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Diffraction of hermite-gaussian beams by Ronchi and aperiodic rulings
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In this paper, the diffraction of beams by Ronchi rulings is considered. The theory of diffraction is based on the Rayleigh-Sommerfeld integral
equation with Dirichlet conditions. The diffraction of Gaussian and Hermite-Gaussian beams is studied numerically. The transmitted power
and the normally diffracted energy are analyzed as a function of the spot size. The diffraction patterns obtained at maximum and minimum
transmitted power are also deal with. We show that the two methods to determine the Gaussian spot size with Ronchi rulings which were
experimentally compared in a previous paper [Rev. Mex. F́ıs. 53 (2007) 133] cannot be extended to the case of Hermite-Gaussian beams.
Finally, for aperiodic rulings we propose a method for obtaining the Gaussian spot size by means of the normally diffracted energy.
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En este artı́culo se estudia la difracción de haces por redes de difracción de Ronchi. La teorı́a de la difraccíon utilizada esta basada en la
ecuacíon integral de Rayleigh-Sommerfeld con condiciones de Dirichlet. La difracción de haces tipo Gauss y Hermite-Gauss es estudiada
numéricamente. La potencia transmitida y la energı́a difractada normalmente a la pantalla son estudiadas. Mostramos que los dos métodos
para determinar el ancho de un haz tipo Gauss, los cuales fueron considerados en un artı́culo previo [Rev. Mex. F́ıs. 53 (2007) 133], no
pueden extenderse al caso de haces Hermite-Gauss. Finalmente, utilizando una red de difracción no períodica se propone un ḿetodo para
obtener el ancho de un haz de Gauss por medio de la energı́a difractada normalmente.

Descriptores: Difracción; redes de difracción.

PACS: 42.25.Fx; 42.10.H.C

1. Introduction

The methods for calculation of diameters of Gaussian beams
at the present time have a wide range of applications[1]. This
paper can be considered to be the continuation of a previously
published article where two methods for Gaussian spot size
measurement by means of Ronchi rulings were studied[1].
The reader is referred to Ref. 1 for a more complete list of
references.

Some methods for determining the size of the Gaussian
beams have been proposed which are based on the properties
of the transmitted power by rulings. Thus, Ronchi rulings[2]
(grating with alternate clear and dark fringes of square profile
per period), sinusoidal rulings[2-3], triangular rulings[2-3],
periodic exponential rulings[4-5], and aperiodic gratings[6]
have been considered. In all the mentioned papers[2-6] the
beam diameters have been determined by means of the max-
imum and the minimum transmitted power. However, two
exceptions are given in Refs. 7 and 8 where the normally
diffracted energy to the gratings was considered.

It is important to notice that, to our knowledge, only the
measurement of Gaussian beam diameters has been consid-
ered in the literature and no attention has been paid to the
determination of Hermite-Gaussian beam diameters. So, in
this paper we examine whether the techniques mentioned can
be extended to the case of Hermite-Gaussian beams. These
kinds of beams are described by the product of Hermite
polynomials and Gaussian functions. At present, the two-
dimensional Hermite-Gaussian beams can easily be excited,
for instance, with end-pumped solid-state lasers[9] or by in-
serting a cross wire into the laser cavity with the wires aligned

with the nodes of the desired mode[10]. In Ref. 9 it was
demonstrated that it is possible to generate two-dimensional
Hermite-Gaussian modes up to the TEM0,80 mode. In pass-
ing, we mention that these beams have been considered in
relation to some other diffraction problems[11-14].

In this paper two diffractional methods to determine the
beam diameters of Gaussian and Hermite-Gaussian beams by
means of Ronchi rulings are considered. These two meth-
ods are based on the maximum and the minimum trans-
mitted power, and in the normally diffracted energy. Also,
the diffraction patterns obtained at maximum and minimum
transmitted power are studied. Finally, the aperiodic ruling is
considered, and it is shown that the Gaussian spot size can be
determined from the normally diffracted energy. The results
obtained for the aperiodic ruling can be useful in that they
use only the diffracted energy close to the normal direction
instead of the total transmitted power as is usually done with
conventional[2] or non-conventional rulings[3-6].

2. Formulation

We have a ruling made of alternate opaque (width`) and
transparent zones (width̀), whose period isd = 2`. We
fixed a cartesian coordinate system with the Oz-axis parallel
to the ruling as shown in Fig. 1. The ruling is illuminated
by a beam independent of thez coordinate (cylindrical inci-
dent wave). The time dependenceexp(−iwt) is used in what
follows.

The theory of diffraction is only outlined here and the
reader is referred to Ref. 1 for most details. LetE(x), Ei(x),
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andt(x) be the transmitted field, the input or incident field,
and the grating transmittance function, related as follows:

E(x) = t(x)Ei(x), (1)

where the functiont(x) is null in the opaque zones, and has
the unit value in the transparent zones. From this expression,
the field just below the ruling can be obtained. From the
knowledge of the fieldE(x) it is possible, by means of the
two-dimensional Rayleigh-Sommerfeld theory with Dirich-
let conditions, to get the fieldE(xo, yo) at any point below
the ruling

E(x0, y0) =
i

2

∞∫

−∞
E(x)

∂

∂ y0
H1

0 (kr)dx

=
i

2

∞∫
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t(x)Ei(x)

∂

∂ y0
H1

0 (kr)dx, (2)

wherek = 2π/λ, with the wavelengthλ of the incident radi-
ation,r2 = (x − x0)2 + y2

0 with P (xo, yo) the observation
point as illustrated in Fig. 1, andH1

o is the Hankel function
of the first kind and order zero. From Eq. (2), the far field
can be obtained by looking at the asymptotic behavior of the
field E whenkr À 1. In this approximation we have

E(x0, y0) = f(θ) exp(ikr0)/
√

r0, (3)

wheresin θ = x0/r0, andcos θ = −yo/ro (see Fig. 1). This
is the expression of a cylindrical wave with the oblique factor
t(θ) given by:

f(θ)
√

k exp(−iπ/4) cos θÊ(k sin θ) (4)

with

Ê(α) =
1√
2π

+∞∫

−∞
E(x) exp(−iα x)dx

=
1√
2π
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t(x)Ei(x) exp(−iα x)dx. (5)

FIGURE 1. A Ronchi ruling made of alternate opaque and trans-
parent zone of widths̀. The slit is parallel to theOz axis.

Then, the intensityI(θ) diffracted at an angleθ (see
Fig. 1) is given byC |f(θ)|2, whereC is a constant which
will be taken as unity since we are interested only in relative
quantities, so that we have

I(θ)=
1
2π

k cos2 θ
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+∞∫

−∞
t(x)Ei(x) exp(−ik sin θ x)dx

∣∣∣∣∣∣

2

. (6)

Then the diffracted field can be determined from Eq. (6) if
the input fieldEi(x) and the transmittance functionf(x) are
given.

In what follows our attention is focused on the transmitted
powerPT and on the normally diffracted energy to the screen
I(0◦), which will be denoted byE. The normally diffracted
energyE is calculated from Eq. (6) with the angleθ = o◦ as

E =
k

2π
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t(x)Ei(x)dx

∣∣∣∣∣∣

2

(7)

and the transmitted powerPT is obtained from

PT =

π/2∫

−π/2

I(θ) dθ (8)

We have compared the results obtained by means of
Eqs. (6) to (8) with those calculated by means of the rigor-
ous diffraction theories given in Refs. 16 and 17. We have
found that the three theories give practically the same results
in the scalar regime[8] where the polarization effects can be
neglected. The interested reader is referred to Ref. 18, where
the Rayleigh-Sommerfeld theory is compared with a rigorous
diffraction theory in the case of a slit in a perfectly conduct-
ing screen (see casesλ/` < 0.2).

3. Definition of Hermite-Gaussian beam width

In this paper, the width of a Gaussian modeTEM00 is ob-
tained when the intensity drops to1/e and will be denoted
by L from now on. There are other definitions for the Gaus-
sian spot size; for instance, the beam width can be calculated
using the diameter that covers 86.5% of the energy, and in
this case the beam width will be denoted byL86.5. As was
pointed in Ref. 12, the relationship between the Gaussian
widthsL andL86.5% is given byL86.5% = 1.057L, so that
the values ofL86.5% are very close to the values ofL; in fact,
in practice we can consider thatL86.5% = L.

We assume the following intensity distribution on the
screen (y = 0) of the normally incident Hermite-Gaussian
beam of ordern:

In(x) = [Hn {2(x− b)/L}]2 exp[−4(x− b)2/L2], (9)

whereIn(x) is the intensity as a function of the coordinate
x, L is the Gaussian beam width whenn = 0, and Hn

is the Hermite polynomial of ordern, some of which are
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H0(t) = 1, H1(t) = 2t, H2(t) = 4t2−2, H3(t) = 8t3−12t,
and so forth. The position of the incident Hermite-Gaussian
beam with respect to theOy axis is fixed by the parameter
b. If the Hermite-Gaussian beam diameterLn is defined by
the 86.5% energy content, then,Ln is related toL by means
of a linear relationship. We have found thatL1 = 1.667L,
L2 = 2.122L, L3 = 2.503L, L4 = 2.836L, and so forth[12].
Therefore, if the parameterL is fixed, the Hermite-Gaussian
diameterLn increases whenn increases. In fact, we can con-
siderL as a common parameter for all the Hermite-Gaussian
beams; however, it is necessary not to forget that the interest-
ing and practical parameter isLn.

4. Definitions ofK and P

In this paper, we are mainly interested in studying the inten-
sity ratioK defined as follows:

K = Emin/Emax (10)

and the power ratioP given by

P = Pmin/Pmax, (11)

whereEmin andEmax are the minimum and maximum val-
ues of the normally diffracted energyI(0◦), Pmin andPmax

are the minimum and maximum transmitted power, both of
them obtained when the beam is scanned by the ruling.

In Fig. 2, the transmitted powerPT is plotted as a func-
tion of the normalized beam position (b/d) for normally
incident Hermite-Gaussian beams of ordern =0, 1, and 2.
The period of the ruling isd = 1.0 and the Gaussian width
is L/d = 0.5. In this case we find thatL1/d = 0.8335,
L2/d = 1.061, andL3/d = 1.418. The results of Fig. 2
show a periodical behavior with the same period as that of
the ruling, for all values ofn. We observe that the minima
for n =0 are located at the same positions as the maxima for

FIGURE 2. Transmitted power as a function of the beam position
for Hermite-Gaussian beams of order =0 (solid line), 1 (dash line),
and 2 (dot line), with widthL/d = 0.5, andλ/d = 0.03.

FIGURE 3. Same as Fig. 2 but for the normally diffracted energyE.

FIGURE 4. MinimumEmin (dash lines) and maximumEmax (solid
lines) values of the normally diffracted energy as functions of the
inverse of the wavelength for the Hermite-Gaussian beams of or-
der = 0, 2, 4, wheǹ=0.5.

n =1, 2, and the opposite also happens. We have verified, as
expected, that the transmission coefficient is independent of
the wavelength, so that the ratio powerP is also independent
of the wavelength. This independence of the wavelength is
an important condition in the establishment of a method for
determining the spot size of the beams.

Figure 3 is similar to Fig. 2 but for the normally diffracted
energyI(00). We note that these two figures are very differ-
ent. We observe also that the behavior ofE has the same
periodicity as that of the ruling. From the numerical results
of Fig. 3 we have obtained thatK=0.211 forn =0; how-
ever, forn =1, 2 we haveK ≈0. We have found that this
conclusion is in general true for odd-numbersn.

In Fig. 4 we plot the minimum (Emin) and maximum
(Emax) values of the normally diffracted energy as functions
of the inverse of the wavelength. From this figure we get that
(Emin) and (Emax) have the following behavior:
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Emin ∝ 1
λ

and Emax ∝ 1
λ

, (12)

so we can conclude from Fig. 4 and other results not shown
that the intensity ratioK is also independent of the wave-
length for Hermite-Gaussian beams. The results of Eq. (12)
are in agreement with the property already presented in
Ref. 14 given byE = Nτ/λ, whereN is the number of slits
covered by the beam andτ is the transmission coefficient.

5. Pattern diffractions at maximum and mini-
mum power

In Fig. 5 the diffraction patterns are plotted at maximum and
minimum transmitted power for a normally incident Gaus-
sian beams (n = 0), whenλ/d = 0.03, `/d = 0.5, and
L/d = 0.5. We observe a more oscillating behavior for the
diffraction pattern at minimum transmitted power. In both
cases, practically all the diffracted energy is inside the angu-
lar sector∆θ = 70, so that the diffracted energy is mainly
concentrated close to the normal to the screen.

Figure 6 is similar to Fig. 5 but for an Hermite-Gaussian
beam of ordern=1. We note that the diffraction patterns are
more complicated that those of Fig. 5. A null intensity is ob-
served atθ = 00, in fact, the central maximum of Fig. 5
is split into two maxima in this figure. This last result is
an effect of the Hermite polynomial of ordern=1. In this
case, practically all the energy is concentrated in the sector
∆θ = 100.

Figure 7 is similar to Figs. 5 and 6, but now forn=2.
We note immediately that the central maximum of Fig. 5
is divided into three maxima in this figure; this is a direct
result of the Hermite polynomial of ordern=2. In this case,
the diffracted energy is concentrated in the angular sector

FIGURE 5. Diffraction patterns at maximum (solid line) and min-
imum (dash line) transmitted power for a normally incident Gaus-
sian beam (n = 0), whenλ/d = 0.03, `/d = 0.5, andL/d = 0.5.

FIGURE 6. Same as Fig. 5 but forn = 1.

FIGURE 7. Same as Fig.5 but forn = 2.

FIGURE 8. Intensity ratioK = Emin/Emax (dashed curve) and
P = Pmin/Pmax (solid curve) for a normally incident Gaussian
beam as functions of the normalized beam widthL/d, for a Ronchi
ruling with periodd = 1.0.
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∆θ = 80. From the results given in Figs. 6 and 7 we can con-
clude that the central maximum for a Gaussian beam is split
into n+1 maxima for an Hermite-Gaussian beam of ordern.
This is an interesting result in diffraction theory which shows
that some of the accepted ideas must change in considering
Hermite-Gaussian beams.

6. Two methods based on ratiosK and P

In Fig. 8, we plot the ratiosP andK as functions of the
Gaussian spot size normalized to the grating periodd (L/d)
for a normally incident Gaussian beam. This figure is similar
but not identical to Fig. 5 of Ref. 1. If the ratiosP and K
are experimentally determined, the corresponding spot width
can be obtained as long as 0.3< L/d <1.6.

FIGURE 9. Same as Fig. 8 but forn = 1.

FIGURE 10. Same as Fig. 8 but forn = 2.

FIGURE 11. Same as Fig. 8 but forn = 3.

FIGURE 12. Normally diffracted energy as a function of the spot
position (b/d) for a normally incident Gaussian beam on an ape-
riodic ruling with d=1.0 andd′=2.5, with wavelengthλ = 0.01.

Figures 9 to 11 are similar to Fig. 8 but for =1, 2, and 3.
We note that, instead of the growing behavior ofP and K
in Fig. 8, we have an oscillating behavior in these figures.
From these figures we can conclude that the two methods for
determining the width of Gaussian beams cannot be applied
any more to Hermite-Gaussian beams (n 6= 0). However,
from the point of view of diffraction theory, these results are
very interesting. We observe for ratioP that the number of
maxima is increased when the order of the Hermite-Gaussian
beam is also increased. Moreover, the ratioK is not always
null forn-odd numbers; there are certain values ofL/d where
K can be seen without difficulty in Figs. 9 and 11.
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FIGURE 13. RatiosP andK as functions of the normalized Gaus-
sian beam widthL/d, whend′/d = 2.5 andd = 1.0.

7. The aperiodic Ronchi ruling

In this section we shall consider the case of an aperiodic rul-
ing made of alternate transparent and opaque zones. The pe-
riod of the ruling isd, but with a central opaque zone of width
d′ which could be equal to or different fromd, i.e., we have a
central discontinuity in the ruling. In the case whered′ = d,
the conventional Ronchi ruling is recovered. This aperiodic
ruling has been studied by Uppalet al. in Ref. 15. TheOz-
axis will be placed halfway through the central opaque zone.

In Fig. 12 we plot the normally diffracted energy as a
function of the spot position (b/d) for a normally incident
Gaussian beam on an aperiodic ruling, withd=1.0 andd′=2.5.
From these results and others not shown, we have observed
a small depression at the centre of the discontinuity and a
constant value far from this discontinuity whenL/d > 2.5.

This depression and this constant value are very important in
the determination of the Gaussian spot size as we shall see
below. It is important to say that we have gotten the same
conclusions when the transmitted power is plotted as a func-
tion of the spot position; this case was already considered by
Uppal[15] and is not shown here.

In Fig. 13 we plot the ratiosP andK as functions of the
normalized beam widthL/d, whend′/d = 2.5 andd = 1.0.
The results forP have been published by Uppalet al. in
Ref. 15. Our contribution in this direction is to show thatK
can also be used to determine the width of Gaussian beams.
We note that the values ofP andK are very close but they
are not identical. For comparison, we have also plotted the
results ofK obtained with the periodic ruling whend = d′.
This comparison shows that the aperiodic ruling extends the
values ofL/d up to 14. More research in this direction is in
process.

8. Conclusions

The diffraction of Hermite-Gaussian beams by Ronchi and
aperiodic rulings was studied by means of the transmitted
power and the normally diffracted energy. We have shown
that the two methods for determining the width of Gaussian
beams with Ronchi rulings previously used in Ref. 1 cannot
be applied to Hermite-Gaussian beams. The main contribu-
tion of this paper is to show that the normally diffracted en-
ergy can be used to determine the width of Gaussian beams
with aperiodic rulings.
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