INVESTIGACION REVISTA MEXICANA DE FiSICA 54 (1) 35-41 FEBRERO 2008

Diffraction of hermite-gaussian beams by Ronchi and aperiodic rulings
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In this paper, the diffraction of beams by Ronchi rulings is considered. The theory of diffraction is based on the Rayleigh-Sommerfeld integral
equation with Dirichlet conditions. The diffraction of Gaussian and Hermite-Gaussian beams is studied numerically. The transmitted power
and the normally diffracted energy are analyzed as a function of the spot size. The diffraction patterns obtained at maximum and minimum
transmitted power are also deal with. We show that the two methods to determine the Gaussian spot size with Ronchi rulings which were
experimentally compared in a previous papeey. Mex. k5. 53 (2007) 133] cannot be extended to the case of Hermite-Gaussian beams.
Finally, for aperiodic rulings we propose a method for obtaining the Gaussian spot size by means of the normally diffracted energy.
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En este artulo se estudia la difradzn de haces por redes de difraotide Ronchi. La teda de la difracdn utilizada esta basada en la
ecuacbn integral de Rayleigh-Sommerfeld con condiciones de Dirichlet. La difsacté haces tipo Gauss y Hermite-Gauss es estudiada
numéricamente. La potencia transmitida y la enemjfractada normalmente a la pantalla son estudiadas. Mostramos que loétddssn
para determinar el ancho de un haz tipo Gauss, los cuales fueron considerados &ulanpeeivio Rev. Mex. k5. 53 (2007) 133], no
pueden extenderse al caso de haces Hermite-Gauss. Finalmente, utilizando una red dendifoageibdica se propone un&wodo para
obtener el ancho de un haz de Gauss por medio de laiardfgictada normalmente.

Descriptores: Difraccion; redes de difracon.

PACS: 42.25.Fx; 42.10.H.C

1. Introduction with the nodes of the desired mode[10]. In Ref. 9 it was
demonstrated that it is possible to generate two-dimensional
The methods for calculation of diameters of Gaussian beamsermite-Gaussian modes up to the TEM mode. In pass-
at the present time have a wide range of applications[1]. Thigng, we mention that these beams have been considered in
paper can be considered to be the continuation of a previouspg|ation to some other diffraction problems[11-14].
published article where two methoc_js f(_)r Gaussian spot Sizé |n this paper two diffractional methods to determine the
measurement by means of Ronchi rulings were studied[1heam diameters of Gaussian and Hermite-Gaussian beams by
The reader is referred to Ref. 1 for a more complete list ofj,eans of Ronchi rulings are considered. These two meth-
references. ods are based on the maximum and the minimum trans-
Some methods for determining the size of the Gaussiagjtted power, and in the normally diffracted energy. Also,
beams have been proposed which are based on the propertig giffraction patterns obtained at maximum and minimum
of the transmitted power by rulings. Thus, Ronchi rulings[2]transmitted power are studied. Finally, the aperiodic ruling is
(grating with alternate clear and dark fringes of square profilggnsidered, and it is shown that the Gaussian spot size can be
per period), sinusoidal rulings[2-3], triangular rulings[2-3], getermined from the normally diffracted energy. The results
periodic exponential rulings[4-5], and aperiodic gratings[6]optained for the aperiodic ruling can be useful in that they
have been considered. In all the mentioned papers[2-6] thgse only the diffracted energy close to the normal direction

peam diameters _hgve been dete_rmined by means of the maxstead of the total transmitted power as is usually done with
imum and the minimum transmitted power. However, WO conventional[2] or non-conventional rulings[3-6].

exceptions are given in Refs. 7 and 8 where the normally
diffracted energy to the gratings was considered.

It is important to notice that, to our knowledge, only the 2.  Formulation
measurement of Gaussian beam diameters has been consid-
ered in the literature and no attention has been paid to thé&/e have a ruling made of alternate opaque (widttand
determination of Hermite-Gaussian beam diameters. So, itransparent zones (widtt), whose period isl = 2¢. We
this paper we examine whether the techniques mentioned cdixed a cartesian coordinate system with thea&Xis parallel
be extended to the case of Hermite-Gaussian beams. Thekethe ruling as shown in Fig. 1. The ruling is illuminated
kinds of beams are described by the product of Hermitdy a beam independent of thecoordinate (cylindrical inci-
polynomials and Gaussian functions. At present, the twodent wave). The time dependensg (—iwt) is used in what
dimensional Hermite-Gaussian beams can easily be excitetfllows.
for instance, with end-pumped solid-state lasers[9] or by in-  The theory of diffraction is only outlined here and the
serting a cross wire into the laser cavity with the wires alignedeader is referred to Ref. 1 for most details. E&tr), F;(x),
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and¢(z) be the transmitted field, the input or incident field,  Then, the intensity/(#) diffracted at an angl® (see
and the grating transmittance function, related as follows: Fig. 1) is given byC' | f(6)|*, whereC is a constant which
will be taken as unity since we are interested only in relative
E(z) = t(z)Ei(z), (1)  quantities, so that we have

where the functiori(x) is null in the opaque zones, and has ] +oo
the unit value in the transparent zones. From this expression, 1 (§)=_—k cos? 6 /t(m)Ei(x) exp(—iksinfz)dz| . (6)

the field just below the ruling can be obtained. From the @

knowledge of the fieldZ(x) it is possible, by means of the

two-dimensional Rayleigh-Sommerfeld theory with Dirich- Then the diffracted field can be determined from Eq. (6) if
let conditions, to get the field(z.,, y,) at any point below the input fieldE;(x) and the transmittance functigf{x) are

the ruling given. o _
In what follows our attention is focused on the transmitted

power Py and on the normally diffracted energy to the screen
E(xo, o) / E(z 3 ——Hg (kr)da 1(0°), which will be denoted byz. The normally diffracted
Yo energykF is calculated from Eg. (6) with the angle= o° as

o0

o 2
. —+o0
(3

0
-3 | toEEg i, @ E=y | [ t@)Ew)s ™

wherek = 27 /), with the wavelengthh of the incident radi-  and the transmitted powé?, is obtained from
ation,r? = (z — x¢)? + y2 with P(z,,,) the observation

point as illustrated in Fig. 1, anH is the Hankel function /2
of the first kind and order zero. From Eq. (2), the far field Pr = / 1(0) do (8)
can be obtained by looking at the asymptotic behavior of the )2

field £ whenkr > 1. In this approximation we have i
We have compared the results obtained by means of

E(z0,10) = f(8) exp(ikro)/\/To, (3) Egs. (6) to (8) with those calculated by means of the rigor-
ous diffraction theories given in Refs. 16 and 17. We have
wheresin 6 = xq/ro, andcos 8 = —y, /1, (see Fig. 1). This found that the three theories give practically the same results
is the expression of a cylindrical wave with the oblique factorin the scalar regime[8] where the polarization effects can be
t(6) given by: neglected. The interested reader is referred to Ref. 18, where
) the Rayleigh-Sommerfeld theory is compared with a rigorous
F(0)VE exp(—im /4) cos OE(k sin 0) (4)  diffraction theory in the case of a slit in a perfectly conduct-

. ing screen (see casagl < 0.2).
with

3. Definition of Hermite-Gaussian beam width

() = — / E(z)exp(—iaz)d
\/ﬁfoo In this paper, the width of a Gaussian mdH& M, is ob-
tained when the intensity drops 1ge and will be denoted
1 by L from now on. There are other definitions for the Gaus-
\/ﬂ z) exp(—iavz)dz. (5)  sian spot size; for instance, the beam width can be calculated
using the diameter that covers 86.5% of the energy, and in
this case the beam width will be denoted bys 5. As was
Ay pointed in Ref. 12, the relationship between the Gaussian
widths L and Lgg 59 IS given by Lgg 50, = 1.057L, so that
the values of g4 50, are very close to the values bf in fact,
in practice we can consider thBgg 50, = L.
We assume the following intensity distribution on the
- screen ¢ = 0) of the normally incident Hermite-Gaussian
X beam of orden:

I,(z) = [H, {2(z — b)/L}]? exp|—4(z — b)%/L?], (9)

P(xo, yO) whereIn(z) is the intensity as a function of the coordinate
FIGURE 1. A Ronchi ruling made of alternate opaque and trans- , L is the Gaussian beam width when = 0, and H,
parent zone of widthé. The slit is parallel to th€®z axis. is the Hermite polynomial of orden, some of which are
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Ho(t) =1, Hi(t) = 2t, Ho(t) = 4t2 2, H3(t) = 8t3—12t,

and so forth. The position of the incident Hermite-Gaussian 10000 5

E)
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<~ n=2

beam with respect to th@y axis is fixed by the parameter
b. If the Hermite-Gaussian beam diamelgr is defined by
the 86.5% energy content, theh, is related toL by means
of a linear relationship. We have found that = 1.667L,
Lo =2.122L, Ly = 2.503L, Ly = 2.836L, and so forth[12].
Therefore, if the parametdr is fixed, the Hermite-Gaussian
diameterL,, increases when increases. In fact, we can con-

siderL as a common parameter for all the Hermite-Gaussian
beams; however, it is necessary not to forget that the interest:

ing and practical parameter Is, .

4. Definitions of K and P

In this paper, we are mainly interested in studying the inten

sity ratio K defined as follows:

K= Emin/Emax (10) -

i . 100000

and the power ratid given by E
P = Pmin/Pmaxa (11) 10000_?

whereE i, and E,. are the minimum and maximum val-
ues of the normally diffracted enerdy0°), Puin and Ppax

are the minimum and maximum transmitted power, both of

them obtained when the beam is scanned by the ruling.
In Fig. 2, the transmitted powdprr is plotted as a func-
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FIGURE 3. Same as Fig. 2 but for the normally diffracted enefgy
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tion of the normalized beam positio/¢) for normally ~
incident Hermite-Gaussian beams of ordee=0, 1, and 2. .1 n=2" A
The period of the ruling igl = 1.0 and the Gaussian width 3 / n=d
is L/d = 0.5. In this case we find thak,/d = 0.8335, n=2

Lo/d = 1.061, and L3/d = 1.418. The results of Fig. 2

show a periodical behavior with the same period as that of

the ruling, for all values ofi. We observe that the minima o . . .
for n =0 are located at the same positions as the maxima fof'GURE 4. Minimum E.,;, (dash lines) and maximuti,,.. (solid
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lines) values of the normally diffracted energy as functions of the
inverse of the wavelength for the Hermite-Gaussian beams of or-
der=0, 2, 4, wherd=0.5.

n =1, 2, and the opposite also happens. We have verified, as
expected, that the transmission coefficient is independent of
the wavelength, so that the ratio poweis also independent

of the wavelength. This independence of the wavelength is
an important condition in the establishment of a method for
determining the spot size of the beams.

Figure 3 is similar to Fig. 2 but for the normally diffracted
energyl (0"). We note that these two figures are very differ-
ent. We observe also that the behaviorfothas the same
periodicity as that of the ruling. From the numerical results
of Fig. 3 we have obtained thd=0.211 forn =0; how-
ever, forn =1, 2 we haveK =0. We have found that this
conclusion is in general true for odd-numbers

In Fig. 4 we plot the minimum E,,;,,) and maximum

FIGURE 2. Transmitted power as a function of the beam position (Emax) values of the normally diffracted energy as functions
for Hermite-Gaussian beams of order =0 (solid line), 1 (dash line), of the inverse of the wavelength. From this figure we get that
and 2 (dot line), with width’. /d = 0.5, and\/d = 0.03.

(Fmin) and (E,.x) have the following behavior:
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12

1 1
Emin X X and Emax X Xv (12)

so we can conclude from Fig. 4 and other results not shown >
that the intensity ratid< is also independent of the wave-
length for Hermite-Gaussian beams. The results of Eq. (12).
are in agreement with the property already presented in
Ref. 14 given byF = N7/, whereN is the number of slits
covered by the beam ands the transmission coefficient.

intens

Angular

5. Pattern diffractions at maximum and mini-
mum power

In Fig. 5 the diffraction patterns are plotted at maximum and
minimum transmitted power for a normally incident Gaus-
sian beamsr{ = 0), when\/d = 0.03, ¢/d = 0.5, and
L/d = 0.5. We observe a more oscillating behavior for the
diffraction pattern at minimum transmitted power. In both
cases, practically all the diffracted energy is inside the angu-
lar sectorAd = 7°, so that the diffracted energy is mainly
concentrated close to the normal to the screen.

Figure 6 is similar to Fig. 5 but for an Hermite-Gaussian
beam of orden=1. We note that the diffraction patterns are
more complicated that those of Fig. 5. A null intensity is ob-
served at) = 0°, in fact, the central maximum of Fig. 5
is split into two maxima in this figure. This last result is
an effect of the Hermite polynomial of orde=1. In this
case, practically all the energy is concentrated in the sector
Af = 10°.

Figure 7 is similar to Figs. 5 and 6, but now for2.

We note immediately that the central maximum of Fig. 5
is divided into three maxima in this figure; this is a direct
result of the Hermite polynomial of order=2. In this case,

Angular Intensity
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FIGURE 6. Same as Fig. 5 but for = 1.
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FIGURE 5. Diffraction patterns at maximum (solid line) and min- FIGURE 8. Intensity ratioK = Ewmin/Fmax (dashed curve) and

imum (dash line) transmitted power for a normally incident Gaus- P = Puin/Pmax (s0lid curve) for a normally incident Gaussian

sian beami{ = 0), when\/d = 0.03, ¢/d = 0.5, andL/d = 0.5. beam as functions of the normalized beam witljtal, for a Ronchi
ruling with periodd = 1.0.
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A¢ = 8°. From the results given in Figs. 6and 7we cancon- %7 _4 ,
clude that the central maximum for a Gaussian beam is split /
into n+1 maxima for an Hermite-Gaussian beam of order did A B i
This is an interesting result in diffraction theory which shows / \ N/ \
that some of the accepted ideas must change in considerinec 1 / \ | \
Hermite-Gaussian beams. 064 /\ / \ / \ Y,

Ratios P and
AN

04| N/ —

6. Two methods based on ratiods and P | N~

In Fig. 8, we plot the ratiof? and K as functions of the 0.2
Gaussian spot size normalized to the grating pedi¢d /d) ] K

for a normally incident Gaussian beam. This figure is similar -~

but not identical to Fig. 5 of Ref. 1. If the ratid8 and K - 92 Be @F 08 40 43 i1  4&
are experlmgntally determined, the corresponding spot width Beam width / period (L/d)

can be obtained as long as €.3./d <1.6.

FIGURE 11. Same as Fig. 8 but for = 3.
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52 FIGURE 12. Normally diffracted energy as a function of the spot
position ¢/d) for a normally incident Gaussian beam on an ape-
08 riodic ruling with d=1.0 andd’=2.5, with wavelengtth = 0.01.
v N P
2 o0sd | \ B S, e
o / \ SN Figures 9 to 11 are similar to Fig. 8 but for =1, 2, and 3.
8 . / We note that, instead of the growing behaviorffand K
T 04+ / \\\ / in Fig. 8, we have an oscillating behavior in these figures.
N \ / FAN From these figures we can conclude that the two methods for
/ - i determining the width of Gaussian beams cannot be applied
0‘2',“/\ any more to Hermite-Gaussian beams £ 0). However,
1/ from the point of view of diffraction theory, these results are
o4 very interesting. We observe for rati® that the number of
02 04 06 08 1.0 1.2 1.4 1.6 maxima is increased when the order of the Hermite-Gaussian
Beam width / period (L/d) beam is also increased. Moreover, the rdtids not always
null forn-odd numbers; there are certain values ¢fl where
FIGURE 10. Same as Fig. 8 but for = 2. K can be seen without difficulty in Figs. 9 and 11.
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[ K (periodic) ~ This depregsio_n and this constant value are very important in
| the determination of the Gaussian spot size as we shall see

- i below. _It is important to say _that we ha\{e gotten the same
B R " qonclusmns when t.h.e tran;mltted power is plotted asa func-

— A tion of the spot position; this case was already considered by

0.6 4 K (aperiodic) Uppal[15] and is not shown here.
In Fig. 13 we plot the ratio® and K as functions of the
normalized beam widtti /d, whend’'/d = 2.5 andd = 1.0.
0.4 The results forP have been published by Uppat al. in
Ref. 15. Our contribution in this direction is to show that

Ratios P and K

can also be used to determine the width of Gaussian beams.

021 d'/d=2.5 We note that the values d? and K are very close but they
/ are not identical. For comparison, we have also plotted the
0.0 / : . . ' 1 ' . ' | results of K’ obtained with the periodic ruling wheh= d'.
0 3 6 9 12 15 This comparison shows that the aperiodic ruling extends the

Beam width / period (L/d) values ofL/d up to 14. More research in this direction is in

FIGURE 13. RatiosP and K as functions of the normalized Gaus- process.

sian beam width. /d, whend’ /d = 2.5 andd = 1.0.
8. Conclusions

7. The aperiodic Ronchi ruling The diffraction of Hermite-Gaussian beams by Ronchi and

In this section we shall consider the case of an aperiodic rul@Periodic rulings was studied by means of the transmitted
ing made of alternate transparent and opaque zones. The ggawer and the normally diffracted energy. We have shown
riod of the ruling isd, but with a central opaque zone of width that the two methods for determining the width of Gaussian
d' which could be equal to or different froth i.c., we have a beams with Ronchi rulings previously used in Ref. 1 cannot
central discontinuity in the ruling. In the case whefe= ¢, b€ applied to Hermite-Gaussian beams. The main contribu-
the conventional Ronchi ruling is recovered. This aperiodicion of this paper is to show that the normally diffracted en-
ruling has been studied by Uppet al. in Ref. 15. TheDz-  ©€rgy can .be'usec.i to determine the width of Gaussian beams
axis will be placed halfway through the central opaque zoneWith aperiodic rulings.

In Fig. 12 we plot the normally diffracted energy as a
function of the spot positionb(d) for a normally incident Acknowledgments
Gaussian beam on an aperiodic ruling, wittl .0 andi’=2.5.
From these results and others not shown, we have observadhe authors wish to acknowledge support from Coamisie
a small depression at the centre of the discontinuity and ®peraciones y Fomento de Actividades Agacas del In-
constant value far from this discontinuity whend > 2.5.  stituto Poliecnico Nacional, Mxico.
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