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A detailed study of the lowest states1s0, 2p−1, 2p0 of the hydrogen atom placed in a magnetic fieldB ∈ (0 − 4.414 × 1013 G) and their
electromagnetic transitions (1s0 ↔ 2p−1 and1s0 ↔ 2p0) is carried out in the infinite-proton-mass (Born-Oppenheimer) approximation.
The variational method is used with a physically motivated recipe to design simple trial functions applicable to the whole domain of magnetic
fields. We show that the proposed functions yield very accurate results for the ionization (binding) energies. Dipole and oscillator strengths
are in good agreement with results by Ruderet al. [10], although we observe deviations of up to∼ 30% for the oscillator strength of the
linearly polarized electromagnetic transition1s0 ↔ 2p0 at strong magnetic fieldsB & 1000 a.u.
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Se lleva a cabo un estudio detallado de los estados más bajos1s0, 2p−1, 2p0 del átomo de hidŕogeno en un campo magnéticoB ∈ (0 −
4.414 × 1013 G) y sus transiciones electromagnéticas (1s0 ↔ 2p−1 and1s0 ↔ 2p0) en la aproximacíon de masa del protón infinita
(Born-Oppeneimer). Se usa el método variacional con una receta fı́sicamente motivada para diseñar funciones de prueba simples aplicables
a el rango completo de campos magnéticos. Mostramos que las funciones propuestas arrojan resultados muy precisos para las energı́as de
ionizacíon (enerǵıas de amarre). Las fuerzas de dipolo y de oscilador estan en buen acuerdo con los resultados de Ruderet al. [10] aunque
observamos desviaciones de hasta∼ 30% para la fuerza de oscilador de la transición electromagńetica linealmente polarizada1s0 ↔ 2p0

para campos magnéticosB & 1000 a.u.

Descriptores: átomo de hidŕogeno; campos magnéticos; transiciones.

PACS: 31.15.Pf; 31.10.+z; 32.60.+i; 97.10.Ld

1. Introduction

Contemporary X-ray space observatories, such as Chan-
dra, XMM-Newton and their predecessors, have collected
a considerable amount of observational data of the ther-
mal emission coming from surface layers of neutron
stars, which are characterized by enormous magnetic fields
B ∼ 1012 − 1013 G (seee.g. Refs. 1 and 2). In particular,
the observation of absorption features in the X-ray spectrum
of some isolated neutron stars (seee.g. Refs. 3 and 4) has
suggested possible models of atmospheres which allow the
presence of Coulomb systems [5–8]. The hydrogen atom
is the simplest and most studied Coulombic system in weak
and strong magnetic fields (see for example the early review
Ref. 9 and references therein, and Refs. 10 to 12 for more
recent studies).

In the present study our goal is to apply a physics recipe
(described in full generality in Ref. 13) for choosing varia-
tional trial functions to study the hydrogen atom in a mag-
netic field and its electromagnetic transitions between the
lowest bound states1s0, 2p−1 and2p0. The study is intended
as a test of the methodology developed in Ref. 13. Electro-
magnetic transitions in the hydrogen atom in the absence of a
magnetic field constitute a widely described subject (seee.g.
Ref. 14). In a strong magnetic field, such electromagnetic
transitions have been studied by a number of authors (see
e.g. Ref. 10 and 15). Special interest has been given to the

study of the center-of-mass effects on the transition probabil-
ities due to the transverse motion across the magnetic field
direction (seee.g. Refs. 16 to 19, and 20 —for the case of
theHe+ atomic-ion).

Our consideration is non-relativistic, based on a vari-
ational solution of the Schröedinger equation. Thus, the
magnetic field strength is restricted by the Schwinger limit
B = 4.414 × 1013 G. Our study is also based on the Born-
Oppenheimer approximation of zero order: the proton is as-
sumed to be infinitely massive. Thus we neglect the effects
of the CM motion,i.e. the effects of the transverse motion of
the atom with respect to the magnetic field orientation. The
study is realized in two steps:

(i) a variational calculation of the states1s0, 2p−1 and2p0

is done with suitable trial functions (selected according
to the physics recipe), and

(ii) with the variationally obtained approximate wavefunc-
tions we calculate the allowed radiative transitions
among these states in the electric dipole approximation
(see below).

Atomic units are used throughout (~=me=e=1), albeit en-
ergies are expressed in Rydberg (Ry). The magnetic fieldB
is given in a.u. withB0 = 2.35× 109 G, although frequently
we will also use magnetic fields strengths given in Gauss for
convenience.
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1.1. Hamiltonian

The Hamiltonian which describes the Coulomb system
formed by an infinitely massive proton and one electron(pe)
placed in a homogeneous constant magnetic field directed
along thez-axis,B = (0, 0, B), is given by

Ĥ = (p̂+A)2− 2
r

= p̂2− 2
r

+(p̂ ·A+A· p̂)+A2 , (1)

wherep̂ = −i∇ is the electron momentum,r is the distance
between the electron and the proton fixed at the origin, andA
is a vector potential corresponding to the magnetic fieldB. A
contribution to the energy coming from the coupling between
the electron intrinsic magnetic moment and the magnetic field
∼ Ŝ ·B, being constant, has been dropped from (1). Now, if
we choose the vector potential in the symmetric gauge

A =
B

2
(−y, x, 0) ,

the Hamiltonian acquires the form

Ĥ = −∆− 2
r

+ l̂zB +
B2ρ2

4
, (2)

where∆ is the Laplacian operator, and̂lz is the conserved
z-component of the electron angular momentum. The Hamil-
tonian (2) is also invariant with respect to thez-parityπz (i.e.
reflectionsz → −z). Thus the eigenstates can be classified

by (m,πz): the magnetic quantum numberm, corresponding
to the conservation of̂lz, and thez-parity quantum number
πz = ±1. From here on, we shall use the field-free nota-
tion 1s0, 2p−1, 2p0, to denote the lowest states with quantum
numbers(m,πz) = (0, +), (−1, +), (0,−), respectively.

1.2. Choice of trial functions

The procedure which we use to explore the problem is the
variational method with a well defined recipe for choosing
trial functions. This recipe is based on physical arguments,
described in full generality in Ref. 13. The basic ingredients
are

(i) for a given trial function ψtrial, the potential
Vtrial = ∆ψtrial/ψtrial, for which said function is an
exact eigenfunction, should reproduce as many as pos-
sible the basic properties of the original potential,e.g.
in the present case it should reproduce the Coulomb
singularities and the harmonic oscillator behavior at
small and larger distances respectively, and (

ii) the trial functionψtrial should include the symmetries
of the problem. For example, if the ground state is
studied, the trial functionψtrial must be a nodeless
function.

Adhering to this recipe, in Ref. 21 the following function was
proposed for the hydrogen ground state1s0:

Ψ1s0 = e−
√

γ1r2+(γ2r3+γ3ρ2r+γ4ρ3+γ5ρr2)B2+
γ6B2ρ4

16 +
γ7B2ρ2r2

16 , (3)

whereγ1, . . . γ7 are variational parameters. The potential as-
sociated with function (3) reproduces the Coulomb singular-
ity at r → 0 as well as the harmonic oscillator forr → ∞
of the original Hamiltonian (2). Function (3) has no nodes.
From here on, we shall use function (3) for the variational
study of the ground state1s0.

For the lowest excited states2p−1, 2p0 the presence of
the magnetic field does not modify the nodal structure of the
field-free exact eigenfunctionsi. A hint for this can be ob-
tained in first order degenerate perturbation theory inB2,
where one can see that the states2p−1, 2p0 are not mixed.
Thus the following variational functions for the2p−1, 2p0

states are proposed:

Ψ2p−1 = ρe−i φ ψ0 , (4)

Ψ2p0 = z ψ0 , (5)

where the functionsψ0 have the same functional form as (3)
but with their ownγ-parameters. Thus, in functions (4), (5),
we keep the same polynomial prefactor as in the correspond-
ing field-free wavefunctions and multiply them by a node-
less function. It is easy to check that the functions (3), (4)

and (5) are orthogonal. These functions will describe the
lowest energy states among the states with quantum numbers
(m, πz) = (0, +), (−1,+), (0,−) (1s0, 2p−1, 2p0, respec-
tively) in the entire range of magnetic fields studied.

2. Electromagnetic transitions

In a magnetic field, them-degeneracy of the hydrogen energy
levels is fully removed and electromagnetic transitions de-
pend explicitly on the magnetic quantum numbers of the ini-
tial and final states in the transition. A consideration of elec-
tromagnetic transitions in the electric dipole approximation is
valid even in the case of high magnetic fields, as long as tran-
sitions occur among states with the same Landau quantum
number; in this case the characteristic wave lengths are al-
ways much larger than the (longitudinal or transverse)sizeof
the system (for a discussion on the validity of the dipole ap-
proximation seee.g.Refs. 10 and 16). All the states consid-
ered in the present study belong to the same ground Landau-
level and thus the electric dipole approximation is justified.
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Relevant formulas for the electromagnetic transitions in the
hydrogen atom in a magnetic field were given in Ref. 15.
In the electric dipole approximation, we are interested in the
square of the matrix element (called dipole strength)

d
(q)
τ ′,τ = |p(q)

τ ′,τ |2 = |〈τ ′|r(q)|τ〉|2 , (6)

whereτ ′, τ label the final and initial states in the transition,
andr(q) (q = 0,±1) are the spherical components of the elec-
tric dipole operator. The oscillator strength of the transition
is given by

f
(q)
τ ′,τ = (Eτ ′

b − Eτ
b )|p(q)

τ ′,τ |2 , (7)

where(Eτ ′
b − Eτ

b ) is the (binding) energy difference of the
initial and final states. The transition probability is calculated
according to the relation

w
(q)
τ ′,τ =

1
3τ0

(Eτ ′
b − Eτ

b )3|p(q)
τ ′,τ |2 , (8)

where1/τ0 = 8.03 × 109 sec−1. We have two selection
rules implicit in the matrix elementp(q)

τ ′,τ (Eq. (6))viz., parity
change and

∆m = 0,±1 , (9)

which impliesq = ∆m. Thus, the transitions with∆m = 0
are characterized by a linearly polarized radiation along the
magnetic field direction withq = 0, while the transitions with
∆m = 1 are characterized by circularly polarized radiation
with q = +1 (for right polarization), orq = −1 (for left
polarization).

3. Results

3.1. Binding Energies

The results of the variational calculations of the total(ET )
and bindingii (Eb) energies for the lowest1s0, 2p−1 and
2p0 states of the hydrogen atom in a magnetic field rang-
ing 0.235 × 109 G ≤ B ≤ 4.414 × 1013 G are presented
in Tables I, II and III, respectivelyiii. Results for binding en-
ergies of these lowest states are also summarized in Fig. 1. In
this figure, one can immediately see that the binding energy
grows steadily as the magnetic field increases for all three
states1s0, 2p−1 and2p0. In particular, the ionization energy
reaches∼ 0.4keV for a magnetic field at the Schwinger limit,
whereB = 4.414 × 1013 G. The increase in binding energy
as the magnetic field grows isfaster(and comparable) for the
bound states1s0, and2p−1 (increasing∼ 20 times for the
domainB ∼ 109 − 1013 G) as compared with the rate of in-
crease of the binding energy for the bound state2p0 (increas-
ing only∼ 2 times for the domainB ∼ 109 − 1013 G). In
fact the binding energy of the state2p0 approaches the value
Eb = 1 Ry asB →∞ (see Ref. 22 and Table III).

For all states studied, the results of the binding energies
given by the simple trial functions (3), (4), (5) are, in general,
in very good agreement with the adiabatic approach of Ruder
et al. [10] (where a basis expansion in terms of spherical har-
monics is used for the weak field regime and in terms of Lan-
dau states for the strong field regime) and with the highly
accurate approach of Kravchenkoet al. [11] (where a power
series expansion of the eigenfunctions is used).

TABLE I. TotalET and bindingEb energies for the ground state1s0 of the hydrogen atom in a magnetic field calculated with the variational
function (3) compared with the results obtained by Ruderet al.[10] and Kravchenkoet al.[11]. The values of the energies have been rounded
to the first two non-coinciding digits with respect to the values in Ref. 11.

. Variational calculation Ref. 10 Ref. 11

B × 109G ET (Ry) Eb (Ry)

0.235 -0.99505296 1.09505296a 1.095053 1.09505296

1.0 -0.9208225 1.3463544a - -

2.35 -0.662332 1.662332a 1.662338 1.66233779

10.0 1.640362 2.614957a - -

23.5 6.50522 3.4948a 3.495594 3.49559433

100.0 36.8398 5.7134a - -

235.0 92.4356 7.564a 7.5781 7.57960847

1000.0 413.662 11.870a - -

2350.0 984.773 15.23a 15.3241 15.32484649

10000.0 4232.77 22.55a - -

23500.0 9972.0 27.96 - -

44140.0 18750.5 32.5a - -

aResults of Ref. [21].
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TABLE II. Total ET and bindingEb energies for the state2p−1 of the hydrogen atom in a magnetic field as given by the trial function (4)
compared with the results obtained by Ruderet al. [10] and Kravchenkoet al. [11]. The values of the energies have been rounded to the first
two non-coinciding digits with respect to the values in Ref. 11.

. Variational Calculations Ref. 10 Ref. 11

B × 109G ET (Ry) Eb (Ry)

0.235 -0.3016912 0.40169120 0.4016913 0.40169135

1.0 -0.232205 0.657737 - -

2.35 0.08684 0.913163 0.9131941 0.91319412

10.0 2.64128 1.6140 - -

23.5 7.75028 2.2497 2.250845 2.25084468

100.0 38.6802 3.873 - -

235.0 94.744 5.256 5.26948 5.26952133

1000.0 416.975 8.557 - -

2350.0 988.80 11.20 11.27681 11.27684216

10000.0 4238.22 17.10 - -

23500.0 9978.44 21.56 - -

44140.0 18757.6 25.4 - -

TABLE III. Total ET and bindingEb energies for the state2p0 of the hydrogen atom in a magnetic field as given by the trial function (5)
compared with the results obtained by Ruderet al. [10] and Kravchenkoet al. [11]. The values of the energies have been rounded to the first
two non-coinciding digits with respect to the values in Ref. 11.

. Variational Calculations Ref. 10 Ref. 11

B × 109G ET (Ry) Eb (Ry)

0.235 -0.2248199 0.3248199 0.3248202 0.32482016

1.0 -0.008703 0.434235 - -

2.35 0.48008 0.5199 0.5200132 0.52001323

10.0 3.5779 0.6774 - -

23.5 9.2359 0.7641 0.7652975 0.76529970

100.0 41.674 0.8796 - -

235.0 99.074 0.9255 0.9272354 0.92723552

1000.0 424.561 0.9710 - -

2350.0 999.016 0.9844 0.9849900 0.9849900

10000.0 4254.33 0.9938 - -

For small to moderately high magnetic fields
(B . 1 a.u.), the relative differences between our binding
energies and those of [10, 11] are found to be. 10−4. It
is worth emphasizing the remarkable coincidence in 9 digits
for the ground state binding energy given by (3) and the most
accurate results up to date of Refs. 10 and 11 in the domain
of magnetic fieldsB . 0.1 a.u. The agreement of the binding
energies with the corresponding perturbative results

E1s0
b ' 1 + B − 1

2
B2,

E
2p−1
b ' 1

4
+ 2B − 6B2,

E2p0
b ' 1

4
+ B − 3B2,

obtained with a logarithmic perturbation theory (see Refs. 13,
23, and 24 and references therein), is also very good.
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FIGURE 1. Binding energiesEb for the three lower states
1s0, 2p−1, 2p0 of the hydrogen atom as functions of magnetic field
strengthB. The curves show the calculated values ofEb using the
variational function (3) for the ground state1s0 (marked by+), the
function (4) for the state2p−1 (marked by×), and the function (5)
for the state2p0 (marked by∗). The points corresponding to the
same state are joined by line segments.

FIGURE 2. Dipole strengthsd(q)

τ ′τ for the transitions1s0 ↔
2p−1, and 1s0 ↔ 2p0 as functions of magnetic field strength
B. The curves show the calculated values of the dipole strengths
d
(+1)
1s0↔2p−1

(marked by×) andd
(0)
1s0↔2p0

(marked by+) joined by
line-segments.

However, the results for the binding energies of the three
states studied, obtained with the variational functions (3),
(4) and (5), show that the accuracy gradually decreases as
the magnetic field increases and the relative differences for
such binding energies (when compared with the correspond-
ing results of Refs. 10 and 11) reach values of∼ 10−2 for
B & 1000 a.u. (see Tables I, II, III). It indicates that the adia-
batic separation of the transverse and longitudinal degrees of
freedom is slightly delayed in functions (3), (4) and (5).

FIGURE 3. Oscillator strengthsf (q)

τ ′τ for the transitions1s0 ↔
2p−1, and1s0 ↔ 2p0 as functions of magnetic field strengthB.
The curves show the calculated values of the oscillator strengths
f

(+1)
1s0↔2p−1

(marked with the symbol×) and f
(0)
1s0↔2p0

(marked
with the symbol+) joined by line-segments.

A comparison of the binding energies of the two lowest
states1s0 (m = 0) and2p−1 (m = −1) with the asymptotic
(adiabatic) formulas

E
(m)
b ' log2 B√

2|m|+ 1

(seee.g.[11]) shows that, in both cases, the results given by
this asymptotic formula are still far from the more accurate
variational calculations, differing by a factor of about 3 for
the highest magnetic fields studied. For instance, for the
magnetic fieldB = 10000 a.u., the adiabatic formula gives
E1s0

b ' 85 Ry andE
2p−1
b ' 75 Ry, while the present numer-

ical results areE1s0
b = 27.96 Ry andE

2p−1
b = 21.56 Ry, re-

spectively (see Tables I, II). Even the asymptotic binding en-
ergy difference∆Easympt

b ' 9.8 Ry is about 1.5 times larger
than the variational one,∆Evar

b ' 6.4 Ry, for such magnetic
field strength.

In practice, a full variational calculation is easily done on
a standard desktop computer; it takes very few minutes of
CPU time.

3.2. Transitions

With the approximate wavefunctions (3), (4) and (5) found in
the variational procedure described above, we carried out a
study of the electromagnetic transitions between states2p−1,
2p0 and the ground state1s0, i.e. 1s0 ↔ 2p−1(∆m = 1),
and1s0 ↔ 2p0(∆m = 0). The transition1s0 ↔ 2p−1 oc-
curs by absorption (emission) of circular-right-polarized ra-
diation (q = +1), while the transition1s0 ↔ 2p0 occurs by
absorption (emission) of linearly-polarized (along the mag-
netic field direction) radiation (q = 0). Neither2p−1 nor2p0

have an excitation (de-excitation) mode to the ground state
via left-polarized radiation.

The first remarkable observation concerning the electro-
magnetic transitions is the fact that, if for small magnetic
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fields the transition probabilities for both transitions are com-
parable in magnitude, for strong magnetic fields the (circu-
larly polarized) transition1s0 ↔ 2p−1 is strongly suppressed
in comparison to the corresponding transition probability for
the (linearly polarized) transition1s0 ↔ 2p0 (see Fig. 4).
This phenomenon is a consequence of the strong deformation
of the electronic distribution due to the enormous Lorentz
force acting on it, being elongated in the direction of the mag-
netic field, thus enhancing the longitudinal polarization tran-
sition modeq = 0 with respect to the transverse transition
modesq = ±1.

At the other extreme of small magnetic fields, perturba-
tive results for the dipole and oscillator strengths and transi-

FIGURE 4. Transition probabilitiesw(q)

τ ′τ for the transitions1s0 ↔
2p−1, and1s0 ↔ 2p0. The curves show the calculated values
of the transition probabilitiesw(+1)

1s0↔2p−1
(marked with the sym-

bol×) andw
(0)
1s0↔2p0

(marked with the symbol+) joined by line-
segments.

FIGURE 5. Wavelengths of (a) the right-circular polarized radia-
tion associated with the transition1s0 ↔ 2p−1 (dashed curve) and
(b) of the linearly polarized radiation associated with the transition
1s0 ↔ 2p0 (solid curve), as functions of the magnetic fieldB. The
curves show the calculated values of the wavelengthsλ1s0↔2p−1

(marked with the symbol+) andλ1s0↔2p0 (marked with the sym-
bol×) joined by line-segments.

tion probabilities are given by [24]:

d
(+1)
1s0↔2p−1

' 0.555 + 29.776B2,

f
(+1)
1s0↔2p−1

' 0.416− 0.555B + 25.841B2,

w
(+1)
1s0↔2p−1

' (6.266−25.066B + 171.280B2)× 108 sec−1,

for the1s0 ↔ 2p−1 transition, and

d
(0)
1s0↔2p0

' 0.555 + 9.388B2,

f
(0)
1s0↔2p0

' 0.416 + 8.428B2,

w
(0)
1s0↔2p0

' (6.266 + 126.894B2)× 108 sec−1,

for the 1s0 ↔ 2p0 transition, where the magnetic field
strengthB is in a.u. These results show different behav-
iors for both transitions. While for the1s0 ↔ 2p0 tran-
sition all quantitiesd(0)

1s0↔2p0
, f

(0)
1s0↔2p0

and w
(0)
1s0↔2p0

are
growing functions ofB2, in the case of the1s0 ↔ 2p−1

transition the oscillator strengthf (+1)
1s0↔2p−1

and the transition

probability w
(+1)
1s0↔2p−1

slightly decrease for small increas-
ing magnetic fields, reaching a minimum forB ' 10−2 a.u.
andB ' 10−1 a.u., respectively. For larger magnetic fields
B ∼ 10−1 a.u., all quantitiesd(0)

1s0↔2p0
, f

(0)
1s0↔2p0

, w
(0)
1s0↔2p0

and d
(+1)
1s0↔2p−1

, f
(+1)
1s0↔2p−1

, w
(+1)
1s0↔2p−1

are growing func-
tions ofB2. As we go to higher (non-perturbative) magnetic
fields, the results obtained with the variational functions (3),
(4) and (5) show that the dipole strengths and the oscilla-
tor strengths of both transitions eventually reach a maximum
as the magnetic field grows, after which they start to de-
crease monotonously in the region of high magnetic fields
B & 1 a.u. For the1s0 ↔ 2p−1 transition, the maximum in
the dipole strengthd(+1)

1s0↔2p−1
(B) and the maximum in the

oscillator strengthf (+1)
1s0↔2p−1

(B) approximately coincide at
B ' 0.3 a.u. The transition probability also shows a max-
imum for the same value magnetic field. In contrast, in the
1s0 ↔ 2p0 transition, the maximum in the dipole strength
d
(0)
1s0↔2p0

(B) occurs forB ' 0.3 a.u. but the maximum in the

oscillator strengthf (0)
1s0↔2p0

(B) occurs forB ' 2 a.u. How-

ever, the transition probabilityw(0)
1s0↔2p0

(B) is an increasing
function of the magnetic field (Fig. 4).

Our results ford(+1), f (+1), w(+1) corresponding to the
1s0 ↔ 2p−1 transition are in good agreement with the re-
sults in Ref. 10 in the whole domain of magnetic fields. The
relative differences between our results for the dipole and os-
cillator strengths and the corresponding results in Ref. 10 are
∼ 10−5 for magnetic fieldsB ∼ 0.1 a.u., increasing rather
monotonously when the magnetic field grows being∼ 10−3

at B ∼ 1000 a.u. Our results for the transition probability
are also in good agreement with the results in [10], the rela-
tive differences to reach∼ 10−4 − 10−3 for magnetic fields
B ∼ 0.1− 100 a.u. The largest relative difference∼ 10−2 is
observed atB = 1000 a.u. (see Table II).
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Major differences occur in the case of the1s0 ↔ 2p0

transition. For instance, the relative differences between
present results for the oscillator strengths and the corre-
sponding results in Ref. 10 are∼ 10−4 for magnetic fields
B ∼ 0.1 a.u. increasing with a magnetic field increase to
reach∼ 10−1 at B ∼ 1000 a.u. The corresponding relative
differences for the dipole strength are∼ 10−4 for magnetic
fieldsB ∼ 0.1 a.u. increasing up to∼ 0.3 at B = 1000 a.u.
A similar deviation is observed in the results for the transi-
tion probability for1s0 ↔ 2p0 where the relative difference

is ∼ 10−4 for magnetic fieldsB ∼ 0.1 a.u. and increasing
up to∼ 0.3 at B = 1000 a.u. A possible explanation for the
occurrence of such deviations in results of the present calcu-
lations and those of Ref. 10 is an apparent delayed adiabatic
separation of the transverse and longitudinal degrees of free-
dom in the trial functions (3), (5) asB → ∞. However, it
is important to emphasize here that there is no criterion for
other observables, except in the case of the total (or binding)
energy, to determine which values are more accurateiv.

TABLE IV. Results for the electromagnetic transition1s0 ↔ 2p−1 in the hydrogen atom in a magnetic fieldB obtained with the variational
functions (3) and (4) compared with the results of Ruderet al.[10] for the case of infinite nuclear mass. The units for the transition probability
are108 sec−1.

Dipole Strength Oscillator Strength Transition

d
(+1)
1s0↔2p−1

f
(+1)
1s0↔2p−1

Probabilityw
(+1)
1s0↔2p−1

B × 109G Ref. 10 Ref. 10 Ref. 10

0.0 0.55493 0.41620 6.2664

0.235 0.64837 0.6484 0.44955 0.4496 5.7849 5.7852

1.0 0.68681 - 0.47295 - 6.0030 -

2.35 0.50133 0.5015 0.37558 0.3757 5.6423 5.6437

10.0 0.18073 - 0.18089 - 4.8509 -

23.5 0.08576 0.08584 0.10678 0.1069 4.4305 4.4313

100.0 0.021987 - 0.04046 - 3.6683 -

235.0 0.009581 0.009591 0.02212 0.02214 3.1552 3.1587

1000.0 0.002296 - 0.00761 - 2.2355 -

2350.0 0.0009837 0.0009847 0.00396 0.003985 1.7231 1.7474

10000.0 0.0002325 - 0.00127 - 1.0068 -

23500.0 0.0000992 - 0.00063 - 0.6950 -

44140.0 0.0000529 - 0.00038 - 0.5165 -

TABLE V. Results for the electromagnetic transition1s0 ↔ 2p0 in the hydrogen atom in a magnetic fieldB obtained with the variational
functions (3) and (5) compared with the results of Ruderet al.[10] for the case of infinite nuclear mass. The units for the transition probability
are108 sec−1.

Dipole Strength Oscillator Strength Transition

d
(0)
1s0↔2p0

f
(0)
1s0↔2p0

Probabilityw
(0)
1s0↔2p0

B × 109G Ref. 10 Ref. 10 Ref. 10

0.0 0.55493 0.41620 6.2664

0.235 0.60843 0.6083 0.46864 0.4685 7.4417 7.4401

1.0 0.67290 - 0.61377 - 13.668 -

2.35 0.58565 0.5902 0.66905 0.6742 23.372 23.549

10.0 0.33129 - 0.64189 - 64.499 -

23.5 0.21101 0.2252 0.57621 0.6149 115.01 122.69

100.0 0.088027 - 0.42551 - 266.12 -

235.0 0.050464 0.06217 0.33502 0.4135 395.24 489.56

1000.0 0.019169 - 0.20893 - 664.29 -

2350.0 0.010898 0.01585 0.15522 0.2273 842.82 1250.81

10000.0 0.0043462 - 0.093697 - 1165.6 -
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In the domain of very strong magnetic fields(B&1012 G),
our results for dipole strengths of both transitions show
the approximate scalingsd(0)

1s0↔2p0
∼ (B/B0)

−2/3, and

d
(+1)
1s0↔2p−1

∼ (B/B0)
−1, accurate to. 10% and. 1% re-

spectively. Likewise, the results for the oscillator strengths
scale approximately asf (0)

1s0↔2p0
∼ 3

2 (B/B0)
−1/3, and

f
(+1)
1s0↔2p−1

∼ (B/B0)
−4/5, both accurate to. 5%.

Finally, in Fig. 5 we show the wavelengths
λ = 2π/α (Eτ ′

b − Eτ
b ) (α ' 1/137 is the fine structure con-

stant and(Eτ ′
b − Eτ

b ) is the (variational) energy difference
between the initial and final states) of the electromagnetic
radiation associated with each transition as a function of the
magnetic field strengthB. From Fig. 5, we can see that
the wavelength of the longitudinal polarized radiation in the
transition1s0 ↔ 2p0 is a monotonously decreasing func-
tion of the magnetic field, reaching the domain of X-rays for
B ∼ 1012 G, while the wavelength of the right polarized ra-
diation corresponding to the transition1s0 ↔ 2p−1 increases
for small to weak magnetic fields, reaching a maximumv for
B ∼ 0.2 a.u. (withλmax ∼ 1340.7 Å), and decreasing for
larger magnetic fields. Yet this transition always remains
visible in the UV-region even for the stronger magnetic fields
considered in the present study,B ∼ 10000 a.u.

Figures 2, 3 and 4 show the results of the calculations
for the dipole strengths, oscillator strengths and transition
probabilities (formulas (6), (7) and (8) respectively) for the
transitions1s0 ↔ 2p−1, and1s0 ↔ 2p0 in the domain of
magnetic fieldsB ∼ 0.1 − 10000 a.u. Tables IV and V
also show the results of those quantities for magnetic fields
B = 0− 10000 a.u.

4. Conclusions

Throughout the present study we have used a variational ap-
proach with a physics recipe for choosing simple trial func-
tions, as a test for an alternative method to study electromag-
netic transitions in the hydrogen atom placed in a constant
magnetic field. We assume that the proton is infinitely mas-
sive (Born-Oppenheimer approximation of zero order). It
was found that the method yields very accurate results for
the binding energies, in particular, for the lowest states stud-
ied, 1s0, 2p−1, 2p0, in the entire range of magnetic fields
B = 0 − 4.414 × 1013 G. The results for binding energies
show that the accuracy given by the simple 7-parametric trial
functions (3),(4) and (5) is excellent forsmallmagnetic fields
B . 0.1 a.u., however it decreases monotonously as the mag-
netic field grows: the relative differences between the re-

sults given by the proposed trial functions (3),(4) and (5) and
the most accurate results up to date Refs. 10 and 11 reach
about∼ 1% for B = 1000 a.u. A possible explanation for
this reduction in accuracy is the fact that transverse and lon-
gitudinal degrees of freedom (ρand z respectively) in the
trial functions (3), (4) and (5) appear ‘isotropically’ in the
electron-proton distancer, preventing their adiabatic separa-
tion atB →∞.

Dipole d(q)(B), and oscillator strengthsf (q)(B), of the
electromagnetic transitions (1s0 ↔ 2p−1 and1s0 ↔ 2p0)
were computed with the approximate wave functions (3),(4),
(5) as functions of the magnetic field strengthB. Our results
for the 1s0 ↔ 2p−1 transition are in very good agreement
with the results of Ref. 10, with small deviations varying
rather monotonously in0.001−0.1% for the interval of mag-
netic fieldsB = 0.1−1000 a.u. Major deviations between the
present results and the results in Ref. 10 for the dipole and os-
cillator strengths were observed in the case of the1s0 ↔ 2p0

transition, where we have differences up to∼ 30% in the
oscillator strengthf (0)

1s0↔2p0
(B) at B = 1000 a.u. A similar

difference∼ 30% is obtained for the corresponding transi-
tion probabilityw

(0)
1s0↔2p0

(B). It is worth emphasizing that
for a strong magnetic fieldB ' 1000 a.u. the transition prob-
ability w

(0)
1s0↔2p0

(B) is 3 orders of magnitude larger than the

transition probabilityw
(+1)
1s0↔2p−1

(B) corresponding to the
1s0 ↔ 2p−1 transition, so the difference in results for the
transition probabilityw(+1)

1s0↔2p−1
(B) might be of relevance

for the analysis of the X-ray spectra of neutron stars.
It is important to mention that, although there is a cri-

terion for variational binding energies to decide which re-
sults given by different approximate wavefunctions are better
(since variational binding energies approach the true binding
energies from below), there is no similar criterion for other
expectation values or matrix elements. Thus, it is not clear
so far which results for dipole strengths are better. Therefore,
more investigations on the electromagnetic transitions in the
hydrogen atom in a magnetic field, especially in the domain
of strong magnetic fields, would be desirable in order to an-
swer this question.
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i. i.e. the nodal surfaces defined by the condition
ψtrial(r, θ, φ) = 0.

ii. The binding energy is defined as the energy difference between
the energy of a free electron in the magnetic fieldB and the

total energyET , i.e. Eb = B(1 + |m| + m) − ET (for states
in the ground Landau-level).

iii. The case of the ground state1s0 was analyzed in Ref. 21 with
the trial function (3). However, in order to have precise numer-
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ical information of the variational parameters appearing in the
trial function, we repeated the calculations done in Ref. 21 for
all the magnetic fields quoted there.

iv. A comparison of the present results obtained inlength form
with calculations using thevelocity formwould give an esti-
mate of the consistency in the accuracy of the presented results.

v. Hydrogen transitions whose wavelengths go through maxima
or minima as functions of the magnetic field are calledstation-
ary lines.
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