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Formation and interaction of multiple dipoles in a periodic driving flow
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We present herein the results of a numerical simulation of a periodic flow which take place in a channel and an open domain. To investigate
this flow we solve the fluid dynamics equations in the vorticity-stream function formulation by using a pseudospectral method based on
Chebyshev polynomials. According to these numerical simulations, a pair of counter-rotating vortices (known as a dipole) forms during each
period. The lifetime of these vortices can exceed the driving period, which allows multiple dipoles to coexist. The attention is focused on
the interaction of vortices. A possible outcome is that dipoles created in consecutive periods coalesce. Another outcome is the formation of
vorticity spots in front of the emerging dipole which reduce the dipole speed. On the other hand, it is observed that a fraction of the vorticity
created into the channel cannot incorporate to the vortices, leading to the formation of a vorticity band between the channel mouth and the
dipole. Based on this fact an analytical model is proposed to describe the properties of dipoles emerging from the channel; the results of
this model are consistent with numerical data. The parameters governing the development of this flow are the Strouhal number, whose value
determines the intensity of the dipole interaction, and the Reynolds number, whose growth leads to the emergence of instabilities and to the
breaking of the flow symmetries.
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1. Introduction

Counter-rotating vortex pairs (known as “dipoles”) are ob-
served in flows exiting channels. Examples of these struc-
tures have been reported, for example, in laboratory exper-
iments for tidal starting-jet vortices [9], in geophysical sys-
tems such as the Venetian lagoon [6], and in gulfs in northern
Patagonia [1]. Depending on the tide stage, the flow rate can
be positive (seaward flow) or negative (inward flow). Wells–
van Heijst [14] modeled the generation and evolution of a
dipole in which the flow is the sum of a linear source (or
sink) and two vortices of equal strength and opposite sign.
According to this model, whether the vortices escape or re-
main near the channel depends on the Strouhal numberS,
which is defined as

S =
H1

UT
, (1)

whereH1 is the channel width,U is the maximum velocity
of the fluid at the channel output, andT is the driving pe-
riod. ForS < 0.13 the circulation and the size of the vortices
grow at the beginning of each cycle and, given sufficient time,
dipoles escape because of their self-induced velocity. Con-
versely, forS > 0.13, dipoles are sucked inward during the
stage of negative flow rate.

Although the Wells–van Heijst model (hereafter referred
to as the W-H model) correctly describes the conditions un-
der which dipoles escape or are retained, it fails to reproduce
features such as the small-S dipole properties. Otherwise, the
model is not intended to account the persistence of dipoles for
more than one period, or the interaction between two consec-

utive dipoles. The interaction between consecutive vortices
leads to phenomena such as the coalescence of vortices or the
reduction of its translational speed. Such vortex interactions
and vortex mergers have been studied before in various exter-
nal flows both numerically and experimentally [2,10,13].

A previous work [8] has shown that, for small Strouhal
numbers, two or more dipoles may coexist without appre-
ciably interaction. However, the main interest of the present
work is to study the coexistence of dipoles and their inter-
action. To achieve this objective, we present results of nu-
merical simulations with the Strouhal numbers between 0.05
and 0.1.

This paper is organized as follows: Section 2 describes
the geometry of the system, the equations governing the
flow, and the methodology. We introduce two dimension-
less parameters and the quantities calculated with the numer-
ical method; namely, vorticity, stream function, and veloc-
ity field. Section 3 presents numerical results that describe
vorticity and dipole evolution. We discuss the interaction be-
tween dipoles, the coalescence of vortices, the formation of
the vorticity spots, the formation of a vorticty band between
the channel mouth and the dipole, and the destruction of vor-
tices by two different processes: diffusion and the emergence
of instabilities. Section 4 proposes an analytical model that
takes into account the fact that not all vorticity leaving a chan-
nel is incorporated into dipoles. This model is intended to ex-
plain the behavior of dipoles for small values of the Strouhal
number. In Sec. 5 we compare the numerical results with
some observational and experimental data. Finally, Sec. 6
concludes and summarizes the paper.
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FIGURE 1. Diagram of a channel connected to an open domain. A
pseudospectral method based on Chebyshev polynomials is used to
calculate the numerical solution, which requires slicing the space
into four rectangular subdomains. Dark lines correspond to solid
walls, dotted lines are the intersections of the domains, and gray
lines are open borders. A parabolic distribution of fluid velocity is
imposed in the channel entrance (blue curved line).

2. Theoretical framework

The flow between a channel and an open domain may be
modeled by solving the continuity and Navier–Stokes equa-
tions with appropriate initial conditions and boundary con-
ditions. In spatial coordinates, we do this by using a spec-
tral method based on Chebyshev polynomials. Because this
procedure applies to rectangular domains, we decompose the
channel and the open domain into four subdomains, as shown
in Fig. 1. The channel entrance is indicated by the blue
curved line in Fig. 1, and the channel output is the intersec-
tion between domains1© and 4©.

For an incompressible fluid, the Navier–Stokes and con-
tinuity equations take the form

D~u

Dt
= ~F − ~∇P +

1
Re
∇2~u, (2)

~∇ · ~u = 0, (3)

where Re= U H1/ν is the Reynolds number,ν is the kine-
matic viscosity andD~u/Dt is the total derivative. The Eqs. 2
and 3 have been written in dimensionless form. To do this we
use as the representative velocityU the maximum velocity at
the channel, the characteristic lengthH1 is the channel width,
and the representative time isτ = H1/U .

An alternative way to study the flow in two dimensions
is by using the vorticity-stream function formulation. To this
end we introduce the stream function [12]ψ, which is related
to velocity by~u = ~∇×ψk̂. The next step is to apply the curl
operator to Eq. (2) and to apply the definition of vorticity,
~ω = ~∇ × ~u. In the resulting equation, the pressure gradient
vanishes, leaving us with a scalar equation. The equations to
solve for the vorticity-stream function formulation are:

∇2ψ = −ω, (4)

∂ω

∂t
+

(
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x

)
=

1
Re
∇2ω. (5)

Periodic driving is introduced by using the Dirichlet con-
dition with a flow rate that varies sinusoidally in time accord-
ing to

q(t∗) = Q0 sin
(

2π

T
t∗

)
. (6)

where t∗ is the dimensional time. To write this equation
in dimensionless form we use the following relation be-
tween the representative velocity and the maximum flow rate:
U = Q0/H1. From this definition, the dimensionless flow
rate is

Q = sin(2πSt), (7)

whereS is the Strouhal number [Eq. (1)].
Equations (4) and (5) must satisfy the initial conditions

and boundary conditions. For the initial conditions, the flow
rate is set to zero so that both the stream function and vorticity
vanish att = 0. For the boundary conditions, we impose that
the velocity vanish at solid boundaries. Because the stream
function ψ is now the unknown, the no-slip condition must
be given in terms of the flow rateQ(t). The condition that
the normal component of velocity be zero at the boundary
(un = 0) is equivalent to applyingψ = const., so we use
ψ = 0 at the boundaries marked “A” (see Fig. 1) andψ = Q
at the boundaries marked “B.” In addition, a parabolic profile
is imposed on the velocity field at the entrance of the channel
(curved line at left of Fig. 1). The condition that the tangen-
tial velocity be zero (ut = 0) requires a more subtle treatment
because it is equivalent to∂ψ/∂n = 0.

Although solving Eq. (4) under the conditionψ = const.
is sufficient, at this step we have no boundary condition for
the vorticity equation. The usual procedure to overcome this
difficulty is known as the influence matrix method [11]. In
this method, a set of solutions for the vorticity equation—
without the nonlinear term nor the terms evaluated at previ-
ous times—is calculated in a preprocessing stage. An indi-
vidual solution is obtained by imposingω = 1 at a point on
the solid boundaries andω = 0 elsewhere. Next, the solu-
tion of the full vorticity equation is calculated by imposing
ω = 0 at all solid boundaries. The solution satisfying zero
tangential velocity along the solid boundaries is obtained as
a linear combination of the latter solution and the set of so-
lutions obtained in the preprocessing stage. Finally, for the
open boundaries, the Neumann condition is imposed (i.e., the
normal derivatives of the stream function and vorticity are set
to zero).

2.1. Methodology

The differential equations (4) and (5) are solved by using the
Chebyshev pseudospectral method for spatial coordinates,
whereas a second-order Adams–Bashforth scheme is used to
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TABLE I. Number of pointsnx andny for all domains shown in
Fig. 1.

Domain nx ny

1© 300 80

2© 300 100

3© 300 100

4© 128 80

TABLE II. Length of domains for different Strouhal numbers and
for all domains shown in Fig. 1. In this caseh = h(u) = h(d).

S = 0.05 S = 0.065 S = 0.08 S = 0.1

h/H1 9 9 9 9

L/H1 28 28 25 20

l2/H1 8 8 8 5

determine the temporal evolution [11]. The numerical meth-
ods and methodology used are the same as used by Lopez-
Sanchez & Ruiz-Chavarria [8]. The mesh size is determined
via the usual procedure: We begin with few points along the
bothx andy axis in all the domains shown in Fig. 1, and the
number of points was increasing until no differences were ob-
tained in the solutions in two successive refinements. Table I
shows the number of spatial points used in the simulation for
all domains shown in Fig. 1. We have verified that results are
resolution independent from these refinements. To complete
the description of the system the length and width of each
domain are given in Table II.

We use different Reynolds number for the numerical sim-
ulations; namely, 400, 700, and 1000. Because we are in-
vestigating interactions between dipoles, the choice of the
Strouhal number becomes crucial. We useS = 0.05,
0.065, 0.08, and 0.10 to evaluate the effect of increasing

Strouhal number. In all these cases, the dipole lifetime ex-
tends over several driving periods, allowing interactions be-
tween dipoles to arise in the different cycles.

3. Vorticity and dipole properties

In a periodic driving flow, a dipole is formed during each cy-
cle. An issue raised in this work is the dipole lifetime. In
most cases, the lifetime extends over several cycles, in which
case two or more dipoles may coexist and interact. This inter-
action modifies dipole properties such as speed and vorticity
and, in some cases, the vortices can coalesce. On the other
hand Wells & van Heijst [14] have deduced that the condition
S < 0.13 suffices for a dipole to escape. Their model is based
on the assumption that all vorticity created inside the channel
during the first half period (when flow rate is positive) is in-
corporated into the vortices. The aforementioned assumption
is well satisfied forS & 0.13. However, it is not valid for
smaller values ofS. In this case, a fraction of vorticity is not
incorporated into the dipole, but forms instead a band in front
of the channel output. A consequence is that dipole speed is
lower than that predicted by the W-H model.

3.1. Interaction between vortices

ForS < 0.13, the dipole created in the first driving period es-
capes the channel. But apart from this result and depending
on the particular value of the Strouhal and Reynolds numbers,
different scenarios may occur. For instance, under certain
circumstances a vorticity band appears in front of the chan-
nel mouth and behind the dipole, in other cases the dipole
is partially sucked back into the channel during the stage of
negative flow rate, etc. The behavior of second and subs-
equent dipoles depends not only on the dynamics of channel

FIGURA 2. Vorticity distribution inX-Y plane forS = 0.08 and Re= 400. (a) A very symmetric vortex distribution appears att = 4.16T .
(b) t = 6.56T . Seven vortices have emerged, Only the first and the seventh are present. The first one survives because the interaction with
other dipoles is weak and viscous dissipation is negligible. On the other the seventh dipole is in the stage formation.
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FIGURE 3. Vorticity distribution inside the channel for the interval1.92T < t < 2.34T for S = 0.08 and Re= 400. a) During the stage
of negative flow rate some vorticity is produced into the channel. This vorticity has a sign contrary to the vortex expelled at the beginning of
the cycle, b) The vorticty created into the channel is expelled to the open domain, c) The aforementioned vorticity forms two spot in front of
the vortices created during the present cycle.

flushing into the open domain but also on the presence of
dipoles created in previous cycles. Two conditions must
be fulfilled to have dipole interaction: a) the dipole life-
time exceeds a driving period and b) the distance between
two dipoles falls below a critical distance. In this section
we present the most important results for interacting dipoles.
Figure 2(a) presents the vorticity distribution corresponding
to S = 0.08 and Re = 400 att = 4.16T . Five dipoles
are present. In addition, the distance between consecutive
dipoles is not constant. Further evolution can be seen in
Fig. 2(b), which corresponds tot = 6.56T . At this time, the
first dipole is still present but the others, except the last one,
have disappeared because of the combined action of viscosity
dissipation and vortex interaction. The first dipole survives
because the fluid in front of it is at rest and viscous dissipa-
tion is weak. The evolution of the second dipole (and subse-
quent dipoles) is as follows: it forms at the channel mouth,
then detaches after a while, and finally moves away. As it
moves, it is attenuated by viscosity until it finally disappears.
In addition to the two vortices emerging from the channel,
two vorticity spots appear as a result of the vorticity created
into the channel during the return-flux stage of the previous
period. This process is ilustrated in Fig. 3, where vorticity
distribution inside the channel is plotted for three different
times in the interval1.90T < t < 2.35T . During the back
flow some vorticity is created into the channel as shown in
Fig. 3(a). A fraction of this vorticity is expelled out at the be-
ginning of the next cycle (see Fig. 3(b) which finally forms
the two spots (see Fig. 3(c)). These spots can be recognized
by their opposite sign with respect to their partner vortex.

To better understand the evolution of dipoles, Fig. 4
presents the position (x coordinate) of the second, third, and
fourth dipoles forS = 0.08 and Re= 400. Each one moves
with a decreasing velocity. The dipoles cannot move farther
than a certain distance when they are blocked by the dipoles

FIGURE 4. Position (x coordinate) vs time of second, third, and
fourth dipoles forS = 0.08 and Re= 400. Except for the first,
all dipoles stop because they are hindered by the previous dipole,
which is in their path.

in front of them. At the end all these three dipoles are dissi-
pated.

The solution differs for the same forcing (S = 0.08) but
larger Reynolds number (Re= 700). Only every other dipole
escapes with the remaining being sucked back in. Figure 5(a)
shows the vorticity distribution fort = 1.8T ; that is, during
the negative flow rate of the second cycle. The first dipole is
located atx ≈ 5 whereas the second dipole is being sucked
back in. In addition two vorticity spots of opposite signs with
respect the adjacent vortex are present. Figure 5(b) shows
the vorticity distribution att = 4.4T ; that is, during the fifth
cycle. As mentioned above, only the first, third, and fifth
dipoles are apparent. The second and fourth dipoles have al-
ready been sucked back into the channel by the correspond-
ing backflow. The first dipole moves away until the onset of
the backflow, so it deforms but does not enter the channel. At
the beginning of the next cycle, two vorticity spots appear in
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FIGURE 5. Vorticity distribution inX-Y plane forS = 0.08 and Re= 700. (a) At t = 1.8T , the second dipole is sucked back into the
channel by the return flow. (b)t = 4.4T . The first, third, and fifth dipoles are shown. The second and fourth dipoles were sucked completely
back into the channel by the return flow.

FIGURE 6. Vorticity distribution in X-Y plane forS = 0.1, Re = 400, and at (a)t = 1.49T and (b)t = 6.7T . Only the first dipole
separates from the channel.

the vicinity of the channel output. These spots turn around
the dipole, thereby reducing its speed, following which the
second dipole moves slowly with respect to the first so that,
after a half period, it is positioned where backflow effects
are more intense. Thus, the second dipole moves toward the

channel and is finally sucked in. The third dipole evolves
similarly to the first one, and so forth. Finally, the fifth dipole
has no well-defined form because it is still in the formation
stage.
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FIGURE 7. Vorticity distribution inX-Y plane forS = 0.065 at t = 3.47T and (a) Re= 700, (b) Re= 1000. To this point, symmetry is
preserved in both cases.

FIGURE 8. Vorticity distribution inX − Y plane forS = 0.08, Re= 1000. (a) t = 2.4T . The flow remains symmetric. (b)t = 3.6T . The
flow begins to lose its symmetry and the second and third dipoles begin to coalesce. (c)t = 4.2T . All structures are nonsymmetric, even the
first dipole. After a while, the second dipole reaches the first dipole, but the two do not merge.

Increasing the Strouhal numberS leads to a stronger in-
teraction because the distance diminishes between succes-
sive dipoles. To support this statement, we present results
for S close to the threshold of the W-H model. Figure 6(a)
shows the vorticity distribution forS = 0.1, Re = 400 at
t = 1.49T . Because this time corresponds to the second
driving period, we see two dipoles. In addition, two vorticity
spots appear in front of the dipole emerging from the chan-
nel. The same phenomenon also occurs in subsequent peri-
ods, as seen in Fig. 6(b). Although this figure corresponds
to the seventh cycle (t = 6.7T ), only two dipoles are ap-
parent, the first and the seventh, the latter of which is being
sucked back into the channel. In this case only the first dipole
moves away from the channel, whereas subsequent dipoles
are sucked back into the channel during the backflow, result-

ing in a concentration of vorticity near the channel output
[see Fig. 6(b)]. This is a consequence of the interaction be-
tween consecutive dipoles. Multiple dipoles do not coexist in
the proper sense because after the first one, the others fail to
form.

Another question raised in this paper is the symmetry of
the flow. This symmetry depends both on the Reynolds and
Strouhal numbers. Figure 7 shows a very symmetric distri-
bution of vorticity forS = 0.065 and two different values of
Reynolds number, namely Re= 700 and Re= 1000. The
vorticity distribution corresponds tot = 3.47T . A different
behavior happens forS = 0.08 andRe = 1000 as shown in
Fig. 8. The figure shows the process of the lost of symmetry.
Vorticity distribution corresponding to three different times
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FIGURE 9. Vorticity distribution inX-Y plane forS = 0.065, Re= 400, and (a)t = 3.74T , (b) t = 4.23T , and (c)t = 4.6T . The first
and the second dipoles coalesce.

are shown. In Fig. 8(a) and 8(b) (t = 1.4T andt = 3.6T
respectively) the flow is symmetric. However, fort = 4, 2
(Fig. 8(c)) the symmetry is no longer conserved. The first
dipole escapes the channel influence and remains aligned
with respect to the symmetry axis. However, the symmetry
of dipoles produced in the second and third cycles is broken,
and the vortices do not follow the symmetry axis but take
lateral trajectories until they are finally destroyed.

Merger of dipoles

A possible scenario in a periodic driving flow is that dipoles
created in two subsequent cycles approach each other, inter-
act, and finally coalesce. Vortex coalescence occurs in this
system in the form of a leap-frog process. Such a case is
shown in Fig. 9 forS = 0.065 and Re = 400, which we con-
sider to be the most representative. The vorticity distribution
in Fig. 9(a) corresponds to the fourth period, so four dipoles
are clearly recognized, but their intensities differ, which im-
plies that they do not have the same speed. When the second
dipole approaches the first, it enters a region where velocity
field behaves like a jet. An enlarged view of the situation is
shown in Figs. 9(b) and 9(c), emphasizing the coalescence
phenomenon. Because the velocity is greater between the
vortices of the dipole, an induced velocity acts on the second
dipole, which modifies its shape so as to pass through the first
dipole [Fig. 9(b)]. The induced velocity pulls the second

FIGURE 10. Position of first (dotted lines) and second dipoles (con-
tinuous lines) as a function of time for Re= 400. The motion of
the second dipole differs from that of the first.

dipole ahead of the first dipole [Fig. 9(c)] and then the two
coalesce.

Another case of vortex coalescence occurs forS = 0.08
and Re= 1000 during the fourth cycle (see Fig. 8, already
presented in the previous section). As expected, because of
a higher Strouhal number, coalescence occurs closer to the
channel output than for the previous case. In Fig. 8(a), which
corresponds tot = 2.4T , the first dipole is at approximately
x = 7.5. The second dipole is close to the channel output
(x ≈ 3) and the third dipole is in its initial stage. In Fig. 8(b),
the symmetry starts to break down and the third dipole
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FIGURE 11. Circulation for the caseS = 0.051, Re= 1000. The
numeric total circulationΓtotal at timet = 0.44T is formed by the
sum of the band (Γband) and the vortex (Γ) circulations.Γtotal is less
thanΓW-H.

approaches the second dipole, deforms, and elongates. Co-
alescence begins but, at the end of the process, the flow is
no longer symmetric, as depicted in Fig. 8(c). The merged
dipole is not symmetric about the centerline and is approach-
ing the first dipole.

To better visualize the dipole coalescence in Fig. 10, we
plot the position (x coordinate) of the first (dotted lines) and
second (continuous lines) dipoles as a function of time for
Re= 400 and all Strouhal numbers considered in this work.
The first fact we notice is that the distance traveled by the
dipoles decreases as the Strouhal number increases and, con-
sequently, dipoles coalesce closer to the channel output asS
increases. Conversely, the intersection of curves in Fig. 10
gives approximately the position and the time of coalescence
(for a given Strouhal number). ForS = 0.05, the second
dipole catches up with the first atx = 20 and t = 5T ,
whereas forS = 0.065 the two dipoles coalesce atx = 13
and t = 4.5T . For S = 0.08, the continuous and dotted
lines do not intersect, which means that the second dipole
never catches up with the first. In this case the second dipole
dissipates when it arrives atx ≈ 8, whereas the first dipole
dissipates atx ≈ 15. When the Strouhal number reaches 0.1,
only the first dipole detaches and subsequent dipoles are

sucked into the channel, leading to a concentration of vortic-
ity around the channel mouth [1].

3.2. Circulation

Based on the definition of circulation [3–5, 7], we calculate
this quantity in a domain containing a vortex (Γ) and also the
circulation in the band formed in front of the channel (Γband).
The goal is to evaluate how much vorticty created into the
channel is incorporated to the dipole. With these results we
can explain the discrepancies between the prediction of the
W-H model and our numerical simulations for small values
of the Strouhal number.

To calculate the circulation for the W-H model (ΓW-H),
we use the suggestion [14]

Γ =

t∫

0

1
2
U(s)2ds.

In our case,U(t) = U0 sin(2πt∗/T ). By integrating, we
obtain

Γ =
U2

0

4

[
t∗ − T sin(2πt∗

T )
4π

]
.

Then, the dimensionless circulation is

ΓW-H =
Γ

U0H1
=

[
t− sin(2πtS)

4πS

]

4
.

which is valid fort < 0.5T
The Fig. 11 shows the domains used to evaluateΓ and

Γband for S = 051, Re = 1000 at t = 0.44T . The results
areΓ = 1.156, Γband = 0.6386, Γtotal = Γ + Γband = 1.7945;
ΓW-H = 2.4265. That means that in this case the numerical
simulation underestimates the production of vorticity into the
channel as compared with the W-H model.

In order to have a knowledge of the vortex evolution the
circulation was evaluated during the first half driving period
for S = 0.05, S = 0.065, S = 0.08, and three differ-
ent Reynolds numbers, namelyRe = 400, Re = 700 and
Re = 1000. Figure 12 shows these results and, for compari-
son, the prediction of the W-H model is included. Initially,

FIGURE 12. Circulation in half period for several cases and its comparison with the W-H model. Case Re=400,S = 0.051 shown in (a) is
the most similar case to W-H model. While Reynolds number is smaller, the circulation is bigger
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FIGURE 13. Circulation of one of two vortices in the first two
dipoles vst/T , for Re= 400, S = 0.065. The curve from the W-
H model is shown for comparison. The W-H model only works for
the first driving period, so the W-H curve is intentionally shifted.

all numerical curves have the same trend but, aftert ≈ T/4
they begin to separate from each other. The biggest Reynolds
number corresponds to the lowest circulation and vice versa.
The discrepancy is due to the fact that in the case Re = 1000
the dipole moves faster than in the case Re = 400, therefore
the vorticity has more time to incorporate in the latter case
than in the first case. That is why the maximum value of the
circulation is smaller for Re = 1000 than for Re = 400. Oth-
erwise, for the three values ofS considered in the figure, the
numerical results forΓ and the prediction by the W-H model
do not match; however, they have the same order of magni-
tude. For smallt, the curve of the W-H model is proportional
to t3 (as it will be shown in the next section) whereas the nu-
merical data are proportional tot. The difference is related to
how vorticity is created in the channel and expelled outward
into the open area.

According to Lopez-Sanchez & Ruiz-Chavarria [8], for
S < 0.05, the total vorticity obtained by numerical simula-
tion exceeds that predicted by the W-H model, andΓband > Γ.
That means that, for a Strouhal number less than 0.05, dipole
speed is less than half that predicted by the model. In the
present work,S ≥ 0.05, so discrepancies with the W-H
model are smaller, although the vorticity band still appears.

Let us point out other features of circulation. First,Γ
curves for a fixed Strouhal number are closer forS = 0.08
than forS = 0.05. This means that the circulation depends
more weakly on the Reynolds number as the Strouhal num-
ber grows. Moreover, Fig. 12 shows that the maximum cir-
culation happens beforeT/2 in the numerical simulations,
whereas it occurs atT/2 in the W-H model. The viscosity is
responsible for such behavior because the dissipation reduces
the circulation.

Figure 13 plots the circulation of the first and second
dipoles over a time interval lying in the second forcing cy-
cle for S = 0.065 and Re= 400. In this interval, the first
dipole is already formed and the second dipole is forming.

FIGURE 14. S = 0.065, Re = 400. Circulation before coales-
cence and circulation during and after coalescence. Circulation is
not conserved because of dipole dissipation.

For the first dipole, the maximum circulation is almost the
same as that in Fig. 12(b). The circulation is less in the sec-
ond dipole than in the first, which is explained by the pres-
ence of vorticity spots of opposite sign in the vicinity of the
second dipole that are not present around the first dipole. The
lower circulation in the second dipole is the reason why some
dipoles forS < 0.13 are sucked during the stage of negative
flow rate.

Another insight about the vortex coalescence comes from
calculating the circulation before, during and after the coa-
lescence in a symmetric and representative case:S = 0.065,
Re = 400. Figure 14 shows the circulation of the first and
second dipoles and their sum just before the dipoles coa-
lesce, and after of this coalescence. The circulation of the
merged dipole is lower than the sum of the first and second
dipole circulation just before to coalesce. This fenomenon is
due to the coalescence process leads to partial filamentation.
These small scales filament leave the main structure, and they
are eventually dissipated because of the viscosity. The result
shows that the circulation is not conserved in the coalescence
process for the viscous case.

4. Analytical Model

Wells & van Heijst [14] developed a model to describe the
creation and evolution of dipoles in tidal-induced flow. In
this model, the flow is composed of two point vortices and a
time-dependent source. Their properties are those given by
potential theory, so no dependence on Reynolds number ap-
pears because the viscosity is not taken into account. First, in
this model the dipole moves with a speed of

Ud =
Γ

2πd
, (8)
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FIGURE 15. Flow velocity at channel output (dashed line) and
dipole speed (solid line) vs time for (a)S = 0.0075 and (b)
S = 0.1. Both quantities were multiplied by S to have a maxi-
mum flow velocity equal to 1.

whereΓ is the circulation of a single vortex andd is the dis-
tance between vortices. The vorticity that feeds the dipole is
created inside the channel. To evaluate the circulation we use
dimensional arguments: First, the vorticity in the channel is
of the order ofω ≈ U/(2δ), δ is the thickness of the bound-
ary layer. Then, if we assume that all vorticity created in the
channel is incorporated into the dipole, the circulationΓ is
the surface integral ofω over the area covering all fluid leav-
ing the channel. BecauseU is time dependent,Γ is calculated
by

Γ =
∫

1
2
U2dt. (9)

During positive flow rate,Γ grows because the vorticity
leaving the channel is continuously incorporated. If we nor-
malizet by the periodT and let the velocity in the channel
output beU(t) = sin(2πt)/S, then the positionx(t) and ve-
locity ud(t) of the dipole during the stage of positive flow
rate (t < 1/2) are

x(t) =
1

4πS2

(
1
2
t2 +

1
16π2

[cos (4πt)− 1]
)

, (10)

ud(t) =
1

4πS2

(
t− sin(4πt)

4π

)
. (11)

Both equations are valid provided that all the vorticity
created in the channel is incorporated into the dipole. The
results obtained in a previuos work [8] indicate that Eqs. (10)
and (11) are asymptotically recovered whenS → 0.13, but
this does not happen whenS → 0. The discrepancy for small
S arises from the fact that the dipole speed (ud(t)) given by
Eq. (11) exceeds, at a certain time, the fluid velocityU(t)

at the channel mouth. Ifud(t) > U(t), then the vortic-
ity created in the channel is no longer incorporated into the
dipole. This can be seen in Fig. 15, which shows both the
velocity of the fluid at the channel mouth (U ) and the dipole
speedud (both multiplied byS) as a function of time for
S = 0.0075 andS = 0.1. ForS = 0.0075, both curves in-
tersect attc = 0.14, and forS = 0.1 the intersection happens
at tc = 0.43. Roughly, this value oft gives the upper limit
of the interval during which vorticity leaving the channel is
incorporated into a dipole. Consider the caseS = 0.0075.
Initially, flow velocity exceeds dipole speed, so fluid particles
leaving the channel reach the dipole and consequently vortic-
ity is incorporated into the dipole. However, according to the
W-H model, the dipole speed increases continually until the
end of the half period, leading to the predictionud À U .
This is not true because, whenud > U , the particles trans-
porting vorticity cannot reach the dipole. If the circulation
no longer increases, the dipole speed attains a constant value,
which is roughly that of the intersection of curves in Fig. 15
(i.e., whenU = ud):

1
S

sin(2πt) =
1

4πS2

(
t− sin(4πt)

4π

)
. (12)

To estimate this speed we must determine the root of
Eq. (12). To this end we Taylor expand both sides of this
equation to third order, which gives

tc ≈
√

6S

2 + 4π2S
. (13)

Substituting this time into Eq. (11) gives the speed of the
dipole. To calculate the position of the vortex att = tc we
use Eq. (10). Another possibility is to Taylor expand this
equation, which gives a first nonvanishing term of the order
four and then the dipole position is

x(t) ≈ π

6S2
t4. (14)

Consequently, the positionk at which dipole attains a con-
stant speed is

k ≈ 6π

(2 + 4π2S)2
. (15)

Equations (13)–(15) are valid providedS → 0. In this
case, timetc is small, so the Taylor expansion to third or
fourth order provides a good estimate of the original func-
tions. Table III gives the values oftc for variousS. If we
calculate the root of Eq. (12) instead of using a Taylor ex-
pansion, we find that Eqs. (13)–(15) provide a good estimate
when tc < 0.25. In this respect, the value fortc predicted
with S = 0.1 by Eq. (13) istc = 0.32 (see Table III),
which differs from the value of 0.43 calculated directly from
Eq. (12).

The value of k depends onS but, in any case,
k≤(3/2)π=4.71. Dipoles evolve over three stages. In the
first stage, the circulation of vortices,Γ, is well described by
the W-H model, and the dipole position is proportional tot4.
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TABLE III. Comparison of different distances over which dipoles
move inT/2 as given by W-H model (DW-H), our correction (D),
and the numerical simulations (Dnum). The timetc after which vor-
ticity is no longer incorporated into the dipole and the constant ve-
locity u(tc) reached by the dipole are also included.

S tc u(tc) DW-H D Dnum

0.0075 0.14 87.5 176.8 35.1 23.6

0.01 0.158 68.1 99.5 26.6 19.36

0.025 0.224 25.3 15.9 9.1 5.802

0.051 0.28 8.9 3.8 3.2 1.91

0.065 0.29 6.3 2.4 2.2 1.42

0.08 0.31 9.5 1.55 1.56 0.96

0.1 0.32 3.0 1.0 1.1 0.78

0.11 0.32 2.54 0.82 0.92 0.67

0.15 0.34 1.44 0.44 0.53 0.48

In the second stage, the velocity is sufficient to prevent a fur-
ther dose of vorticity from arriving from the channel. The
dipole speed is essentially constant. In the final stage, after
t > (T/2), the dipole is affected by the negative flow rate.

The W-H model is recovered asymptotically whenS →
0.13, which can be justified with the help of Fig. 15(b). This
figure shows that two curves intersect when the dipole speed
is near its maximal value. Fort > tc no additional vorticity
is incorporated into the dipole, although this fact has small
effect on the dipole speed.

After a half cycle has elapsed, the dipole position is

xf = k + u(tc) (0.5− tc) . (16)

Table III compares data corresponding to this model with the
results of the W-H model and of our numerical simulation.
Also included in the table is the timetc, the velocityu(tc)
of the dipole, and the distance traveled after a half period ac-
cording to our model (D), the W-H model (DW-H), and the
numerical simulations (Dnum).

These results show that the dipole position after a half
period is overestimated by a factor five by the W-H model
for S = 0.0075. For higher values ofS, this overesti-
mate becomes less important. The modification of the W-H
model does not modify the criterion given by these authors
regarding the condition for a dipole to escape because, for
S = 0.13, the dipole does not reach the positionx = k.

5. Some comparative data

We compare dipole displacement obtained numerically in
this work with data obtained by observation [1] and exper-
iment [9]. To begin, we estimate the distances between
dipoles and the channel in Fig. 7 of Ref. 1, which is for
S = 0.05; the results ared1 ≈ 6.9 andd2 ≈ 2.8. Our numer-
ical simulation givesd1 = 7.68 andd2 = 2.3, for Re= 400.
Note that two important differences exist between these two

results: First, according to the satellite pictures in Ref. 1 the
channel length is small as compared with the channel width
H1. Second, the dipoles in Ref. 1 lose their symmetry and are
displaced less than in our numerical simulation because other
currents are involved in the system. Thus, the main compari-
son is qualitative, in the sense of the coexistence of multiple
dipoles.

We made also a comparison with two cases of Nicolau del
Roure [9]; namely,S = 0.11 andS = 0.06. At t = 0.35T ,
the distance between dipole and channel output isd1 = 1.07
in the Nicolau experiment (Fig. 5 of Nicolau del Roureet
al., [9], corresponding toS = 0.11), andd1 = 1.61 in our
numerical simulation. At the same time but forS = 0.06
(Fig. 8 of Nicolau del Roureet al., [9]), the dipole posi-
tion is d1 = 1.58, whereas the numerical simulation gives
d1 = 1.43. In both numerical cases Re= 400.

6. Conclusions

This paper presents the results of some numerical simulations
of a periodic flow between a channel and an open domain.
The ultimate aim is to understand the formation mechanisms
of multiple dipoles and the interactions between such dipoles.
Each cycle produces a dipole; if the dipole lifetime exceeds
a period, two or more dipoles may coexist, which opens the
door for interactions between vortices. In some cases this in-
teraction leads to dipole coalescence. Such phenomenon oc-
curs as a leap-frog process when dipoles approach each other.
In addition to the vortex merger, another phenomenon is ob-
served, that is, the formation of the vorticity spots in front of
the dipoles leaving the channel. In some circumstances these
spots are responsible for the fact that half of the dipoles are
sucked back into the channel and the remaining dipoles es-
cape. This behaviour occurs because when a dipole forms,
the spots (which are in fact small vortices) move around it,
thereby reducing its translational speed. Next, at the end of a
half period, the vorticity spots are sucked back into the chan-
nel. The next cycle produces no vorticity spots, so the dipole
can escape.

A result that has been highlighted in the paper is that for
a flow with a Strouhal number below the critical value 0.13
not all vorticity created in the channel is incorporated into
dipoles. The fraction of this vorticity grows asS → 0. A con-
sequence is that the W-H model overestimates the speed at-
tained by the dipole. Based on this results we have proposed
an analytical model that provides results that are more consis-
tent with experimental and numerical data than those of the
W-H model. On the other hand, we could expect that the nu-
merical results approach the W-H model when the Reynolds
number grows, because that model is inviscid. This happens
only during the first stage of the dipole evolution. After there
is a discrepancy because the emergence of the vorticity band
behind the dipole. The aforementioned discrepancy dimin-
ishes whenS → 0.13.

Another important conclusion is that the evolution of the
first dipole is consistent with the W-H model in the sense
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that, whenS < 0.13, the dipole moves away from the chan-
nel. However, the results forS = 0.1 show that subsequent
dipoles are sucked back into the channel during backflow
and that, as a consequence, vorticity is concentrated near the
mouth of the channel.

Finally, when the Reynolds number increases, symme-
try is broken and vortices destroy by a combined a action of
viscous dissipation and the growth of instabilities. Although
the Reynolds number used in these simulations differs from
what is found in coastal systems and these simulations do not
consider the Coriolis force, the results are consistent with ob-

servations reported in the literature, such as the coexistence
of multiple dipoles [1].

Acknowledgments

The authors acknowledge DGAPA-UNAM by their support
under project IN-115315 “Ondas y estructuras coherentes
en dinamica de fluidos”. We also thank Pablo de la Mora
and Sergio Hernandez-Zapata for their insightful sugges-
tions, and gratefully acknowledge Dr. Kraabel for assistance
with the manuscript.

1. R.O. Amoroso, and D.A. Gagliardini,J. Coastal Res.2 (2010)
26.

2. L.K. Brandt, and K.K. Nomura,Phys. Fluids 18 (2006)
051701-1-051701-4.

3. D.G. Dritschel,J. Fluid Mech. 157(1985) 95-134.

4. D. G. Dritschel,J. Fluid Mech.172(1986) 157-182.

5. E.H.J.P. Guyon, and L. Petit,Hidrodynamique Physique. EDP
Sciences, CNRS Ed, (Paris, France, 2001).

6. V. Kovacevic, G.M.-M.-M.I.M.A., and S. Marinettid,Journal
of Marine Systems51 (2004) 95-122.

7. L.D. Landau, and E.M. Liftshitz,Fluid Mechanics. (Pergamon
Press, Oxford, UK, 1987).
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