

µ̃L

τ̃L

ẽR

µ̃R

τ̃R




=
1√
2




1 0 0 0 0 0
0 − sin ϕ

2 − cos ϕ
2 0 sin ϕ

2 cos ϕ
2

0 cos ϕ
2 − sin ϕ

2 0 − cos ϕ
2 sin ϕ

2
0 0 0 1 0 0
0 − sin ϕ

2 cos ϕ
2 0 − sin ϕ

2 cos ϕ
2

0 cos ϕ
2 sin ϕ

2 0 cos ϕ
2 sin ϕ

2







ẽ1

µ̃1

τ̃1

ẽ2

µ̃2

τ̃2




= Zl
B l̃, (14)

with

sinϕ =
2Ay√

4A2
y + (X2 −X3)

2
,

cosϕ =
(X2 −X3)√

4A2
y + (X2 −X3)

2
(15)

We obtain the following hierarchy for the sleptons:
mτ̃1 < mµ̃1 < mµ̃2 < mτ̃2 , for µ < 0, having the following
eigenvalues:

m2
µ̃1

=
1
2
(2m̃2

0 + X2 + X3 −R),

m2
µ̃2

=
1
2
(2m̃2

0 −X2 −X3 + R),

m2
τ̃1

=
1
2
(2m̃2

0 −X2 −X3 −R),

m2
τ̃2

=
1
2
(2m̃2

0 + X2 + X3 + R), (16)

with R =
√

4A2
y + (X2 −X3)

2.
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FIGURE 3. Slepton mass dependance onµsusy, with
m̃0 = A0 = 500 GeV (up). And slepton mass dependence on
A0 for µsusy < 0 andµsusy > 0, with m̃0 = |µsusy| = 500 GeV
(down). Both withtan β = 15 andy = w = 1.

4. Numerical results for slepton masses

From the expressions for the slepton masses (Eq. 16), we
shall analyze their parameter dependency. In Fig. 1 we show
the dependence ony(= x) andw. Then, in the next two fig-
ures we show the dependence of the slepton masses on the
usual MSSM parameters,µ, A0 andtan β.

We see thatX3 andX2 are given in terms ofµ andtan β,
having a strong dependency on the sign ofµ, and so we ob-
tain a hierarchy of the slepton masses given as follows:

µ < 0

mτ1 < mµ2 < (me1=me2) < mµ1 < mτ2 (17)

µ < 0

mµ1 < mτ1 < (me1=me2) < mτ2 < mµ2 (18)

We observed this on the graphs of Fig. 1, where we
run the values ofy andw independently through a range of
[0.02, 1] and set the values for the soft SUSY breaking scale
asm̃0=500 GeV, withtan β = 15. We have practically no
dependence on parametery; and forw = 0, we have degen-
eracy for the lightest slepton, up to 10 GeV for smuons with
w = ± 1; and no dependency for the heaviest sleptons. As
we mentioned above, the strongest dependency comes from
the MSSM parameter, and the deviation from universality is
manifested by the staus, and in the case ofµ < 0, giving a
difference in stau masses of∼ 40 GeV.

In Fig. 2 we verify the behavior of slepton masses with
tan β, for the ansatz parameter set asy = w = [0.02, 1], and
m̃0 = 500 GeV. We found that forµ < 0 the smuons are

nearly degenerate, while forµ > 0 the staus are the degener-
ated ones. We also observed that the parameter dependency
becomes diluted fortan β >∼ 12.

Although we have considered the SSB parameters equal
to the SUSY breaking mass scalem̃0 = |µ| = A0, this is not
necessarily true. We explore independently the possible val-
ues for the Higgsinos mass parameterµ from the soft mass
term, as is shown at the top of Fig. 3. In the same sense
we explore independently the trilinear-A coupling, the results
are shown at the bottom of the same Fig. 3. In both cases
we set the soft mass term as̃m0 = 500 GeV. We observed
again the difference in the mass hierarchy between smuons
and staus depending on theµ sign. In the trilinear coupling
dependency, we observe that the non-degeneration increases
for A0 > m̃0.

5. Conclusions

We have studied the possible non-degeneration for the slep-
ton masses, using an ansatz for the slepton mass matrix.
Specifically, consider the mixing to occur between the sec-
ond and third families, and assume that this mixing comes
solely from left-right terms. We encounter the parameter
space dependency of the masses, including both the MSSM
parameters and the proposed model parameters. This non-
degeneracy could be measured in the cases where it is about
5% of the SUSY Soft-Breaking mass scalem̃0; this percent-
age is suggested by considering the experimental uncertainty.

We observed that the strongest dependence comes from
the MSSM parameter space, while, as we expected, the pa-
rameters of the ansatz act only to accomplish this for some
non-zero terms.

A dependence on theµ sign is strongly manifested.
The mass hierarchy changes whetherµ is positive or neg-
ative, which leads us to the conclusion that if the hi-
erarchy mass spectrum is the most expected one,i.e.
mτ̃1<mµ̃1<mµ̃2<mτ̃2 then µ must be negative. Also we
observed that, for each case,

• For µ > 0, we obtain non-degeneration on smuons,
and the difference betweeñµ1 andµ̃2 could be larger
than 10% fortan β ∼> 30 and|µ|/m̃0 ∼> 2, while
we obtain approximately, stau degeneration, where
only for A0/m̃0 > 2, we reach a difference of> 3%
of them̃0.

Analyzing the ansatz parameters, we obtain an in-
creased mass difference fory = w = 1 up to2%, with
the strongest dependency being on thew parameter.

• For µ < 0, the non-degeneration is obtained for the
staus, with a difference between them of 10% or more,
for tan β ∼> 30 and|µ|/m̃0 ∼> 1.6. And we have,
practically, smuon degeneration. In this case, consider-
ing A0/m̃0 > 2 generates a difference in stau masses
of ∼ 10% of m̃0, with tan β = 15, while for the
smuons we reach only1%. For the ansatz parameters
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we also have an increase in mass difference up to2%
for y = w = 1.

For tan β we conclude that, if degenerate masses are
measured, then thetan β value should be around10, while
in the other case, non-degeneration is manifested either for
smalltan β (less than∼ 5) or for a large value.

The mass difference found here could be tasted possibly
at LHC, with some difficulties, but certainly at ILC.
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